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The era of ChatGPT
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Outline

◦ This lecture
1. Basics of language models
2. Self-attention and transformer architectures
3. Fundamentals of pre-training & fine-tuning & reinforcement learning with human feedback (RLHF)
4. Generative pre-trained transformer (GPT) family
5. Basics of prompting: zero-shot & few-shot & chain-of-thought & automatic
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A motivation for language models (LMs)

Example
Predict the next word w given the following source sentence Ssource?
Ssource : “On January 1 people usually say happy new [w].”

Question: ◦ Why is this important?
▶ spelling & grammar correction p(year|Ssource) > p(years|Ssource)
▶ machine translation p(Stranslation 1|Ssource) > p(Stranslation 2|Ssource)
▶ sentence classification p(Sclass 1|Ssource) > p(Sclass 2|Ssource)
▶ speech recognition p(w|Ssource)
▶ chatbot p(w|Ssource)
▶ (more generally) labeling, automated decisions,...
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Basics for language models (LMs) – I

Definition (Language model [9])
Models that assign probabilities to sequences of words are called language models.

Remarks: ◦ Given a sentence with T words: S = w1:T = (w1, . . . , wT ), by the chain rule of probability:

p(S) = p(w1:T ) = p(w1)p(w2|w1)p(w3|w1:2) · · · p(wT |w1:T −1) =
T∏

t=1

p(wt|w1:t−1)

◦ Implicitly, we are enforcing a graphical model that takes “time” into account.

Example
If S = w1:3 = “happy new year”, then p(S) = p(happy)p(new|happy)p(year|happy new).
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Basics for language models (LMs) – II

Question: ◦ How can we compute p(wt|w1:t−1)?

Remarks: ◦ A trivial solution: Just count the frequency on a large corpus, e.g.,

p(year|Ssource) =
p(Ssource + year)

p(Ssource)
≈

#(On January 1 people usually say happy new year)
#(On January 1 people usually say happy new)

◦ But the language is creative, there are several ways to express the same meaning.

◦ The sentence above might even not appear on the corpus.

◦ We need better ways to estimate such probabilities!
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N-gram LMs

Markov assumption [12]
The probability of a word only depends on the last N − 1 words as

p(wt|w1:t−1) = p(wt|wt−N :t−1) ≈
#(wt−N :t)

#(wt−N :t−1)
.

Markov in 1913 [12] used “Markov
chains” to predict whether the
upcoming letter would be a vowel or a
consonant.

Example
In the bigram LM (N = 2), we only need to estimate p(wt|wt−1) ≈ #(wt−1:t)

#(wt−1) to generate text.

Figure: Count (Left) and probability p(wt|w1:t−1) (Right) from the Berkeley Restaurant Project corpus of 9332 sentences [9].
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Towards pre-training an N-gram LM

◦ In natural language processing (NLP), we use tokens to represent words coming from a vocabulary V.

Terminologies: ◦ A token is the smallest unit that can be assigned a meaning to be processed.
▶ In English, a token often corresponds to a word.
▶ However, a single token can also encode compound words like New York.
▶ In Chinese or Japanese, there is no space between words.
▶ In these languages, sentence segmentation is required before we tokenize.

◦ We indicate the beginning and the end of sentences with tokens ⟨BOS⟩ and ⟨EOS⟩.
▶ Ssource “⟨BOS⟩ Happy new year ⟨EOS⟩” has T = 5 tokens.
◦ The size of our vocabulary is denoted as |V|.

◦ Pre-training: building a LM based on a large corpus in a (often) self-supervised manner.

◦ Inference: Using a trained LM to do next word prediction.
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N-gram LMs: “Pre-training” & Inference

◦ The following simplified examples show the difficulty of pre-training and inference with 2-gram LMs.

“Pre-training”
1. Count #(wt−1) and #(wt−1:t) over the corpus.
2. Obtain probability p(wt|wt−1) over the corpus.

Inference
1. Set w1 as ⟨BOS⟩, t = 1.
2. While True:
▶ wt+1 = arg maxw∈V p(w|wt)
▶ If wt+1 is ⟨EOS⟩: break
▶ t = t + 1

3. Output: [w1, · · · , wt+1].

Remarks: ◦ Need to store the probability for all N -gram pairs.

◦ Language is creative, some new N -gram pairs might not even appear on the corpus.

◦ Cannot incorporate earlier words than N due to the Markov assumption.

p(two | one plus one equals) = p(two | it is wrong that one plus one equals)?
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Word representations

Question: ◦ How can we numerically represent a word/meaning?

Remarks: ◦ Osgood et al. 1957 [16] uses 3 numbers to represent a word.
▶ valence: the pleasantness of the stimulus
▶ arousal: the intensity of emotion provoked by the stimulus
▶ dominance: the degree of control exerted by the stimulus

Figure: From [8].
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Word embeddings

Definition (Word embeddings [9])
Vectors for representing words are called word embeddings.

◦ We will briefly introduce two words embeddings:

◦ One-hot representation: sparse and long word embedding in R|V|.
▶ Training is not required—trivial to obtain.
▶ Not a good way to capture the underlying meaning—cannot measure similarity.
◦ Word2vec [13]: a framework to learn dense and concise word embedding.
▶ Training is required.
▶ Better characterization for the meaning of a word, e.g., the similarity can be computed by similarity metrics.
▶ Cosine similarity or inner products work!
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Word2vec [13]: Setup

◦ An illustration of a target word and context words in a ±2 window size:

... people usually︸                  ︷︷                  ︸
context words

say︸︷︷︸
target word

happy new︸            ︷︷            ︸
context words

...

◦ Word2vec uses learnable parameters Xc and Xt to present two embeddings for each word,
▶ Xc corresponds to the embedding when it is as a context word.
▶ Xt corresponds to the embedding when it is as a target word
▶ They satisfy the following relationship:

bt
i = Xtei ∈ Rd, bc

i = Xcei ∈ Rd,

where ei ∈ R|V| is the one hot representation for each word, i ∈ 1, . . . |V|.

Remarks: ◦ The window size for the context is a hyperparameter.

◦ The final embedding can be the summation or concatenation of these two embeddings.
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Word2vec [13]: Training

◦ Core idea: Given a pair of words (wi, wj), return the probability that wj is the context word of wi (i.e., true).

A simple approach: p(true|(wt, wc)) = σ(⟨bt
t, bc

c⟩) =
1

1 + exp(−⟨bt
t, bc

c⟩)
, where σ is the sigmoid activation.

◦ Given a tuple (wt, wc, wn), we have the following ingredients
▶ wt is the target word.
▶ wc is one of its context words(positive samples)
▶ wn is not its context word (negative sample)—e.g., chosen via unigram (1-Gram) probability.
▶ A loss function:

L = − log (p(true|(wt, wc))p(false|(wt, wn)))
= − log p(true|(wt, wc))− log p(false|(wt, wn))

= − log σ(⟨bt
t, bc

c⟩)− log(1− σ(⟨bt
t, bc

n⟩))

= − log
1

1 + exp(−⟨Xtet, Xcec⟩)
− log

(
1−

1
1 + exp(−⟨Xtet, Xcen⟩)

)
◦ Crawl the corpus to obtain these tuples, and minimize L (e.g., with stochastic gradient descent).
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Designing neural networks for pre-training LM

◦ A two-layer feedforward neural network (FNN):

hx(a) :=

[
XO

] activationy
σ


weight

↓[
XI

] input
↓[
a

]
︸                                             ︷︷                                             ︸

hidden layer z = non-linear features

, x := [XI , XO]
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Short detour: Statistical learning with maximum-likelihood estimators

◦ A visual summary: From parametric models to learning machines

(ai, bi)n
i=1

modeling−−−−−−−→
parameter x

P (bi|ai, x) independency−−−−−−−−→
identical dist.

px(b) :=
n∏

i=1

P (bi|ai, x)

↓ maximizing w.r.t x
a −→Learning Machine←− x⋆

ML
prediction ↓

hx⋆
ML

(a)

Observations: ◦ Recall x⋆
ML ∈ arg minx∈X {L(hx(a), b) := − log px(b)}.

◦ Maximizing px(b) gives the maximum-likelihood (ML) estimator.

◦ Maximizing px(b) and minimizing − log px(b) result in the same solution set.
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Designing neural networks for pre-training LM
◦ A two-layer feedforward neural network (FNN):

hx(a) :=

[
XO

] activationy
σ


weight

↓[
XI

] input
↓[
a

]
︸                                             ︷︷                                             ︸

hidden layer z = non-linear features

, x := [XI , XO]

Recall: Maximum-likelihood estimator
The maximum-likelihood estimator (supervised learning with data (a, b)) is given by

x⋆ ∈ arg min
x∈X
{L(hx(a), b) := − log px(b)} .

Remark: ◦ NN-based LM can be considered as an unsupervised maximum-likelihood estimator.

x⋆
LM ∈ arg min

x∈X
− log px(S) = − log px(b1:T ),

where px(S) is the probability of sentence S with embedding b1:T = (b1, . . . , bT ).
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The optimization objective

◦ A (vector-output) neural network hx ∈ ∆|V|−1 can be used to model such probability.

− log px(b1:T ) = − log

(
T∏

t=1

px(bt|b1:t−1)

)
=

T∑
t=1

− log px(bt|b1:t−1)︸               ︷︷               ︸
hx(b1:t−1)[“bt”]


=

T∑
t=1

(
− log hx(b1:t−1)[“bt”]

)
=

T∑
t=1

(
−

|V|∑
i=1

û[i]
t log u[i]

t

)
= cross entropy loss

▶ ut := hx(b1:t−1) ∈ R|V| is the probability distribution of the next word given previous t− 1 words.
▶ ût ∈ R|V| is the correct distribution (one-hot) at t step.

Remarks: ◦ Teacher forcing training: We always give the model the correct history sequence.

◦ Auto-regressive inference: The history sequence comes from its prediction result.
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Basic NN setups for LM

◦ Below, we present a general idea of deploying neural networks as LMs.
▶ Feed-forward neural network (FNN)
▶ Recurrent Neural Networks (RNN)
▶ Self-attention
◦ At each step t, we use NN to model the probability distribution of the current word given previous t− 1 words.

probability distribution of next wordy
ut := hx(b1:t−1) := Softmax


[

XO

] some architecturesy
FNN/RNN/Self-attention


some weight

↓

X ,

previous words
↓

b1:t−1


︸                                                                                                 ︷︷                                                                                                 ︸

hidden layer z = non-linear features


◦ Then, we can minimize the cross-entropy loss (i.e., −

∑|V|
i=1 û[i]

t log u[i]
t ) via (stochastic) gradient descent.
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FNN as LM [2]: pre-training

◦ Core idea: use most recent N tokens to predict next token (similar to N -gram)
◦: XI ∈ Rm×Nd, XO ∈ R|V|×m are learnable parameters, where d is the dimension of the embedding.

Forward pass in pre-training on single sentence
(only use two recent tokens, i.e., N = 2)

1. Set b0 = 0, initial loss L = 0
2. For t = 1, . . . , T

▶ zt = σ

(
XI

[
bt−1

bt

])
, FNN

▶ ut = Softmax(XOzt), probability

▶ L+ =
(∑|V|

i=1−û[i]
t log u[i]

t

)
, loss
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RNN as LM [14]: pre-training

◦ A weakness of FNN LM is the Markov assumption: It cannot capture long-term dependencies.

◦ RNN architectures only partially address this issue.

◦: X1 ∈ Rm×m, X2 ∈ Rm×d, XO ∈ R|V|×m are learnable parameters.

Forward pass in pre-training on single sentence
1. Set initial state z0 = 0, initial loss L = 0
2. For t = 1, . . . , T

▶ zt = σ(X1zt−1 + X2bt), RNN
▶ ut = Softmax(XOzt), probability

▶ L+ =
(∑|V|

i=1−û[i]
t log u[i]

t

)
, loss
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RNN as LM: inference
◦ RNN architectures perform auto-regressive inference.

Forward pass in inference
1. Set b1 as the embedding of ⟨BOS⟩, t = 1, initial
state z0 = 0.
2. While True:
▶ zt = σ(X1zt−1 + X2bt)
▶ ut = Softmax(XOzt)
▶ Set bt+1 as the embedding of the token

corresponding to arg max ut.
▶ If bt+1 is the embedding of ⟨EOS⟩: break
▶ t+ = 1

3. Output: [b1, · · · , bt+1].

Figure: Auto-regressive inference
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Self-attention layer as LM
◦ A weakness of the RNN LMs is its recursive non-parallelizable computation.

◦ Self-attention can address these issues.

Figure: (Left panel) FNN in LM. (Middle panel) RNN in LM. (Right panel) Self-attention in LM.
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Self-attention layer for LM

◦ Core idea: compare a word of interest to other words based on their relevance.

◦ How do we measure the relevance of two words?
▶ inner products (recall word embeddings)
▶ e.g., for the word with embedding b3, we can compute three scores:

Score(3, 1) = ⟨b3, b1⟩; Score(3, 2) = ⟨b3, b2⟩; Score(3, 3) = ⟨b3, b3⟩.

◦ Next, we normalize them with a softmax to create a vector of weights, and obtain the output:

z3 =
3∑

j=1

Softmax([Score(3, 1), Score(3, 2), Score(3, 3)])jbj

=
3∑

j=1

exp(Score(3, j))∑3
i=1 exp(Score(3, i))

bj

Figure: Self-attention layer.
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Self-attention layer for LM

◦ A more sophisticated way to present how words are contributed to each other:
▶ Query: when current word goes measure the relevance with other words.
▶ Key: when being measured the relevance by other words.
▶ Value: value used to compute the final output.

◦ For each word, calculate its corresponding query, key, and value using parameters XQ, XK , XV ∈ Rm×d

qi = XQbi, ki = XKbi, vi = XV bi.

◦ Then, for the word with embedding b3, those three scores become:

Score(3, 1) = ⟨q3, k1⟩; Score(3, 2) = ⟨q3, k2⟩; Score(3, 3) = ⟨q3, k3⟩.

z3 =
3∑

j=1

Softmax([Score(3, 1), Score(3, 2), Score(3, 3)])jvj

◦ We need to learn the parameters XQ, XK , XV ∈ Rm×d. Figure: Self-attention layer.
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Positional embeddings in self-attention
Question: ◦ Does self-attention layer consider the relative position of each word in the sequence? No!

Observation: ◦ If we switch the order of b1 and b2, the output z3 remains the same.

Figure: Self-attention layer.

◦ In comparison, RNN encodes the information about the order of the inputs recursively.
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Positional embeddings in self-attention
Question: ◦ Does self-attention layer consider the relative position of each word in the sequence? No!

Solution 1? ◦ Absolute position via trivial concatenation.

Pos(bt) = Concatenate[bt, t] .

◦ Unbounded value.

◦ Hard to extrapolate on sequence with unseen length.
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Positional embeddings in self-attention
Question: ◦ Does self-attention layer consider the relative position of each word in the sequence? No!

Solution 2 [24]: ◦ Absolute position via trigonometric functions of different frequencies. For t = 1, . . . , T :

Pos(bt) = bt +



sin
(

t/100002×1/d
)

cos
(

t/100002×1/d
)

...

sin
(

t/100002× d
2 /d
)

cos
(

t/100002× d
2 /d
)


From [29]
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Solution 3: ◦ ⋆Rotary position embedding [21]: incorporate both absolute position and relative position.
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Self-attention layer for LM

◦ B = [b1, ....bT ]⊤ ∈ RT ×d: collections of embeddings of all tokens.
◦ Learnable parameters: XQ, XK , XV ∈ Rm×d, XO ∈ R|V|×m.

Forward pass in training on a single sentence
1. Set initial loss L = 0.
2. Q = BX⊤

Q, K = BX⊤
K , V = BX⊤

V , query, key, value.
3. S = Mask(QK⊤), calculate score and mask score.
5. Z := [z1, ..., zT ]⊤ = Row-wise-Softmax(S)V , self-attention output
6. U := [u1, ..., uT ]⊤ = Row-wise-Softmax(ZX⊤

O), probability
7. L = L +

(∑T

t=1

∑|V|
i=1−û[i]

t log u[i]
t

)
, loss Figure: Mask score for S.

Remarks: ◦ In the remaining slide, bt has already been added to position embedding.

◦ Masking score is used to prevent “cheating.”
▶ the current word has only seen previous word.
▶ the subsequent word is unknown.
▶ the element −∞ after softmax becomes 0.
◦ Attention with masking score is usually called “Masked attention.”

◦ This construction enables parallelization whereby improving upon RNNs.
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Self-attention layer as LM: inference

Forward pass in inference
1. Set b1 as the embedding of ⟨BOS⟩, t = 1.
2. While True:
▶ qt = XQbt, kt = XKbt, vt = XV bt, calculate query, key, value
▶ s = [⟨qt, k1⟩, · · · , ⟨qt, kt⟩]⊤, calculate score
▶ zt = [v1, · · · , vt] · Softmax(s)
▶ ut = Softmax(XOzt)
▶ Set bt+1 as the embedding of the token corresponding to arg max ut.
▶ If bt+1 is the embedding of ⟨BOS⟩: break
▶ t+ = 1

3. Output: [b1, · · · , bt+1].

Remark: ◦ Still non-parallelizable, still auto-regression, the same as RNN LM, FNN LM.
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Transformer as LM
◦ A Transformer block= [self-attention layer + ⋆layer normalization + feedforward layer + ⋆layer normalization].
◦ We stack L Transformer blocks to form an LM, e.g., L = 12 in [17].

Forward pass in pre-training on single sentence
1. Set initial loss L = 0, denote by Z0 = B the input to the first block.
2. For l = 1, . . . ,L
▶ Ql = Zl−1X⊤

Q,l, Kl = Zl−1X⊤
K,l, Vl = Zl−1X⊤

V,l, query, key, value.
▶ Sl = Mask(QlK

⊤
l ), calculate score and mask score.

▶ Zl = Row-wise-Softmax(Sl)Vl

▶ Zl+ = Zl−1, “add” in the figure, motivated by ResNet [7]
▶ Zl = Layernorm(Zl)
▶ Zshortcut = Zl

▶ Zl = σ(XF,lZl), feedforward
▶ Zl+ = Zshortcut, “add”
▶ Zl = Layernorm(Zl) output of each Transformer block

3. U := [u1, ..., uT ]⊤ = Row-wise-Softmax(ZLX⊤
O), probability

4. L+ =
(∑T

t=1

∑|V|
i=1−û[i]

t log u[i]
t

)
, loss

Remarks: ◦ Original Transformer is proposed with encoder and decoder for neural machine translation [24].
◦ The Transformer decoder is sufficient as an LM.
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GPT-1 [17]: (Pre-train + fine-tune paradigm)“Improving Language Understanding by Generative Pre-Training”, 2018

Remarks: ◦ Pre-training enables learning better underlying language patterns on a large corpus.
◦ Pre-training provides a better parameter initialization for fine-tuning, leading to faster convergence.
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GPT-1 [17]: (Pre-train + fine-tune paradigm)“Improving Language Understanding by Generative Pre-Training”, 2018

◦ Step 1: Pre-train a LM on a large unlabeled corpus using Transformer’s decoder.
▶ Recall that Transformer’s decoder is sufficient for LM.
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GPT-1 [17]: (Pre-train + fine-tune paradigm)“Improving Language Understanding by Generative Pre-Training”, 2018

◦ Step 1: Pre-train a LM on a large unlabeled corpus using Transformer’s decoder.
▶ Recall that Transformer’s decoder is sufficient for LM.
◦ Step 2: Fine-tune on specific tasks, e.g., on a sentence classification task.
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GPT-1 “Improving Language Understanding by Generative Pre-Training", 2018” [17]

Limitation: ◦ Require task-specific datasets and task-specific fine-tuning.

◦ Model is fine-tuned on very narrow task distributions.

◦ Model does not necessarily generalize better out-of-distribution.

Question: ◦ Is it possible to address these limitations?
▶ Humans do not require large supervised datasets to learn most new language tasks.

–“please tell me if this sentence describes something happy or something sad”
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GPT-2, GPT-3 [18, 3] “Language Models are Unsupervised Multitask Learners”, “Language Models are Few-Shot Learners”

◦ Same as GPT-1: we still pre-train the LM on unlabeled corpus.
◦ New: no need to fine-tune anymore. One pre-trained LM for all tasks, achieve SOTA.
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GPT-2, GPT-3 [18, 3] “Language Models are Unsupervised Multitask Learners”, “Language Models are Few-Shot Learners”

◦ Same as GPT-1: we still pre-train the LM on unlabeled corpus.
◦ New: no need to fine-tune anymore. One pre-trained LM for all tasks, achieve SOTA.

◦ How?

Figure: From https://businessolution.org/gpt-3-statistics/
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Few-shot prompting (In-context learning) in GPT-3

◦ GPT-1: finetune the model on a specific task
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Few-shot prompting (In-context learning) in GPT-3

◦ GPT-1: finetune the model on a specific task
◦ GPT-3: no need to fine-tune on a specific task.
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Few-shot prompting (In-context learning) in GPT-3

◦ GPT-1: finetune the model on a specific task
◦ GPT-3: no need to fine-tune on a specific task.
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⋆ Intrinsic mechanism of in-context learning
◦ Classical supervised learning, for each task:
▶ Training: ERM, x⋆ ∈ arg minx : R(x) = 1

N

∑N

i=1 L(hx(ai), bi).
▶ Given test point aN+1, return hx⋆ (aN+1).

◦ In-context learning in LLM:
▶ Trains on huge corpus and gets x⋆.
▶ For any test task τ ′, return: hx⋆ ({aτ ′

i , bτ ′
i }

N
i=1, aτ ′

N+1).

◦ Meta-learning:
▶ Training: ERM, x⋆ ∈ arg minx : R(x) = 1

#Training tasks

∑#Training tasks
τ=1 L(hx({aτ

i , bτ
i }

N
i=1, aτ

N+1), bτ
N+1).

▶ For any test task τ ′, return hx⋆ ({aτ ′
i , bτ ′

i }
N
i=1, aτ ′

N+1).

Question
◦ Why LLM can perform in-context learning?
◦ Theoretical explanation: by performing gradient descent implicitly on in-context data? [25], see supplementary.
◦ Or is it just due to the so-called emergent abilities? See the next slide!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 51



Few-shot prompting (In-context learning) → emergent abilities of LLM

“An ability is emergent if it is not present in smaller models but is present in larger models.”[27]

Figure: Emergent abilities of few-shot prompting appear when the model parameters (x-axis) are increased to some extent. [27]
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Chain-of-thought prompting → emergent abilities of LLM

Figure: Demo of chain-of-thought (CoT) prompting [10].
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Chain-of-thought prompting → emergent abilities of LLM

Figure: Performance under chain-of-thought prompting is increased until a certain model scale on Math word problems [27], A
LLM called LaMDA is used [22].
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Zero-shot chain-of-thought prompting → emergent abilities of LLM

Figure: Demo of zero-shot chain-of-thought (CoT) prompting [10].
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Zero-shot chain-of-thought prompting → emergent abilities of LLM

Figure: Performance under Zero-shot chain-of-thought prompting is increased until a certain model scale on Math word
problems [10]. Y-axis indicates the accuracy.
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Why emergent abilities occur?

◦ Understanding this would benefit:
▶ Economy and environment: reduce training cost to obtain desired emergent abilities.
▶ AI-Safety: prevent larger models from acquiring dangerous capabilities without warning.

Figure: In NeurIPS 2023, the paper that explains “emergent abilities” achieved outstanding paper award. As a remark: the
Word2vec paper achieved “Test of time” award.
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Why emergent abilities occur? [19]
◦ Emergent abilities occur due to:
▶ fundamental changes by model scaling.
▶ researcher’s choice of metric.
◦ Nonlinear or discontinuous metrics produce apparent emergent abilities.
◦ Linear or continuous metrics produce smooth, continuous, predictable changes in performance.
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Figure: 2-Integer 2-Digit Multiplication Task. Left: performance is measured by a nonlinear metric (e.g., Accuracy). Right:
performance is instead measured by a linear metric (e.g., Token Edit Distance).
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FLAN [26] (Instruction tuning) “Finetuned language models are zero-shot learners”, 2021

◦ Fine-tuning is useful again, with the instruction format, allowing generalize to unseen tasks.

◦ Better than aforementioned “no fine-tuning” + “few-shot prompting”.
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InstructGPT (Align LLM / Fine-tune / RLHF) “Training language models to follow instructions with human feedback”, 2022

◦ Limitation of GPT-3: trained to predict the next token, can not follow user instructions well.
◦ InstructGPT:
▶ Towards following user instructions, more truthful, less toxic.
▶ Align LM with user intent by fine-tuning via reinforcement learning from feedback (RLHF ).

Figure: Demo of aligned InstructGPT, from
https://openai.com/research/instruction-following

Figure: Demo of aligned LLM, from [4]
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InstructGPT (Align LLM / Fine-tune / RLHF) “Training language models to follow instructions with human feedback”, 2022

◦ Step 1: Pre-train a Transformer-based LM based on unlabeled corpus, similar to GPT-1, GPT-2, GPT-3.
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InstructGPT (Align LLM / Fine-tune / RLHF) “Training language models to follow instructions with human feedback”, 2022

◦ Step 2: Supervised fine-tune via collected demonstration.
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InstructGPT (Align LLM / Fine-tune / RLHF) “Training language models to follow instructions with human feedback”, 2022

◦ Step 3: Train a reward model rx(Sprompt, Sresponse) with parameters x.
▶ GPT-3-based architecture.
▶ Input: concatenation of Sprompt and Sresponse. Output: scalar value.
▶ Loss:

Lx = −
1(
K
2

)E(Sprompt,Sresponse1,Sresponse2)∼D [log (σ (rx (Sprompt, Sresponse1)− rx (Sprompt, Sresponse2)))] ,

where Sresponse1 is the preferred response out of the pair of Sresponse1 and Sresponse2, D is the dataset of
human comparisons. For each prompt, labelers need to rank K response, leading to

(
K
2

)
comparison.
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InstructGPT (Align LLM / Fine-tune / RLHF) “Training language models to follow instructions with human feedback”, 2022

◦ Step 4: Using this reward model to fine-tune the GPT based on Proximal Policy Optimization (PPO)[20]
▶ (state, action): (Sprompt,Sresponse).
▶ Initialize a policy to be the fine-tuned GPT in step 2, i.e., πSFT.
▶ Initialize a copy of the above policy with parameters ϕ that we want to optimize, i.e., πRL

ϕ .
▶ Use PPO to optimize ϕ in order to maximize the following full reward.

R(Sprompt, Sresponse) = rx(Sprompt, Sresponse)− β log[πRL
ϕ (Sresponse|Sprompt)/πSFT(Sresponse|Sprompt)]︸                                                                         ︷︷                                                                         ︸

penalty term

▶ The penalty term is the conditional relative entropy, ensuring the new policy πRL
ϕ doesn’t change a lot from the

original policy πSFT, which the reward model has seen during its training.

▶ See EE-618 for details!
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GPT-4 [15]

◦ Multi-modals GPT: text + image.
◦ Predictable Scaling.

Figure: From [15]
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Predictable Scaling in GPT-4
◦ It is expensive and time-consuming to do model-specific tuning for large language model (LLM).

◦ Developers of GPT-4 can make loss prediction by power laws shortly after the training starts.

Figure: From [15]
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Predictable Scaling in GPT-4
◦ Developers of GPT-4 can make capability prediction by power laws shortly after the training starts.

◦ Measured by the ability to correctly synthesize Python functions on HumanEval dataset [5].

Figure: From [15]
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Wrap up!

◦ That’s it folks!
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⋆“Add & Norm” in Transformer
◦ Layer normalization [1].
▶ How to perform Layernorm(Zl): recall Zl = [zl,1, · · · , zl,T ]⊤, then the normalization is performed at each

time position, i.e., we normalize each zl,t by its mean µl,t and standard deviation φl,t as follows:
zl,t − µl,t

φl,t

▶ It enables faster training:
▶ Forward view: normalization brings distribution stability [1].
▶ Backward view: normalization for the backward gradient [28].

◦ Skip connection (also called ‘add’ in typical Transformer’s schematics) is motivated by ResNet [7].
▶ Keep the gradients from vanishing.
▶ Smoother loss surfaces.

Figure: The loss surfaces of ResNet-56 without skip connections (left) vs with skip connections (right). From [11].
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⋆Rotary position embedding in self-attention

Solution 3 [21] ◦ Rotary position encoding: incorporate both absolute position and relative position.
◦ Given qt and kt′ , we want to find a position encoding function Pos()̇ such that:

⟨Pos(qt), Pos(kt′ )⟩ = SomeFunction(qt, kt′ , t− t′).

◦ Assume m = 2 (can be generalized to m > 2): by the derivation in [21], one can use

Pos(qt) :=
[

cos t, − sin t
sin t, cos t

]
qt, Pos(kt′ ) :=

[
cos t′, − sin t′

sin t′, cos t′

]
kt′ .

◦ Achieve better performance on various long text tasks.
◦ Being employed in several recent LLMs [6, 23].
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⋆It seems prompting is important, can we design it automatically?

Figure: Demo of jailbreaking aligned LLM, from [4]. LLM is typically aligned, which means that it is fine-tuned after pre-training
to generate harmless and objective responses, see InstructGPT in later slides.

Question
How can we design such an “adversarial prompt”?
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⋆It seems prompting is important, can we design it automatically?
◦ Define the following one-hot representation of the tokens:
▶ Etarget ∈ RTtarget×|V |, corrsponds to the desired response, i.e., “Here is a possible method to make a bomb”.
▶ E⋆

prompt ∈ RTprompt×|V |: corrsponds to the adversarial prompt we want to obtain.
▶ Equestion ∈ RTquestion×|V |: corrsponds to the question “How to make a bomb”.
◦ We aim to find an adversarial prompt that maximizes the following conditional probability:

E⋆
prompt ∈ arg min

Eprompt
(−P (Etarget|Concat(Equestion, Eprompt))︸                                                    ︷︷                                                    ︸

Loss

).

Greedy Coordinate Gradient [30]
1. Input: randomly initialized Eprompt
2. While jailbreaking does not succeed:
▶ for each position i in Tprompt :

▶ Pick a subset of top-k tokens substitutions as follows:

Si = TopK(−∇
E

(i,:)
prompt

L)

▶ Construct a batch of Eprompt where each position i is randomly replaced by the tokens in Si.
▶ Update Eprompt as the one among the batch with minimal loss.

3. Output: Eprompt
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⋆Mathematical formulation of in-context learning [25]

◦ Input to the model:

[ b1, · · · , bN︸          ︷︷          ︸
in-context tokens,

denoted by B

, bN+1︸ ︷︷ ︸
test token

] :=
[(

a1
b1

)
, · · · ,

(
aN

bN

)
,

(
aN+1

0

)]
∈ Rdx+dy,N+1

◦ Model: only a residual linear self-attention layer. For i ∈ [N + 1]:

bi ← bi + XO (XV B)����XXXXSoftmax(BT XT
KXQbi)︸                                          ︷︷                                          ︸

Self-attention

◦ We desire bN+1 becomes
(

...
bN+1

)
after the step above so that it matches the ground truth label.
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⋆Mathematical formulation of in-context learning [25]

◦ Input to the model:

[ b1, · · · , bN︸          ︷︷          ︸
in-context tokens,

denoted by B

, bN+1︸ ︷︷ ︸
test token

] :=
[(

a1
b1

)
, · · · ,

(
aN

bN

)
,

(
aN+1

0

)]
∈ Rdx+dy,N+1

◦ Model: only a residual linear self-attention layer. For i ∈ [N + 1]:

bi ← bi + XO (XV B)����XXXXSoftmax(BT XT
KXQbi)︸                                          ︷︷                                          ︸

Self-attention

◦ We desire bN+1 becomes
(

...
bN+1

)
after the step above so that it matches the ground truth label.

Hypothesis
How does self-attention learn information from {(ai, bi)}N

i=1 to make correct prediction for aN+1?
Similar to linear regression?
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⋆An alternative view of GD on linear regression [25]
◦ Linear model h(a) = Xgda ∈ Rdy with weight Xgd ∈ Rdy×dx and input a ∈ Rdx .
◦ Objective w.r.t in-context tokens {(ai, bi)}N

i=1:

L(Xgd) =
1

2N

N∑
i=1

∥Xgdai − bi∥2
2.

◦ One step GD with learning rate η:

∆Xgd = −η∇XL(Xgd) = −
η

N

N∑
i=1

(Xgdai − bi)aT
i .

L(Xgd + ∆Xgd) =
1

2N

N∑
i=1

∥∥(Xgd + ∆Xgd)ai − bi

∥∥2
=

1
2N

N∑
i=1

∥Xgdai − (bi −∆Xgdai)∥2.

◦ Thus: one step GD ⇔ fix weight but update data (label):(
ai

bi

)
←
(

ai

bi −∆Xgdai

)
.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 23



⋆Equivalence between GD step and self-attention step [25]
◦ Can these be equivalent?

One GD step: One self-attention step:(
ai

bi

)
←
(

ai

bi −∆Xgdai

)
bi ← bi + XO(XV B)(BT XT

KXQbi)

Proposition

One can construct weights XK = XQ =
(

Idx 0
0 0

)
, XV =

(
0 0

X
(0)
gd −Iy

)
, XO = η

N
Idx+dy , such that a

self-attention step on bi =
(

ai

bi

)
, i ∈ [N ] and bN+1 =

(
aN+1

0

)
, is identical to a GD step, i.e.,(

ai

bi −∆Xgdai

)
= bi + XO(XV B)(BT XT

KXQbi).

Remarks: ◦ Importantly, the constructed weight is unrelated to any in-context data.
◦ For the test point bN+1 =

(aN+1
0

)
, after one self-attention step, it becomes

(
aN+1

−∆XgdaN+1

)
, which

matches the prediction of linear regression times −1 if X
(0)
gd = 0.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 23



⋆Equivalence between GD step and self-attention step [25]
◦ Can these be equivalent?

One GD step: One self-attention step:(
ai

bi

)
←
(

ai

bi −∆Xgdai

)
bi ← bi + XO(XV B)(BT XT

KXQbi)

Proposition

One can construct weights XK = XQ =
(

Idx 0
0 0

)
, XV =

(
0 0

X
(0)
gd −Iy

)
, XO = η

N
Idx+dy , such that a

self-attention step on bi =
(

ai

bi

)
, i ∈ [N ] and bN+1 =

(
aN+1

0

)
, is identical to a GD step, i.e.,(

ai

bi −∆Xgdai

)
= bi + XO(XV B)(BT XT

KXQbi).

Proof:
◦ LHS :

(
ai

bi

)
−
(

0
− η

N

∑N

j=1 (X(0)
gd aj − bj)aT

j ai

)
◦ RHS :

(
ai

bi

)
+ XO

∑N

j=1

[
XV

(
aj

bj

)][
XK

(
aj

bj

)]⊤[
XQ

(
ai

bi

)]
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⋆Experiment: one-GD-step constructed Transformers VS trained Transformers [25]
◦ Set up:
▶ Consider linear self-attention network hx: in-context data + test input -> prediction.
▶ Data generation: for each task τ : sample xτ

∗ ∼ N(0, I), then aτ
i ∼ Unif(−1, 1)dx , bτ

i = ⟨xτ
∗ , aτ

i ⟩.
◦ Model 1: hx,gd, with constructed weight in previous proposition.
◦ Model 2: hx,trained, obtained by the meta learning objective over several tasks.
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Figure: Trained Transformers do in-context learning by mimicking GD, measured by (1) prediction difference:

∥ hx,gd(atest
i ) − hx,trained(atest

i ) ∥2, (2) cosine similarity between
∂hx,gd(atest

i
)

∂atest
i

and
∂hx,trained(atest

i
)

∂atest
i

, (3) their difference

∥
∂hx,gd(atest

i
)

∂atest
i

−
∂hx,trained(atest

i
)

∂atest
i

∥2. From [25].
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⋆More GD steps, more layers [25]
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GD Steps / Transformer Layers
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Figure: From [25].
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⋆What about nonlinear regression? [25]

Proposition
A Transformer block (a feedforward layer g : Rdx → Rd′

x and a self-attention layer) can perform kernel
regression with kernel function k(a, a′) = g(a)⊤g(a′).

◦ Feedforward + Self-attention: (
ai

bi

)
←
(

g(ai)
bi −∆Xgdg(ai)

)
where ∆Xgd = −η∇L(X(0)

gd ) = −η(∇ 1
2N

∑N

i=1 ||X
(0)
gd g(ai)− bi||2) , assumed X

(0)
gd = 0.

◦ For the test token bN+1 =
(

aN+1
0

)
, the prediction after a single Transformer block (multiplying −1) is

−(0−∆Xgdg(aN+1)) =
N∑

i=1

bi g(ai)T g(aN+1︸                ︷︷                ︸
k(ai,aN+1)

)

Remarks: ◦ Only one-step GD.
◦ If multi-step is considered, then the network structure is: Feedforward -> Attention -> Attention ...
◦ But in practice: Attention -> Feedforward -> Attention -> Feedforward ...

◦ The feedforward layer is applied only for ai instead of bi =
(

ai

bi

)
.
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⋆Motivation: Why RLHF?

Idea: Adapt the model to the prompts, not vice-versa

◦ We want to avoid
▶ hand-crafting good prompts.
▶ explicitly inserting instructions each time.

◦ The model should adapt to the goal of a prompt, and not vice-versa.
▶ This is an inherently interactive process.

◦ If we have a goal (rewards), RL does this without the need for a hand-designed differentiable objective.

◦ We thus need
▶ an RL algorithm (here, PPO),
▶ and a way to learn a reward function from interaction (human feedback).
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⋆Clarification of the training steps

Step 1
Pre-training

Step 2
Supervised fine-tuning

Step 3
Train reward model

Step 4
Fine-tune via PPO

Question
Why do we need all steps 2, 3 and 4? Why not without them, or only a subset of them?
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⋆Clarification of the training steps

Step 1
Pre-training

Step 2
Supervised fine-tuning

Step 3
Train reward model

Step 4
Fine-tune via PPO

Question
Why do we need all steps 2, 3 and 4? Why not without them, or only a subset of them?

Data-driven view: A machine learning model will only act according to the distribution we have trained it on.

◦ Step 1: Pre-trained model (self-supervised learning)
▶ Training distribution: unlabeled corpus to predict the next token given the history.
▶ Can hope for: completing coherent sentences, associating a context with what might come next.
▶ But: The data distribution of the raw text corpus is not what the distribution over conversations looks like.

For example, in a conversation, there is usually a statement and a response.
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⋆Clarification of the training steps

Step 1
Pre-training

Step 2
Supervised fine-tuning

Step 3
Train reward model

Step 4
Fine-tune via PPO

Question
Why do we need all steps 2, 3 and 4? Why not without them, or only a subset of them?

Data-driven view: A machine learning model will only act according to the distribution we have trained it on.

◦ Step 2: Supervised fine-tuning:
▶ Training distribution: resembles how prompts and answers (labels) should be mapped to each other.
▶ Can hope for: having a sensible conversation, not just completing text.
▶ But: We want the model to plan ahead what would please a user, based on experience when interacting

with them. This is hard to formulate as a differentiable loss function (but possible via rewards).
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⋆Clarification of the training steps

Step 1
Pre-training

Step 2
Supervised fine-tuning

Step 3
Train reward model

Step 4
Fine-tune via PPO

Question
Why do we need all steps 2, 3 and 4? Why not without them, or only a subset of them?

Data-driven view: A machine learning model will only act according to the distribution we have trained it on.

◦ Step 3: Learning the rewards from preferences.
▶ Training distribution: actual interations with an environment (users) and their feedback.
▶ Can hope for: learning a reward function which encodes goals that should be obeyed to please the user.
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⋆Clarification of the training steps

Step 1
Pre-training

Step 2
Supervised fine-tuning

Step 3
Train reward model

Step 4
Fine-tune via PPO

Question
Why do we need all steps 2, 3 and 4? Why not without them, or only a subset of them?

Data-driven view: A machine learning model will only act according to the distribution we have trained it on.

◦ Step 4: Policy optimization for further fine-tuning
▶ Training distribution: actual interations with an environment (users) and rewards as feedback.
▶ Can hope for: having a conversation that users also appreciate, by obeying the goals encoded in the reward.
▶ But: To perform RL, we first need to write down a set of rewards.
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State space model

◦ Recall the RNN training:

Forward pass in pre-training on single sentence
1. Set initial state z0 = 0, initial loss L = 0
2. For t = 1, . . . , T

▶ zt = σ(XHzt−1 + XIbt), RNN
▶ yt = XOzt

▶ ut = Softmax(yt), probability

▶ L+ =
(∑|V|

i=1−û[i]
t log u[i]

t

)
, loss

◦ The crucial step that makes the training of RNN unparallelizable is

zt = σ(XHzt−1 + XIbt).

◦ Sequential operations of training are O(T ).
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⋆State space model

◦ What if we remove the non-linearity?

zt = XHzt−1 + XIbt.

◦ Then by unwrapping the formula we get:

z0 = 0,

z1 = XIb1

z2 = XHXIb1 + XIb2

z3 = X2
HXIb1 + XHXIb1 + XIb3

z4 = X3
HXIb1 + X2

HXIb2 + XHXIb1 + XIb4

· · ·

zt = Xt−1
H XIb1 + Xt−2

H XIb2 + · · ·+ XIbt .

◦ As a result

yt = XO

(
Xt−1

H XIb1 + Xt−2
H XIb2 + · · ·+ XIbt

)
.
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⋆State space model

◦ Define the arrow operation as: (m, n), (m, n′)→ (m2, mn + n′).

◦ During training, to obtain z4, state space model (SSM) uses FFT’s style computation.

(X4
H , X3

H XI b1 + X2
H XI b2 + X1

H XI b3 + XI b4︸                                                                               ︷︷                                                                               ︸
z4

)

(X2
H , XH XI b1 + XI b2)

(XH , XI b1)

(XH , XI b2)

(X2
H , XH XI b3 + XI b4)

(XH , XI b3)

(XH , XI b4)

◦ Hence, computing zT has O(T log T ) complexity.

◦ log T indicates the unparallelizable sequential operations.
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⋆Complexity analysis

Network
architecture

Sequential operations
(training)

Sequential operations
(inference)

Maximum path
length

Long-sequence
memory complexity

RNN O(T ) O(T ) O(T ) O(1)
SSM O(log T ) O(T ) O(T ) O(1)

Self-Attention O(1) O(T ) O(1) O(T 2)

Table: Complexity comparison of different models. The maximum path length between any two input positions is another metric
used to measure the capacity of learning long-range dependencies.
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