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The era of ChatGPT

what can | learn from the Mathematics of data lecture

A "Mathematics of Data" lecture can offer you valuable knowledge and skills related to the

mathematical foundations of data analysis and data science. Here are some key things you
can learn from such a lecture:

1. Statistical Concepts: You can learn about statistical techniques and concepts, including

statistics, ility distributions, hypothesis testing, and regression analysis.

This is crucial for and interpreting data.
2. Linear Algebra: You may gain insights into linear algebra, which is fundamental for tasks
like data transformation, dimensionality reduction, and working with matrices and vectors

commonly used in machine learning.

w

Calculus: Depending on the lecture's depth, you might learn about calculus and how it
relates to optimization algorithms, gradient descent, and mathematical modeling of data
phenomena.

bl

Probability Theory: Understanding probability theory can help you model uncertainty and
make informed decisions based on data. Concepts like Bayes' theorem and conditional
probability are often covered.

o

Data Visualization: Many data-related lectures include topics on data visualization,
teaching you how to create meaningful graphs and charts to convey insights from data
effectively.

6. Data Modeling: You can learn about various data modeling technigues, including linear
models, logistic regression, and decision trees. These models are used for prediction and
classification tasks.

7. Machine Learning Foundations: If the lecture is more advanced, it may introduce yo

S Regenerate
machine learning concepts such as supervised learning, unsupervised learning, anc.

Send a message °O®
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Huge corpus

Domain specific data
oI Human labelled data
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Time language models Safty alignment

ChatGPT

VU
Fully-connected?
RNN? Transformer?

o This lecture

1. Basics of language models

2. Self-attention and transformer architectures

3. Fundamentals of pre-training & fine-tuning & reinforcement learning with human feedback (RLHF)
4. Generative pre-trained transformer (GPT) family

5. Basics of prompting: zero-shot & few-shot & chain-of-thought & automatic
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A motivation for language models (LMs)

Example

Predict the next word w given the following source sentence Ssource?

Ssource © “On January 1 people usually say happy new [w].”
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A motivation for language models (LMs)

Example

Predict the next word w given the following source sentence Ssource?

Ssource © “On January 1 people usually say happy new [w].”

Question: o Why is this important?

> spelling & grammar correction

sentence classification
speech recognition

chatbot

Yy v vV VY

(more generally) labeling, automated decisions, ...
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Basics for language models (LMs) — |

Definition (Language model [9])

Models that assign probabilities to sequences of words are called language models.

Remarks: o Given a sentence with T words: S = wi.7 = (w1,...,wr), by the chain rule of probability:

T
p(S) = p(wir) = p(w1)p(walwi)p(wslwr2) - pwrlwir—1) = | [ plwelwie—1)
t=1

o Implicitly, we are enforcing a graphical model that takes “time” into account.

Example
If S = wi.3 = “happy new year"”, then p(S) = p(happy)p(new|happy)p(year|lhappy new).
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Basics for language models (LMs) — Il

Question: o How can we compute p(w¢|wi:t—1)7

Remarks: o A trivial solution: Just count the frequency on a large corpus, e.g.,

P(Ssource +year) _ #(On January 1 people usually say happy new year)

ear|S, = =~
p(vear|Ssource) p(Ssource) #(On January 1 people usually say happy new)

o But the language is creative, there are several ways to express the same meaning.
o The sentence above might even not appear on the corpus.

o We need better ways to estimate such probabilities!
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N-gram LMs

Markov assumption [12]

The probability of a word only depends on the last N — 1 words as
Markov in 1913 [12] used “Markov

#(’wt—N:t) chains” to predict whether the
P(wt|w1:t—1) = P(wt|wt—N:t71) N o~ upcoming letter would be a vowel or a
#(wi—nN:t—1) consonant.

Example
In the bigram LM (N = 2), we only need to estimate p(w¢|wi—1) ~ % to generate text.
Wy Wy
i want  to eat Wy_1 i want to eat
i 5 87 0 9 o = [ 0002 033 0 0.0036
éL want 2 0 608 lmvancitoRcatl él‘ want 00022 0 066 00011
to 2 0 4 686 2533927 2417 746 to 000083 0 00017 028
eat 0 0 2 0 eat 0 0 00027 0

Figure: Count (Left) and probability p(w¢|wi.:—1) (Right) from the Berkeley Restaurant Project corpus of 9332 sentences [9].

I HEETIl  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 51 EPFL



Towards pre-training an N-gram LM

o In natural language processing (NLP), we use tokens to represent words coming from a vocabulary V.

Terminologies: o A token is the smallest unit that can be assigned a meaning to be processed.
> In English, a token often corresponds to a word.
> However, a single token can also encode compound words like New York.
> In Chinese or Japanese, there is no space between words.

> In these languages, sentence segmentation is required before we tokenize.

o We indicate the beginning and the end of sentences with tokens (BOS) and (EOS).
> Ssource “(BOS) Happy new year (EOS)” has T' = 5 tokens.

o The size of our vocabulary is denoted as |V|.

o Pre-training: building a LM based on a large corpus in a (often) self-supervised manner.

o Inference: Using a trained LM to do next word prediction.
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N-gram LMs: “Pre-training” & Inference

o The following simplified examples show the difficulty of pre-training and inference with 2-gram LMs.

“Pre-training” Inference
1. Count #(w¢—1) and #(w¢—1.¢) over the corpus. 1. Set wy as (BOS), t = 1.
2. Obtain probability p(w¢|w¢—1) over the corpus. 2. While True:

> wip1 = argmax,, ey p(wlwt)
> If wiqq is (EOS): break
> t=t+1

3. Output: [wi, -, wi41].

o Need to store the probability for all N-gram pairs.

Remarks:
o Language is creative, some new N-gram pairs might not even appear on the corpus.

o Cannot incorporate earlier words than N due to the Markov assumption.

p(two | one plus one equals) = p(two | it is wrong that one plus one equals)?
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Word representations

Question: o How can we numerically represent a word/meaning?

Remarks: o Osgood et al. 1957 [16] uses 3 numbers to represent a word.
> valence: the pleasantness of the stimulus
> arousal: the intensity of emotion provoked by the stimulus

> dominance: the degree of control exerted by the stimulus

Angry Surprised Elated
Distressed M $
L[] { ]
Anxious Arousal
o L] ® Excited

.
Valence  Satisfied
leutral

Pessimistic 10,0,0)
° v
. rReliei
"% Relaxed
e ° °
Rejected Calm Over-confident

Figure: From [8].
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Word embeddings

Present words as vector,| Word2vec
Osgood et al. 1957 Mikolov et al. 2013

~ ~
R »
Definition (Word embeddings [9]) < M

Vectors for representing words are called word embeddings. b,

o We will briefly introduce two words embeddings:

o One-hot representation: sparse and long word embedding in RIVI.
> Training is not required—trivial to obtain.
> Not a good way to capture the underlying meaning—cannot measure similarity.
o Word2vec [13]: a framework to learn dense and concise word embedding.
> Training is required.
> Better characterization for the meaning of a word, e.g., the similarity can be computed by similarity metrics.

> Cosine similarity or inner products work!
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Word2vec [13]: Setup

o An illustration of a target word and context words in a +2 window size:

..people usually say happy new...
—_— N —/

context words target word  context words

o Word2vec uses learnable parameters X. and X; to present two embeddings for each word,
> X corresponds to the embedding when it is as a context word.
> X, corresponds to the embedding when it is as a target word
> They satisfy the following relationship:
bl = X'e; € RY, b¢ = XC%,; € RY,
where e; € RIV| is the one hot representation for each word, i € 1,...|V|.
Remarks: o The window size for the context is a hyperparameter.

o The final embedding can be the summation or concatenation of these two embeddings.
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Word2vec [13]: Training

o Core idea: Given a pair of words (w;, w;), return the probability that w; is the context word of w; (i.e., true).

1
A simple approach: true|(wt, w =o(biL,b)) = — — where o is the sigmoid activation.
ple approach: p(brue(u, we) = o{(bf, b)) = e, g
o Given a tuple (w¢, we, wn ), we have the following ingredients
> w; is the target word.
> w, is one of its context words(positive samples)
> wy, is not its context word (negative sample)—e.g., chosen via unigram (1-Gram) probability.

> A loss function:

L = —log (p(true|(we, we))p(false|(we, wn)))
— log p(true|(w¢, we)) — log p(false|(w¢, wn))
—loga({bf, b)) —log(1 — o((b, by,)))
1 1
%8 T ¥ exp(—(Xter, Xeor) 8 (1 T+ exp(—(Xtet,XCe")))

o Crawl the corpus to obtain these tuples, and minimize L (e.g., with stochastic gradient descent).
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Designing neural networks for pre-training LM

o A two-layer feedforward neural network (FNN):

activation weight input

hx(a;) hx(a) := |: XO :| o |: XI :| {(i R x = [X7,X0]

hidden layer z = non-linear features
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Short detour: Statistical learning with maximum-likelihood estimators

o A visual summary: From parametric models to learning machines

n
modeling independency
(5, b)) s P(by s, %) S p (b) i= | | Plbilai %)
parameter x identical dist.

=1
1 maximizing w.r.t x

a —>Learning Machine +—  xp;

prediction |

hx,’\‘/”_ (a)

Observations: o Recall x},, € argminkex {L(hx(a),b) := —logp,(b)}.
o Maximizing p, (b) gives the maximum-likelihood (ML) estimator.

o Maximizing py (b) and minimizing — log p, (b) result in the same solution set.
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Designing neural networks for pre-training LM

o A two-layer feedforward neural network (FNN):

activation weight

hidden layer z = non-linear features

Recall: Maximum-likelihood estimator

The maximum-likelihood estimator (supervised learning with data (a, b)) is given by

x* € arg min {L(hx(a),b) := —log py(b)} .
xEX
Remark: o NN-based LM can be considered as an unsupervised maximum-likelihood estimator.
x{y € arg min —log p, (S) = —log py(b1.7),
xeX

where p, (S) is the probability of sentence S with embedding by.7 = (b1,...,br).
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The optimization objective

o A (vector-output) neural network hyx € AlVI=1 can be used to model such probability.

T T
—logpy(brr) = —log | [ [ px(belbrii—1) | = | ~log pu(belbri—1)
t=1 t=1 hx(bl:t—l)[“bt”]
T T VI
= (f log hx(bljtfl)[“b‘“]) = Z — Z ﬁy] log uLi] = cross entropy loss
t=1 t=1 i=1

> u; = hx(bit—1) € RVl is the probability distribution of the next word given previous ¢t — 1 words.
> @, € RIVl is the correct distribution (one-hot) at ¢ step.

Remarks: o Teacher forcing training: We always give the model the correct history sequence.

o Auto-regressive inference: The history sequence comes from its prediction result.
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Basic NN setups for LM

o Below, we present a general idea of deploying neural networks as LMs.
> Feed-forward neural network (FNN)
> Recurrent Neural Networks (RNN)
> Self-attention
o At each step ¢, we use NN to model the probability distribution of the current word given previous ¢t — 1 words.
probability distribution of next word some architectures

some weight

u; := hx(bi.t—1) := Softmax [ Xo }FNN/RNN/SeIf—attention X

hidden layer z = non-linear features

o Then, we can minimize the cross-entropy loss (i.e., ZWI 1og u[ ]) via (stochastic) gradient descent.
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FNN as LM [2]: pre-training

o Core idea: use most recent N tokens to predict next token (similar to N-gram)

o: X; e Rm*XNd X 5 e RIVIX™ are learnable parameters, where d is the dimension of the embedding

(only use two recent tokens, i.e., N = 2)

Forward pass in pre-training on single sentence

1. Set bg = 0, initial loss L =0
2.Fort=1,...,T

e %))
t

> up = Softmax(ont),

> L= (ZW\ 1ogu[”)

probability

~log(uf ™*™™™)) —log(u™™") —log(uf
T A 3
u; uz us
T Iy A
Linear layer & Softmax layer
T X X
Z Z3 Z3

L]
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RNN as LM [14]: pre-training

o A weakness of FNN LM is the Markov assumption: It cannot capture long-term dependencies.

o RNN architectures only partially address this issue.

o: X € R™*X™ Xy € R™M*? X5 € RIVIX™ are learnable parameters.

Forward pass in pre-training on single sentence

2.Fort=1,...,T

1. Set initial state zg = 0, initial loss L = 0

> zy = o(Xi1zi—1 + Xoby), RNN
> u = Softmax(ont), probability
> L+ = (ZW‘ log um) , loss
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RNN as LM: inference

o RNN architectures perform auto-regressive inference.

Forward pass in inference

>

>

>

>

>

1. Set by as the embedding of (BOS), t = 1, initial
state zg = 0.
2. While True:

zt = 0(X12zt—1 + Xabt)

u; = Softmax(Xopzt)

Set by as the embedding of the token
corresponding to arg max ug.

If by41 is the embedding of (EOS): break
t+=1

3. Output: [by, -+ ,bt1].
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<BOS> Happy new

Figure: Auto-regressive inference
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Self-attention layer as LM
o A weakness of the RNN LMs is its recursive non-parallelizable computation.

o Self-attention can address these issues.

/ Feedforward ‘ ‘ RNN
(b2

Figure: (Left panel) FNN in LM. (Middle panel) RNN in LM. (Right panel) Self-attention in LM.

Feedforward NN LM Word2vec
) Transf
xBengio et al. 2003 Mikolovetal. 2013\, =t e AT

R |
N - o

RNN RNN LM Self-attention
1982-1986 Mikolov et al. 2010 2013-2015

Present words as vector,
Osgood et al. 1957

N-Gram,
Markov 1913
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Self-attention layer for LM

o Core idea: compare a word of interest to other words based on their relevance.

o How do we measure the relevance of two words?
> inner products (recall word embeddings)

> e.g., for the word with embedding bs, we can compute three scores:
Score(3,1) = (bs,b1); Score(3,2) = (bs,ba); Score(3,3) = (bs, bs).

o Next, we normalize them with a softmax to create a vector of weights, and obtain the output:

3 Z1 Za Z3
73 = ZSoftmax([Score(S 1), Score(3, 2), Score(3, 3)]),;b; I '[ ]
J=1
Z exp(Seored) | ——=1
= j Self-attention
., exp(Score(3, 1))
b, bo b3

Figure: Self-attention layer.
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Self-attention layer for LM

o A more sophisticated way to present how words are contributed to each other:

Ba=}]

> Query: when current word goes measure the relevance with other words.

Jok::
> Key: when being measured the relevance by other words. -
> Value: value used to compute the final output.

o For each word, calculate its corresponding query, key, and value using parameters X, X g, Xy € R™*

d

q; = Xgbi, ki = Xgb;,v; = Xyb;.
o Then, for the word with embedding b3, those three scores become:
1 22 z3
Score(3,1) = (g3, k1); Score(3,2) = (g3, k2); Score(3,3) = (g3, ks). ] I I
z3 = Z Softmax([Score(3, 1), Score(3, 2), Score(3, 3)]) jv; WIS*""‘”"“”
j=1

b, b, b

3

Figure: Self-attention layer.
o We need to learn the parameters X, X i, Xy € RMXd, g 4
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Positional embeddings in self-attention

Question: o Does self-attention layer consider the relative position of each word in the sequence? No!

Observation: o If we switch the order of by and ba, the output z3 remains the same.

z Zy Z3

[ ]
WI J—

b, bo bs

Figure: Self-attention layer.

o In comparison, RNN encodes the information about the order of the inputs recursively.
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Positional embeddings in self-attention

Question: o Does self-attention layer consider the relative position of each word in the sequence? No!

Solution 17 o Absolute position via trivial concatenation.

Pos(b;) = Concatenate[by, t] .

o Unbounded value.

o Hard to extrapolate on sequence with unseen length.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 51



Positional embeddings in self-attention

Question: o Does self-attention layer consider the relative position of each word in the sequence? No!

Solution 2 [24]: o Absolute position via trigonometric functions of different frequencies. For t =1,...,T*:

sin (£/100002%1/d
cos (t/100002%1/4

POS(bt) =b¢ + .
sin (¢/100002% 3 /4

cos (t/10000%% /4

Sequence length 1"
From [29]
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Positional embeddings in self-attention

Question: o Does self-attention layer consider the relative position of each word in the sequence? No!

Solution 2 [24]: o Absolute position via trigonometric functions of different frequencies. For t =1,...,T*:

sin (£/100002%1/d
cos (t/100002%1/4

POS(bt) = bt +

Dimension (]

sin (¢/100002% 3 /4

cos (t/10000%% /4

Sequence length 1"
From [29]

Solution 3: o *Rotary position embedding [21]: incorporate both absolute position and relative position.
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Self-attention layer for LM

B = [by,....br]T € RT*%: collections of embeddings of all tokens.

o Learnable parameters: X, X, Xy € Rm*d X5 e RIVIXm, gl k1| —00 | —00 | —0 | —o0
Forward pass in training on a single sentence T | Too | me
1. Set initial loss L = 0. . o | —c0 | —c0
2.Q = BXCE K = BXT V= BXV, query, key, value. SN NSO
3. § =Mask(QK"), calculate score and mask score. -0
5. Z :=[z1,...,27] " = Row-wise-Softmax(S)V/, self-attention output o N Tk
6. U :=[u1,..,ur]’ = Row—wise—Softmax(ZXg), probability
7.L=L+ (Zt 1 ZW‘ log uE ]>, loss Figure: Mask score for S.
Remarks: o In the remaining slide, by has already been added to position embedding.

o Masking score is used to prevent “cheating.”

> the current word has only seen previous word.

> the subsequent word is unknown.

> the element —oo after softmax becomes 0.

o Attention with masking score is usually called “Masked attention.”

o This construction enables parallelization whereby improving upon RNNs.
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Self-attention layer as LM: inference

Forward pass in inference
1. Set by as the embedding of (BOS), t = 1.
2. While True:

> qt = Xgbt, kt = Xgbt,vr = Xy by, calculate query, key, value

> s =[{qt, k1), -, <qt,kt)]—r, calculate score

> z; = [v1,- -+ ,v¢] - Softmax(s)

> u; = Softmax(Xpz¢)

> Set bt41 as the embedding of the token corresponding to arg max ug.
> If by41 is the embedding of (BOS): break

>t =1
3. Output: [b1, - ,bit1].
Remark: o Still non-parallelizable, still auto-regression, the same as RNN LM, FNN LM.
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TRANSFORMER as LM

o A Transformer block= [self-attention layer + *layer normalization + feedforward layer + *layer normalization].
o We stack £ Transformer blocks to form an LM, e.g., £ =12 in [17].

Forward pass in pre-training on single sentence Distribution over vocabulary
1. Set initial loss L = 0, denote by Zy = B the input to the first block. -
2.Forl=1,...,L T T T
> Q=2Z1X} K =21 X}, Vi=2Z1X], ke lue.
Q =15 T =150 M I=1 8y, queny, key, value Linear layer & Softmax layer
> S = Mask(Q,KlT), calculate score and mask score. f ¥ T
> Z; = Row-wise-Softmax(S;)V; 4 ooe
> Zi+ =74, “add” in the figure, motivated by ResNet [7]
> Z; = Layernorm(Z;) Add&Norm _ J
> Zshortcur = Zi FoF::;'d
> 7 =0(XpiZy), feedforward i
" . __Add & Norm <
> Zi+ = Zshortcuts add Bieikad soi-
> Z; = Layernorm(Z;) output of each Transformer block pention Transformer
block * L
3. U:=[uy,...,ur]" = Row-wise-Softmax(Z;X},), probability
4. L+ = (Zle l.:ll —ﬁ[ti] log uy]), loss Za

Remarks: o Original Transformer is proposed with encoder and decoder for neural machine translation [24].

o The Transformer decoder is sufficient as an LM.
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G PT- 1 [17] H (Pl’e—tl’ain + fine—tune paradigm)“lmproving Language Understanding by Generative Pre-Training”, 2018

Huge corpus Domain
specific data 1

1

Fine-tuning on ’

Task 1

Transformer-based

LM Pre-training ooe

Fine-tuning on
Task N

I

Domain
specific data

Remarks: o Pre-training enables learning better underlying language patterns on a large corpus.

o Pre-training provides a better parameter initialization for fine-tuning, leading to faster convergence.
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G PT- 1 [17] H (Pl’e—tl’ain + fine—tune paradigm)“lmproving Language Understanding by Generative Pre-Training”, 2018

o Step 1: Pre-train a LM on a large unlabeled corpus using Transformer’s decoder.

> Recall that Transformer’s decoder is sufficient for LM.

Distribution over vocabulary
oee

t 1 I

Linear layer & Softmax layer

Add & Norm je—
T
Feed
Forward
Add & Norm e

Masked self-
attention
[y

Transformer
block * L
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G PT- 1 [17] H (Pl’e—tl’ail’l + fine-tune paradigm)“lmproving Language Understanding by Generative Pre-Training”, 2018

o Step 1: Pre-train a LM on a large unlabeled corpus using Transformer’s decoder.

> Recall that Transformer’s decoder is sufficient for LM.

o Step 2: Fine-tune on specific tasks, e.g., on a sentence classification task.

Distribution over vocabulary

t 1 I

Linear layer & Softmax layer x

T i

Add & Norm -
o Nom

Feed
Forward

Add&Norm _ Je—

Masked self-
attention Transformer
§ block * L.
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Distribution over task-specific classes

Add & Norm

Feed
Forward
[y
( Add&Norm )«

Masked self-
attention

J [Transformer
block * L

Initialized by
pretrained LM

Initialized _
randomly

L Fine-
tune
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GPT-]. “Improving L L ing by Generative Pre-Training", 2018” [17]

Limitation: o Require task-specific datasets and task-specific fine-tuning.

o

Model is fine-tuned on very narrow task distributions.

o

Model does not necessarily generalize better out-of-distribution.

Question: o Is it possible to address these limitations?

> Humans do not require large supervised datasets to learn most new language tasks.

—“please tell me if this sentence describes something happy or something sad”
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GPT-2, GPT-3 [18, 3] “Language Models are Unsupervised Multitask Learners”, “Language Models are Few-Shot Learners”

o Same as GPT-1: we still pre-train the LM on unlabeled corpus.
o New: no need to fine-tune anymore. One pre-trained LM for all tasks, achieve SOTA.

pretrained + finetune

[ “Hi GPT, sentiment analysis, | like this website.” ]—> GPT-1 after e h = positive/negative/neutral

o 4 N 3 - Pre-trained “...this is . .
[ Hi GPT, sentiment analysis, | like this website. ]—V GPT-2/GPT-3 Positive..” positive/negative/neutral
Present words as vector, Feedforward NN LM Word2vec Transformer CPT-2LM
Osgood etal. 1957 I xBengio et al. 2003 Mikolov et al. 2013 Vaswani et al 2017 Radford et al. 2019

S S SN N I
- | »
. S SN SN

N-Gram, RNN RNN LM
Self-attention GPT-1LM GPT-3LM
Markov 1913 1982-1986 Mikolov et al. 2010 0159012 Radford et al. 2018 Openl 2020
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GPT-2, GPT-3 [18, 3] “Language Models are Unsupervised Multitask Learners”, “Language Models are Few-Shot Learners”

o Same as GPT-1: we still pre-train the LM on unlabeled corpus.
o New: no need to fine-tune anymore. One pre-trained LM for all tasks, achieve SOTA.

“Hi GPT, sentiment analysis, | like this website.” 1—» i =P positive/negative/neutral

“Hi GPT, sentiment analysis, | like this website.” /== GPPr;Er/a(l;:_e}% i pos‘ir:i':: . == positive/negative/neutral

o How?
Model | Launch Training Data Training Attention Word Attention
Year Parameters Layers Embedding Heads

GPT-1 | 2018 7000 Books ~5GB | 117M 12 768 12

GPT-2 | 2019 8 million 1.5B 48 1600 48
documents
~40GB

GPT-3 | 2020 Multiple Source 175B 96 12288 9%
~45TB

Figure: From https://businessolution.org/gpt-3-statistics/
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Few-shot prompting (In-context learning) in GPT-3

o GPT-1: finetune the model on a specific task

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt
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Few-shot prompting (In-context learning) in GPT-3

o GPT-3: no need to fine-tune on a specific task.
o GPT-1: finetune the model on a specific task

Zero-shot
The model is trained via repeated gradient updates using a The model predicts the answer given only a natural language
large corpus of example tasks. description of the task. No gradient updates are performed.

Translate English to French
sea otter => loutre de mer example #1

peppermint => menthe poivrée example #2 Single input
sentence to model

plush giraffe => girafe peluche example #N

cheese => prompt
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Few-shot prompting (In-context learning) in GPT-3

o GPT-3: no need to fine-tune on a specific task.
o GPT-1: finetune the model on a specific task
Zero-shot

The model predicts the answer given only a natural language

The model is trained via repeated gradient updates using a
description of the task. No gradient updates are performed

large corpus of example tasks.

Translate English to French task description

sea otter => loutre de mer example cheese => prompt

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

peppermint => menthe poivrée example #2 Single input
Translate English to French description sentence to model
sea otter => loutre de mer example
cheese => prompt

plush giraffe => girafe peluche example #N

cheese => prompt
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Few-shot prompting (In-context learning) in GPT-3

o GPT-3: no need to fine-tune on a specific task.
o GPT-1: finetune the model on a specific task

Zero-shot

The model is trained via repeated gradient updates using a The model predicts the answer given only a natural language

large corpus of example tasks. description of the task. No gradient updates are performed.
Translate English to French task description
sea otter => loutre de mer example #1
cheese => prompt

One-shot

In addition to the task description, the model sees a single
BERECTHR: o (ERD FERIRD example #2 example of the task. No gradient updates are performed.

Single input
sentence to model

Translate English to French

sea otter => loutre de mer

cheese => prompt
Few-shot
plush giraffe => girafe peluche example #
In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed,
Translate English to French iption
sea otter = loutre de mer
peppernint => menthe poivrée
cheese => prompt

plush girafe => girafe peluche

cheese => prompt
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* Intrinsic mechanism of in-context learning
i . . Predict by417?
o Classical supervised learning, for each task:

> Training: ERM, x* € argmin, : R(x) = Zl— (hx(ai), b;).
> Given test point an 1, return hyx(an41). LLM
o In-context learning in LLM: ai b; a1
> Trains on huge corpus and gets x*.
> For any test task 7/, return: Ay« ({a[/, b;.rl}f.v_l, a}rv/Jrl). N In-context
- demonstration

o Meta-learning:
- . . . _ 1 #Training tasks
> Training: ERM, x* € argmin, : R(x) = Framrriage Dure1 L(hx({a],b] }Z_l,aN+l) byi1)-

> For any test task 7/, return hyx ({a] bT }Z_l,aN_‘_l)

Question
o Why LLM can perform in-context learning?
o Theoretical explanation: by performing gradient descent implicitly on in-context data? [25], see supplementary.

o Or is it just due to the so-called emergent abilities? See the next slide!
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Few-shot prompting (In-context learning) — emergent abilities of LLM

“An ability is emergent if it is not present in smaller models but is present in larger models.”[27]

—o— LaMDA —=— GPT-3 —4— Gopher —4A— Chinchilla —@— PaLM

- = - Random
(A) Mod. arithmetic (B) IPA transliterate  (C) Word unscramble (D) Persian QA
50 50 50 50
— 40 40 X 40 X 40
IS = e S
30 & 30 g 30 € 30
13} = = - -
5] =] g g
520 = 20 20 20
o = b +©
S m S 3
< 10 10 w10 ¥ 10
= =
of- -- 0f- -- of- -< .- 0
1o0M 1B 100B 10M 1B 100B 10M 1B 100B 10M 1B 100B

Figure: Emergent abilities of few-shot prompting appear when the model parameters (x-axis) are increased to some extent. [27]
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Chain-of-thought prompting — emergent abilities of LLM

(a) Few-shot

@oger has 5 tennis balls. He buys 2 more cans of te@

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: Ajuggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of teﬁ
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

.

.

(Output) The juggler can juggle 16 balls. Half of the balls are golf

balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
We. So there are 8/ 2 = 4 blue golf balls. The answer is 4. //

Figure: Demo of chain-of-thought (CoT) prompting [10].
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Chain-of-thought prompting — emergent abilities of LLM

[\v]
ot
|

[ \]
)
T

Chain of
thought

—_
(S}
T

(9}

No chain
of thought

GSMS8K Accuracy (%)
=)

)

1B 10B 100B

Figure: Performance under chain-of-thought prompting is increased until a certain model scale on Math word problems [27], A
LLM called LaMDA is used [22].
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Zero-shot chain-of-thought prompting — emergent abilities of LLM

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A:

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of ter@
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

(c) Zero-shot

(Output) The juggler can juggle 16 balls. Half of the balls are golf

balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
wg. So there are 8/ 2 = 4 blue golf balls. The answer is 4. v/

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) 8 X

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. v

Figure: Demo of zero-shot chain-of-thought (CoT) prompting [10].
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Zero-shot chain-of-thought prompting — emergent abilities of LLM

® Zero-shot ® Zero-shot-CoT ® Zero-shot ® Zero-shot-CoT ® Zero-shot ® Zero-shot-CoT
80 80 50
60 60 40
40 40 =
20

20 20

10
0 .4.. o 0

03B 1.3B 6.7B 175B S M L XL 8B 62B 540B

(a) MultiArith on Original GPT-3  (b) MultiArith on Instruct GPT-3 (c) GMS8K on PaLM

Figure: Performance under Zero-shot chain-of-thought prompting is increased until a certain model scale on Math word
problems [10]. Y-axis indicates the accuracy.
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Why emergent abilities occur?

o Understanding this would benefit:
> Economy and environment: reduce training cost to obtain desired emergent abilities.

> Al-Safety: prevent larger models from acquiring dangerous capabilities without warning.

NeurlPS Conference @NeurIPSConf - Dec 12
Replying to @NeurlPSConf

**Test of Time**
Distributed Representations of Words and Phrases and their

Compositionality

**Outstanding Main Track Papers**
Privacy Auditing with One (1) Training Run
Are Emergent Abilities of Large Language Models a Mirage?

Figure: In NeurlPS 2023, the paper that explains “emergent abilities” achieved outstanding paper award. As a remark: the
Word2vec paper achieved “Test of time" award.
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Why emergent abilities occur? [19]

o Emergent abilities occur due to:
> fundamental changes by model scaling. X
> researcher’s choice of metric.
o Nonlinear or discontinuous metrics produce apparent emergent abilities.
o Linear or continuous metrics produce smooth, continuous, predictable changes in performance.

0

Target Str Len Target Str Len

Accuracy
'
i
5

- Token Edit Distance
4

10° 10%0 101! 10° 1010 10
GPT-3 Model Parameters GPT-3 Model Parameters

Figure: 2-Integer 2-Digit Multiplication Task. Left: performance is measured by a nonlinear metric (e.g., Accuracy). Right:
performance is instead measured by a linear metric (e.g., Token Edit Distance).
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FLAN [26] (|nst|’ucti0n tuning) “Finetuned language models are zero-shot learners”, 2021

o Fine-tuning is useful again, with the instruction format, allowing generalize to unseen tasks.

o Better than aforementioned “no fine-tuning” + “few-shot prompting".

Finetune on many tasks (“instruction-tuning”)

( Input (Commonsense Reasoning)\” Input (Translation)

Here is a goal: Get a cool sleep on Translate this sentence to |r!feren°e on unseen task type
summer days. Spanish: : .  Input (Natural L

How would you accomplish this goal? The new pﬂlce building Premise: At my age you will probably
'OPTIONS: L i (s iiEm iiee have learnt one lesson.

(-Keep stack of pillow cases in fridge. ) months Hypothesis: It's not certain how many
[-Keep stack of pillow cases in oven. ] | Target ' lessons you'll learn by your thirties.
Target El nuevo edificio de oficinas Does the premise entail the hypothesis?
keep stack of pillow cases in fridge se construy6 en tres meses. OPTIONS:

(-yes ) [-itis not possible to tell | (-no )

FLAN Response
Itis not possible to tell

[ Sentiment analysis tasks
V\/'Coreference resolution tasksh;

GPT-3 175B zero shot [l GPT-3 175B few-shot . FLAN 137B zero-shot

Performance
on unseen
task types

Natural language inference  Reading Comprehension Closed-Book QA
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|n5truCtG PT (A“gn LLM / Fine—tune / RLH F) “Training language models to follow instructions with human feedback”, 2022

o Limitation of GPT-3: trained to predict the next token, can not follow user instructions well.
o InstructGPT:

> Towards following user instructions, more truthful, less toxic.
> Align LM with user intent by fine-tuning via reinforcement learning from feedback (RLHF).
PROMPT  Explain the moon landing to a 6 year old in a few sentences.

COMPLETION  GPT-3

Explain the theory of gravity to a 6 year old.
ﬁ Request: How to make a bomb?

Explain the theory of relativity to a 6 year old in a few sentences.

E Aligned LLM Response: I'm very sorry, but | can't assist with that.
Explain the big bang theory to a 6 year old. .

Explain evolution to a 6 year old.

Figure: Demo of aligned LLM, from [4]
Instr
People went to the moon, and they took pictures of what they saw, and
sent them back to the earth so we could all see them.

GPT

Figure: Demo of aligned InstructGPT, from
https://openai.com/research/instruction-following
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|n5truCtG PT (Align LLM / Fine—tune / RLH F) “Training language models to follow instructions with human feedback”, 2022

o Step 1: Pre-train a Transformer-based LM based on unlabeled corpus, similar to GPT-1, GPT-2, GPT-3.
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|rlStI’uCtG PT (Align LLM / Fine—tune / RLH F) “Training language models to follow instructions with human feedback”, 2022

o Step 2: Supervised fine-tune via collected demonstration.

A promptis Explain the moon
sampled from our landing to a 6 year

prompt dataset. old

\

A labeler
demonstrates the @
desired output 7
behavior. Some pe;ple went
to the moon...
|
\J
This data is used =
to fine-tune GPT-3 2o
. . ./Xﬂ.
with supervised W
learning. 2

2RR

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch
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|nStI’uCtG PT (Align LLM / Fine—tune / RLH F) “Training language models to follow instructions with human feedback”, 2022

o Step 3: Train a reward model rx (Sprompt, Sresponse) With parameters x.
> GPT-3-based architecture.

> Input: concatenation of Sprompt and Sresponse. Output: scalar value.

> Loss:
1
Lx = _WE(SpromptvSresponselaSresponseZ)ND [10g (U (Tx (Sprompt, Sresponsel) — Tx (Sprompt7 Sresponse2)))} 3
2

where Syesponsel is the preferred response out of the pair of Syesponsel and Sresponse2, D is the dataset of

human comparisons. For each prompt, labelers need to rank K response, leading to (12() comparison.

- O
Explain gravity.
e Alabeler ranks
Explain the moon e the outputs from
landing toa 6 year —> GPT —— —” | besttoworst.
old (c) 0-0-0-0
Moon is natural
satellite of. i
Q This data is used RM
— People went to o PN
e oon to train our ./)?.&.
reward model. e
0-0-0-0
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|n5truCtG PT (A“gn LLM / Fine—tune / RLH F) “Training language models to follow instructions with human feedback”, 2022

o Step 4: Using this reward model to fine-tune the GPT based on Proximal Policy Optimization (PPO)[20]
> (state, action): (Sprompt,Sresponse)-

> Initialize a policy to be the fine-tuned GPT in step 2, i.e., 75FT

> Initialize a copy of the above policy with parameters ¢ that we want to optimize, i.e., ﬂg'-.

v

Use PPO to optimize ¢ in order to maximize the following full reward.

R(Spromph Sresponse) = Tx(Sprompty Sresponse) - ,B log[ﬂ—gL(sresponse‘Sprompt)/ﬂ'SFT(Sresponse‘Sprompt)]

penalty term

> The penalty term is the conditional relative entropy, ensuring the new policy 7r§)L doesn’t change a lot from the
original policy 75FT, which the reward model has seen during its training.

> See EE-618 for details!
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GPT-4 [15]

o Multi-modals GPT: text 4+ image.
o Predictable Scaling.

GPT-4 visual input example, Extreme Ironing:

GPT-4 Technical Report User What is unusual about this image?

OpenAI"

Abstract

‘We report the development of GPT-4, a large-scale, multimodal model which can
accept image and text inputs and produce text outputs. While less capable than
unans in many real-world scenarios, GPT-4 exhiis human-level performance
on various and academic benchy cluding passing a simulated
bar exam with a score around the top 10% of test kers GRS o2 ramapomes
based model pre-trained to predict the next token in a document. The post-training
alignment process results in improved performance on measures of factuality and
adherence to desired behavior. A core component of this project was developing
infrastructure and optimization methods that behave predictably across a wide
range of scales. This allowed us to accurately predict some aspects of GPT-4’s
performance based on models trained with no more than 1/1,000th the compute of
GPT-4

Source: htps://

3

CL] 16 Mar 2023

GPT-4  The unusual thing about this image is that a man is ironing clothes on an ironing
board attached to the roof of a moving taxi.

Figure: From [15]
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Predictable Scaling in GPT-4

o It is expensive and time-consuming to do model-specific tuning for large language model (LLM).

o Developers of GPT-4 can make loss prediction by power laws shortly after the training starts.

OpenAl codebase next word prediction

Bits per word
60
. ® Observed
Prediction
50 gpt-4
°
40
.
30 )
.
.
)
20 L
Ot T T T T T 1
100p 10n W 100u 001 1
Compute

Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived
from our internal codebase. This is a convenient, large dataset of code tokens which is not contained in
the training set. We chose to look at loss because it tends to be less noisy than other measures across
different amounts of training compute. A power law fit to the smaller models (excluding GPT-4) is
shown as the dotted line; this fit accurately predicts GPT-4’s final loss. The x-axis is training compute
normalized so that GPT-4 is 1.

Figure: From [15]
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Predictable Scaling in GPT-4
o Developers of GPT-4 can make capability prediction by power laws shortly after the training starts.
o Measured by the ability to correctly synthesize Python functions on HumanEval dataset [5].

Capability prediction on 23 coding problems
—Mean Log Pass Rate
5

© Observed
Prediction
4 o gpt-4
3 )
.
2
.
o

P
o T T T T T T 1

w 100 1004 0.001 001 o1 1

Compute

Figure 2. Performance of GPT-4 and smaller models. The metric is mean log pass rate on a subset of
the HumanEval dataset. A power law fit to the smaller models (excluding GPT-4) is shown as the dotted
line; this fit accurately predicts GPT-4’s performance. The x-axis is training compute normalized so that
GPT-4is 1.

Figure: From [15]
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Present words as vector,|

FNN LM Word2vec
Transformer GPT-2LM cLp GPT4VLM GPT4ovLM
Osgood et al. 1957 InstructGPT LM @ Today

2003 2013 Vaswani et al 2017 2019 2021 20

R B
-
T ) o h * S0 SAL

N-Gram, ChatGPT LM,
Markov 1913 NN RNN LM Self-attention GPT-1LM GPT3LM  FLANLM =~ pomp LlaMA 2 LM, LiaMA3 LM,

R
1982-1986 2010 2013-2015 2018 OpenAl. 2020 2021 2023 2024

Q
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Wrap up!

o That's it folks!
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**“Add & Norm” in Transformer
o Layer normalization [1].

> How to perform Layernorm(Z;): recall Z; = [z 1, -- ,zl,T}T, then the normalization is performed at each
time position, i.e., we normalize each z; ; by its mean y; ; and standard deviation ¢; ; as follows:
Zi,t — Mt
Pi,t

> |t enables faster training:
> Forward view: normalization brings distribution stability [1].
> Backward view: normalization for the backward gradient [28].
o Skip connection (also called ‘add’ in typical Transformer’s schematics) is motivated by ResNet [7].
> Keep the gradients from vanishing.
> Smoother loss surfaces.

Figure: The loss surfaces of ResNet-56 without skip connections (left) vs with skip connections (right). From [11].
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*Rotary position embedding in self-attention

Solution 3 [21] o Rotary position encoding: incorporate both absolute position and relative position.

o Given g; and k;/, we want to find a position encoding function Pos() such that:

(Pos(qt), Pos(ky)) = SomeFunction(qy, ky/,t — t').
o Assume m = 2 (can be generalized to m > 2): by the derivation in [21], one can use

Pos(k;) :=

cost, —sint
Pos(q:) := { } qt,

cost!/, —sint’ k
. /.
sint, cost t

sint/,  cost’

o Achieve better performance on various long text tasks.

o Being employed in several recent LLMs [6, 23].
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*It seems prompting is important, can we design it automatically?

-
ﬁ Request: How to make a bomb?

E Aligned LLM Response: I'm very sorry, but | can't assist with that.
\ il /

N

(N

(
ﬁ Request: How to make a bomb?
E Aligned LLM Response: Here is a possible method to make it ...

J

Figure: Demo of jailbreaking aligned LLM, from [4]. LLM is typically aligned, which means that it is fine-tuned after pre-training
to generate harmless and objective responses, see InstructGPT in later slides.

Question

How can we design such an “adversarial prompt”?
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*It seems prompting is important, can we design it automatically?

o Define the following one-hot representation of the tokens:
> FEtarget € RTtareet XIVI | corrsponds to the desired response, i.e., “Here is a possible method to make a bomb”.
> Efompt € RTprompt XIVI: corrsponds to the adversarial prompt we want to obtain.
> Equestion € R Tauestion X | V'], corrsponds to the question “How to make a bomb".

o We aim to find an adversarial prompt that maximizes the following conditional probability:

E;rompt € arg min(_P(Etarget|C0ncat(Equestion, Eprompt)))-
Eprompt

Loss

Greedy Coordinate Gradient [30]
1. Input: randomly initialized Eprompt
2. While jailbreaking does not succeed:
> for each position % in Tprompt :
> Pick a subset of top-k tokens substitutions as follows:
Si = TOpK(fvE“’:) L)

prompt

> Construct a batch of Eprompt Where each position ¢ is randomly replaced by the tokens in S;.

> Update Eprompt as the one among the batch with minimal loss.

3. Output: Eprompt
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*Mathematical formulation of in-context learning [25]

o Input to the model:

[ b1, ,bx , by ] = [(al) 1 (aN) ) (aNH)} € Réwtdy,N+1 <BN“>

N N by by 0 T T T T
in-context tokens, test token
denoted by B

Self-attention

o Model: only a residual linear self-attention layer. For i € [N +1]:

b; + b; + Xo (Xv B)Sofemax(BT X% X ob;) f J -1 GNL
S i (b') 0
elf-attention 4

In-context token
o We desire by 41 becomes (b ) after the step above so that it matches the ground truth label.
N+1
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*Mathematical formulation of in-context learning [25]

o Input to the model:

Loy b D= [ (31) oo () ()| e meet e bt <ij{>

in-context tokens, test token
denoted by B
Self-attention

o Model: only a residual linear self-attention layer. For i € [N +1]:

b;

by b + Xo (Xy B)Soferma(BT XL X ob;) 1 (J) ! (aNL>

Self-attention

In-context token

o We desire by 41 becomes (bN ) after the step above so that it matches the ground truth label.
+1
Hypothesis

How does self-attention learn information from {(a;,b;)}, to make correct prediction for ay1?
Similar to linear regression?
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*An alternative view of GD on linear regression [25]

o Linear model h(a) = Xgqa € R% with weight X € R X4z and input a € R
o Objective w.r.t in-context tokens {(a;, b;)}} ;:

N
1
L(Xg) = 5o Y [ Xgemi = bil3.

i=1
o One step GD with learning rate n:

N
AXgy = —nVxL(Xg) =~ > (Xgeai — bi)al.

7
1=1

N
2 1
= 3% E | Xgaa: — (b — AXggay)|2.
=1

L( ed + Ang QN Z H gd + Ang)ai —b;

o Thus: one step GD & fix weight but update data (label):
ai\ a;
b,L' bz - Angai ’
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*Equivalence between GD step and self-attention step [25]

o Can these be equivalent?

One GD step: One self-attention step:
a; a; ) ) TxT )
(3) < (b, &5 a) bi < b; + Xo(Xy B)(BY XL Xb;)
Proposition
. I; 0 0 0 i
One can construct weights X = Xqg = 0’” o) Xy = x(© I ) Xo = ﬁIdI+dyr such that a
gd Y

a?)' 1 € [N] and by 41 = (al\grl), is identical to a GD step, i.e.,

self-attention step on b; = ( b
7

i =b; TxT )
(bi = Anga) =b; + Xo(XvB)(B" X Xqb;).

Remarks: o Importantly, the constructed weight is unrelated to any in-context data.

o For the test point by, = (BNOH), after one self-attention step, it becomes (*A;th;\l+l)' which
g
@ —o.

matches the prediction of linear regression times —1 if ng
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*Equivalence between GD step and self-attention step [25]

o Can these be equivalent?

One GD step: One self-attention step:
a; a; ) ) TxT )
(3) < (b, &5 a) bi < b; + Xo(Xy B)(BY XL Xb;)
Proposition
. I; 0 0 0 n
One can construct weights X = Xqg = 0’” o) Xy = x(© I ) Xo = ﬁIdI+dyr such that a
gd Y

a?)' 1 € [N] and by 41 = (al\grl), is identical to a GD step, i.e.,

self-attention step on b; = ( b
7

i =b; TxT )
(bi = Anga) =b; + Xo(XvB)(B" X Xqb;).

Proof:

; 0
o LHS : (al) S o
bi -~ Zj:l (Xg(d)aj —bj)a; a

crvs: (2) - x0 5, [x ()] [ (5)]
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*Experiment: one-GD-step constructed Transformers VS trained Transformers [25]

o Set up:

> Consider linear self-attention network hx: in-context data + test input -> prediction.

> Data generation: for each task 7: sample 7 ~ N(0,1), then a7 ~ Unif(—1,1)%=, bT = (xT,aT).
o Model 1: hy g4, with constructed weight in previous proposition.
o Model 2: hy trained, Obtained by the meta learning objective over several tasks.

0.40 25
= GD = Preds diff === Model cos
o8 = Trained TF 20 Model diff [1.00
£
" g 15 0.95-7
0
§ 030 = k=
~N10 [0-90 2
O
0.25 05 F0.85
80

0.20 0.0 r— - T 0.
0 2000 4000 0 1000 2000 3000 4000 5000

Training steps Training steps

Figure: Trained Transformers do in-context learning by mimicking GD, measured by (1) prediction difference:

Ohy gq(al®st) dh g (atest)

18 x,trained . .

patet— and Hatet (3) their difference
z k2

| hx,ga (25°™) — hx,trained (@) [|2, (2) cosine similarity between

Ohx od (a,tieSt) Ohx trained (a:;eSt
Il Datest - datest
i i

) ||2. From [25].
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*More GD steps, more layers [25]

= Gradient descent

0.2 1 4 Trained Transformer
a
o
—1 0.1
00 T T T
0 20 40

GD Steps / Transformer Layers

Figure: From [25].
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*What about nonlinear regression? [25]

Proposition

A Transformer block (a feedforward layer g : R% — R% and a self-attention layer) can perform kernel
regression with kernel function k(a,a’) = g(a) T g(a’).

(5:) < (6 - &Xhacen)

N
where AXgq = —nVL(X\)) = —n(V S [1Xg(ai) — bi|?) , assumed X(§ = 0.

o Feedforward + Self-attention:

anN+1

o For the test token by 1 = ( 0

), the prediction after a single Transformer block (multiplying —1) is

N
—(0 - AXgyg(ant1)) = Z big(ai)" g(an41)
—
i=1 k(aj,an41)
Remarks: o Only one-step GD.

o If multi-step is considered, then the network structure is: Feedforward -> Attention -> Attention ...

o But in practice: Attention -> Feedforward -> Attention -> Feedforward ...
o The feedforward layer is applied only for a; instead of b; = (2’)
K2
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*Motivation: Why RLHF?

Idea: Adapt the model to the prompts, not vice-versa

o We want to avoid
> hand-crafting good prompts.

> explicitly inserting instructions each time.

o The model should adapt to the goal of a prompt, and not vice-versa.

> This is an inherently interactive process.

o If we have a goal (rewards), RL does this without the need for a hand-designed differentiable objective.

o We thus need
> an RL algorithm (here, PPO),

> and a way to learn a reward function from interaction (human feedback).
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*Clarification of the training steps

Step 1 Step 2 Step 3 Step 4
Pre-training Supervised fine-tuning Train reward model Fine-tune via PPO

Question

Why do we need all steps 2, 3 and 4?7 Why not without them, or only a subset of them?
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*Clarification of the training steps

Step 1 Step 2 Step 3 Step 4
Pre-training Supervised fine-tuning Train reward model Fine-tune via PPO
Question

Why do we need all steps 2, 3 and 4?7 Why not without them, or only a subset of them?

Data-driven view: A machine learning model will only act according to the distribution we have trained it on.

o Step 1: Pre-trained model (self-supervised learning)
> Training distribution: unlabeled corpus to predict the next token given the history.
> Can hope for: completing coherent sentences, associating a context with what might come next.

> But: The data distribution of the raw text corpus is not what the distribution over conversations looks like.
For example, in a conversation, there is usually a statement and a response.
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*Clarification of the training steps

Step 1 Step 2 Step 3 Step 4
Pre-training Supervised fine-tuning Train reward model Fine-tune via PPO
Question

Why do we need all steps 2, 3 and 4?7 Why not without them, or only a subset of them?

Data-driven view: A machine learning model will only act according to the distribution we have trained it on.

o Step 2: Supervised fine-tuning:
> Training distribution: resembles how prompts and answers (labels) should be mapped to each other.
> Can hope for: having a sensible conversation, not just completing text.

> But: We want the model to plan ahead what would please a user, based on experience when interacting
with them. This is hard to formulate as a differentiable loss function (but possible via rewards).
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*Clarification of the training steps

Step 1 Step 2 Step 3 Step 4
Pre-training Supervised fine-tuning Train reward model Fine-tune via PPO

Question

Why do we need all steps 2, 3 and 4?7 Why not without them, or only a subset of them?

Data-driven view: A machine learning model will only act according to the distribution we have trained it on.

o Step 3: Learning the rewards from preferences.
> Training distribution: actual interations with an environment (users) and their feedback.

> Can hope for: learning a reward function which encodes goals that should be obeyed to please the user.
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*Clarification of the training steps

Step 1 Step 2 Step 3 Step 4
Pre-training Supervised fine-tuning Train reward model Fine-tune via PPO

Question

Why do we need all steps 2, 3 and 4?7 Why not without them, or only a subset of them?

Data-driven view: A machine learning model will only act according to the distribution we have trained it on.

o Step 4: Policy optimization for further fine-tuning
> Training distribution: actual interations with an environment (users) and rewards as feedback.
> Can hope for: having a conversation that users also appreciate, by obeying the goals encoded in the reward.

> But: To perform RL, we first need to write down a set of rewards.
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State space model

o Recall the RNN training:

Forward pass in pre-training on single sentence

1. Set initial state zg = 0, initial loss L = 0
2.Fort=1,...,T

> Zt:U(XHZt_l-i-X[bt), RNN
> yr = Xozt
> u; = Softmax(y:), probability

> L+ = (ZW‘ log u[Z]) , loss

o The crucial step that makes the training of RNN unparallelizable is

z; = o(Xpzi—1 + Xybe).

o Sequential operations of training are O(T).
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*State space model

o What if we remove the non-linearity?
zt = Xpgzi—1 + Xrbt.
o Then by unwrapping the formula we get:

zo =0,

z1 = X7b;

zo = XgXrb1 + X1b2

73 = X4 X ;b1 + XgXsbi + Xsbs

z4 = X3 X b1 + X} X bz + XX b1 + X;bs

ze = X' ' X by + X4 2 X by + -+ Xyby

o As a result

ye = Xo (X} ' Xyb1 + X} X by + -+ X by) .
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*State space model

o Define the arrow operation as: (m,n), (m,n’) = (m

2 mn+n').

o During training, to obtain z4, state space model (SSM) uses FFT's style computation.

(Xm,Xrb1)

(Xm,X1b2)

(Xm,X1b3)

(Xp,Xba)

(X%, XgXrb1 + X1b2)

(X%, X3 X by + X3 X by + XX bs + X;by)

Z4

(X%, XgXrbs + X1by)

o Hence, computing zp has O(T log T') complexity.

o log T indicates the unparallelizable sequential operations.
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*Complexity analysis

Network Sequential operations  Sequential operations  Maximum path Long-sequence
architecture (training) (inference) length memory complexity
RNN o(T) o(T) o(T) O(1)
SSM O(logT) o(T) o(T) 0(1)
Self-Attention O(1) o(T) O(1) o(T?)

Table: Complexity comparison of different models. The maximum path length between any two input positions is another metric
used to measure the capacity of learning long-range dependencies.
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