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Recall: Swiss army knife of convex formulations

A primal problem prototype

f⋆ := min
x∈Rp

{
f(x) : Ax− b ∈ K, x ∈ X

}
,

▶ f is proper, closed and convex
▶ X and K are nonempty, closed convex sets
▶ A ∈ Rn×p and b ∈ Rn are known
▶ An optimal solution x⋆ satisfies f(x⋆) = f⋆, Ax⋆ − b ∈ K and x⋆ ∈ X

Broad context for the problem template:
▶ Many real-world applications (e.g., linear inverse problems) can be directly formulated as (3).
▶ Often times, computational limitations require the translation of existing unconstrained problems (e.g.,

composite convex minimization, consensus optimization, and convex splitting) into constrained ones (3).
▶ Many standard convex optimization formulations naturally fall under (3), such as linear programming,

convex quadratic programming, second order cone programming, semidefinite programming and geometric
programming.
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{
f(x) : Ax− b ∈ K, x ∈ X

}
,

▶ f is proper, closed and convex
▶ X and K are nonempty, closed convex sets
▶ A ∈ Rn×p and b ∈ Rn are known
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A simplified template

f⋆ := min
x∈Rp

{
f(x) : Ax = b,

}
, (1)

▶ f is proper, closed and convex
▶ A ∈ Rn×p and b ∈ Rn are known
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Recall: Finding the solutions in affine constrained convex minimization

A performance metric: Time-to-reach ϵ

time-to-reach ϵ = number of iterations to reach ϵ × per iteration time

A key issue: Number of iterations to reach ϵ

The notion of ϵ-accuracy is elusive in constrained optimization!

Our definition of ϵ-accurate solutions [36]
Given a numerical tolerance ϵ ≥ 0, a point x⋆

ϵ ∈ Rp is called an ϵ-solution of (1) if{
f(x⋆

ϵ )− f⋆ ≤ ϵ (objective residual),
∥Ax⋆

ϵ − b∥ ≤ ϵ (feasibility gap),

▶ When x⋆ is unique, we can also obtain ∥x⋆
ϵ − x⋆∥ ≤ ϵ (iterate residual).

Remark: ◦ ϵ can be different for the objective, feasibility gap, or the iterate residual.
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Plenty of primal-dual methods for solving (1):

◦ Penalty and augmented Lagrangian methods:
▶ Exact penalty method [3].
▶ Quadratic penalty method [4]. See Lecture 13
▶ Augmented Lagrangian method [23, 30]. This lecture
◦ Variants of the Arrow-Hurwitz’s method:
▶ Proximal-based decomposition (Chen-Teboulle’s algorithm) [9].
▶ Primal-dual Hybrid Gradient (PDHG) method and its variants [15, 18].
▶ Chambolle-Pock’s algorithm [7], and its variants, e.g., He-Yuan’s variant [20]. See supp. lecture
◦ Splitting techniques from monotone inclusions:
▶ Primal-dual splitting algorithms [2, 10, 37, 11, 12].
▶ Three-operator splitting [13]. See supp. lecture
◦ Dual splitting techniques:
▶ Alternating minimization algorithms (AMA) [16, 37].
▶ Alternating direction methods of multipliers (ADMM) [14, 22].
▶ Accelerated variants of AMA and ADMM [12, 19].
▶ Preconditioned ADMM, Linearized ADMM and inexact Uzawa algorithms [7, 27].
◦ Second-order decomposition methods:
▶ Dual (quasi) Newton methods [39].
▶ Smoothing decomposition methods via barriers functions [26, 34].
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Recall: Quadratic penalty & Lagrangian formulations

◦ The problem: f⋆ := minx∈Rp

{
f(x) : Ax = b

}
◦ Reformulations:

Quadratic Penalty The Lagrangian

f⋆ = f(x⋆) + β
2 ∥Ax⋆ − b∥2, ∀β > 0.

Fβ(x) = f(x) + β
2 ∥Ax− b∥2.

f⋆ = f(x⋆) + maxλλλ∈Rn ⟨λλλ, Ax⋆ − b⟩.

Fλλλ(x) = f(x) + maxλλλ∈Rn ⟨λλλ, Ax− b⟩

= f(x) +
{

0, if Ax = b,

+∞, if Ax , b.

min
x∈Rp

{
f(x) : Ax = b

}
≡ lim

β→∞
min

x∈Rp

{
f(x) + β

2 ∥Ax− b∥2
}

min
x∈Rp

{
f(x) : Ax = b

}
≡ min

x∈Rp
max
λλλ∈Rn

{
f(x) + ⟨λλλ, Ax− b⟩

}
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Recall: Quadratic penalty & Lagrangian methods

◦ The problem: f⋆ := minx∈Rp

{
f(x) : Ax = b

}
◦ The methods:

Quadratic penalty method (QP) Dual subgradient method (DSGM)

1. Choose x0 ∈ Rp and β0 > 0.
2. For k = 0, 1, · · · , perform:

2.a. xk := arg min
x∈Rp

{
f(x) +

βk

2
∥Ax− b∥2

}
.

2.b. Update βk+1 > βk.

1. Choose λλλ0 ∈ Rn.
2. For k = 0, 1, · · · , perform:

2.a. x∗(λλλk) := arg min
x∈Rp

{
L(x, λλλ

k) := f(x) + ⟨λλλk
, Ax− b⟩

}
.

2.b. Compute the subgradient ∇d(λλλk) := Ax∗(λλλk)− b.

2.c. Update λλλ
k+1 := λλλ

k +
R

√
k + 1

∇d(λλλk) ,

where R is a given constant.

◦ Drawbacks:

▶ xk := arg min
x∈Rp

{
f(x) +

βk

2
∥Ax− b∥2

}
becomes ill-conditioned as βk →∞.

◦ Drawbacks:
▶ d(λλλ) is not necessarily smooth =⇒ slower rates.
▶ x∗(λλλk) is not necessarily well-defined for all λλλ.
▶ Finding R is not always straightforward.
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Unifying the Lagrangian and the penalty approaches
◦ Quadratic penalty: Fβ(x) = f(x) + β

2 ∥Ax− b∥2

+++
◦ The Lagrangian: L(x,λλλ) = f(x) + ⟨λλλ, Ax− b⟩

⇓⇓⇓

◦ Augmented Lagrangian (AL): Lβ(x,λλλ) = f(x) + ⟨λλλ, Ax− b⟩+ β
2 ∥Ax− b∥2

Properties of AL
◦ The dual function is concave and 1

β
-smooth:

dβ(λλλ) = min
x∈Rp

{
f(x) + ⟨λλλ, Ax− b⟩+

β

2
∥Ax− b∥2

}
.

Can apply gradient or accelerated gradient methods in the dual!

◦ β does not need to increase until infinity.

No more ill-conditioned subproblems!
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Example: Behavior of the AL dual function
Consider a constrained convex problem:

min
x∈R3

{
f(x) := x2

1 + x2
2
}

,

s.t. 2x3 − x1 − x2 = 1,
x ∈ X := [−2, 2]× [−2, 2]× [0, 2].

The AL dual function is concave, smooth and defined as
dβ(λλλ) := min

x∈X

{
x2

1 + x2
2 + λλλ(2x3 − x1 − x2 − 1) + (β/2)∥2x3 − x1 − x2 − 1∥2

2
}
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Augmented dual problem

◦ Dual problem:
d⋆ := max

λλλ∈Rn

{
d(λλλ) = min

x∈Rp
f(x) + ⟨λλλ, Ax− b⟩

}
. (2)

◦ Augmented dual problem:

d∗β := max
λλλ∈Rn

{
dβ(λλλ) = min

x∈Rp
f(x) + ⟨λλλ, Ax− b⟩+

β

2
∥Ax− b∥2

}
, β > 0. (3)

Relation between augmented dual problem and dual problem
If a primal solution exists and Slater’s condition holds, we have
▶ The dual solution set of (3) coincides with the one of the dual problem (2).
▶ f⋆ = d⋆ = d∗β for any β > 0.

◦ Recall: The augmented dual problem (3) is smooth and concave

⇒ Gradient and accelerated gradient methods can be applied to solve it.
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Augmented Lagrangian method: The ideal algorithm

dβ(λλλ) = min
x∈Rp

{
f(x) + ⟨λλλ, Ax− b⟩+

β

2
∥Ax− b∥2

}
(4)

x∗β(λλλ) ∈ arg min
x∈Rp

{
f(x) + ⟨λλλ, Ax− b⟩+

β

2
∥Ax− b∥2

}
Augmented Lagrangian method (ALM)

1. Choose λλλ0 ∈ Rn and β > 0.
2. For k = 0, 1, · · · :

2.a. Solve (4).

2.b. Compute ∇dβ(λλλk) := Ax∗β(λλλk)− b.

2.c. Update λλλk+1 := λλλk + β∇dβ(λλλk).
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Augmented Lagrangian method: The ideal algorithm

dβ(λλλ) = min
x∈Rp

{
f(x) + ⟨λλλ, Ax− b⟩+
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(4)

x∗β(λλλ) ∈ arg min
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{
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}
Augmented Lagrangian method (ALM) Accelerated ALM (AALM)

1. Choose λλλ0 ∈ Rn and β > 0.
2. For k = 0, 1, · · · :

2.a. Solve (4).

2.b. Compute ∇dβ(λλλk) := Ax∗β(λλλk)− b.

2.c. Update λλλk+1 := λλλk + β∇dβ(λλλk).

1. Choose λλλ0 ∈ Rn and β > 0. Set λ̃λλ
0 := λλλ0 and t0 := 1

2. For k = 0, 1, · · · , perform:
2.a. Solve (4).

2.b. Compute ∇dβ(λ̃λλk) := Ax∗β(λ̃λλk)− b.

2.c. Update λλλk+1 := λ̃λλk + β∇dβ(λ̃λλk),

λ̃λλ
k+1:= λλλk+1 + ((tk − 1)/tk+1)(λλλk+1 − λλλk),

tk+1:= (1 +
√

1 + 4t2
k

)/2.
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Convergence of ALM and AALM

Theorem (Convergence [21])
◦ Let {λλλk} be the sequence generated by ALM. Then

d⋆ − dβ(λλλk) ≤
∥λλλ0 − λλλ⋆∥2

2
2β(k + 1)

.

◦ Let {λλλk} be the sequence generated by AALM. Then

d⋆ − dβ(λλλk) ≤
2∥λλλ0 − λλλ⋆∥2

2
β(k + 1)2 .

Remarks: ◦ Guarantees are given for the dual problem and not for the primal!

◦ Approximate solution for primal via averaging: xϵ = 1
k

∑k−1
i=0 x∗β(λλλi) [45]
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Drawbacks and enhancements

◦ At each step, ALM solves

x∗β(λλλ) := arg min
x∈Rp

{
Lβ(x,λλλ) := f(x) + ⟨λλλ, Ax− b⟩+

β

2
∥Ax− b∥2

}
. (5)

Drawbacks
1. Drawback 1: The quadratic term ∥Ax− b∥2 in (5) destroys the separability as well as the tractable

proximity of f .
2. Drawback 2: Solving (5) exactly is impractical.

Enhancements
1. Allow inexactness of solving (5), while guaranteeing the same convergence rate.
2. Linearize the term ∥Ax− b∥2 in the same way we did for Quadratic Penalty formulations.
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An inexact approach for subproblems of ALM
◦ Primal subproblem as a composite optimization problem:

x∗β(λλλ) := arg min
x∈Rp

{
Lβ(x,λλλ) := f(x) + ⟨λλλ, Ax− b⟩︸                        ︷︷                        ︸

=:h(x)

+
β

2
∥Ax− b∥2︸           ︷︷           ︸

=:g(x)
proximally
tractable

}
. (6)

=⇒ can use accelerated proximal methods (e.g. FISTA) to solve this up to some accuracy.

Conceptual inexact augmented Lagrangian method:
1. Choose λλλ0 ∈ Rn, β > 0 and a decreasing sequence ϵk ≥ 0, ∀k.

2. For k = 0, 1, · · · , perform:
2.a. Solve (6) with FISTA until Lβ(xϵk

β
(λλλk),λλλk) ≤ Lβ(x∗β(λλλk),λλλk) + ϵk.

2.b. Update λλλk+1 := λλλk + β(Axϵk
β

(λλλk)− b).

Remarks: ◦ Conceptual since x∗β(λλλk) is unknown.

◦ Solve (6) for increasing (explicit) number of iterations mk > 0.

◦ See advanced material at the end of the lecture for DL-ASGARD method.
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Linearized Augmented Lagrangian method (LALM)

1. Majorize the augmented Lagrangian:

xk+1 := arg min
x∈X

{
f(x) + ⟨λλλ, Ax− b⟩+

β

2
∥Ax− b∥2+

1
2
∥x− xk∥2

Qk

}
.

2. Using the same calculation as in Lecture 12, when Qk = αkI− βA⊤A ⪰ 0 and αk ≥ β∥A∥2, we get:

xk+1 = prox 1
αk

f

(
xk −

1
αk

A⊤
(
λλλk + β

(
Axk − b

)))
3. Picking αk = β∥A∥2, we obtain the following method:

Accelerated LALM (Alg.1 + parameters of eq. (30) in [40] )
1. Choose x0 ∈ Rp, λλλ0 ∈ Rn and β > 0.
2. For k = 0, 1, . . . :

xk+1 := prox 1
β∥A∥2 f

(
xk −

1
β∥A∥2 A⊤

(
λλλk + β

(
Axk − b

)))
,

λλλk+1 := λλλk + β(Axk+1 − b).
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Convergence of Accelerated LALM

Theorem (Convergence result of Theorem 2.5 in [40])
Let β > 0 and define x̄k = 1

k

∑k

i=1 xi. Then, the iterates of LALM satisfy:

∥Ax̄k − b ∥ ≤
1
k

(
β

2
∥x0 − x⋆∥2 +

max
{

(1 + ∥λλλ⋆∥)2, 4∥λλλ⋆∥2
}

β

)

|f(x̄k)− f(x⋆)| ≤
1
k

(
β

2
∥x0 − x⋆∥2 +

max
{

(1 + ∥λλλ⋆∥)2, 4∥λλλ⋆∥2
}

β

)

Remarks: ◦ Guarantees are for the primal and in fact optimal [28].

◦ No need to solve difficult subproblems at each iteration.

◦ Guarantees are for x̄k, and not xk.
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Example: Basis pursuit

Problem: Basis pursuit
Given A ∈ Rn×p and b ∈ Rn, solve

F ⋆ := min
x∈Rp

{
∥x∥1 : Ax = b

}
.

▶ Applications in de-noising, data compression.
▶ Experiment: A is a row-normalized standard Gaussian matrix, x⋆ is a k-sparse randomly generated vector.

Noiseless case: b := Ax⋆ Noisy case: b := Ax⋆ +N (0, 10−3)
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Nonconvex optimization problems with nonlinear constraints

Problem template

f⋆ := min
x∈Rp

{
f(x) + g(A(x))

}
, (7)

▶ f : Rp → R is a proper continuously-differentiable & nonconvex
▶ g : Rn → R is proper, lower-semicontinuous
▶ A : Rp → Rn is a nonlinear operator and b ∈ Rn

▶ An optimal solution x⋆ to (7) satisfies f(x⋆) = f⋆, A(x⋆) = b.

Example: Blind Image Deconvolution
◦ One of the most challenging problems in imaging sciences
▶ Goal: Recover an image X and an unknown blurring transformation T from a blurred image B ∈ Rp×q .
▶ Formally:

min
T∈Rr×s

X∈Rp×q

{
h(X, T) +

1
2
∥T ∗X−B∥2

}
,

where h : Rp×q × Rr×sR→ (−∞, +∞] is a non-convex & possibly non-smooth regularizer, and ∗ is an
appropriate convolution operator.

Remark: ◦ Advanced material at the end of the lecture covers inexact Augmented Lagrangian for (7).
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Recall the prototype problem
A primal problem prototype

f⋆ := min
x∈Rp

{
f(x) : Ax = b, x ∈ X

}
, (8)

▶ f is a proper, closed and convex function.
▶ A ∈ Rn×p and b ∈ Rn are known.
▶ X is nonempty, closed and convex.
▶ We further assume X is a bounded set! This assumption is motivated by practical applications.

◦ Standard convex optimization formulations in (8):
▶ linear programming
▶ quadratic programming
▶ convex quadratic programming
▶ second order cone programming
▶ semidefinite programming
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The SDP formulation

The standard form of an SDP
min
X∈X

⟨C, X⟩

s.t. ⟨Ai, X⟩ = bi, for i = 1, . . . m

▶ X = {X ∈ Rp×p : X ⪰ 0} - the positive semidefinite cone.
▶ C ∈ Rp×p, Ai ∈ Rp×p are symmetric and bi ∈ R, and are given. By definition, ⟨Ai, X⟩ = Tr(AT

i X).
▶ Any SDP can be written in standard form.

Trace-constrained SDPs
Consider the following SDP formulation:

min
X∈X

⟨C, X⟩ (9)

s.t. ⟨Ai, X⟩ = bi, for i = 1, . . . m

⟨I, X⟩ := Tr(X) = α ∈ R+ ←− the trace constraint
▶ Observe that (9) belongs to the template (8).
▶ This formulation is of broad interest [46]. In the sequel, SDP relaxations for non-convex problems.
▶ Problem (9) can be large in practice, making Interior Point Methods inefficient.
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Example: Finding maximum-weight cut of a graph
◦ Goal: Given an undirected graph G = (V, E) with a set of weights c : E → R+

min
x∈Zp

{1
2

∑
{i,j}∈E

cij(1− xixj) : xi ∈ {−1, +1}
}

(Weighted max-cut)

◦ The SDP approach: Lift & relax

▶ lift as a matrix optimization problem X = xx∗:

min
X∈Rp×p

{1
2

∑
{i,j}∈E

cij(1−Xij) : diag(X) = 1, X ⪰ 0, X∗ = X, rank(X) = 1
}

▶ relax the non-convex rank constraint

min
X∈Rp×p

{ 1
2

∑
{i,j}∈E

cij(1−Xij)︸                             ︷︷                             ︸
tr(CX)

: diag(X) = 1︸            ︷︷            ︸
A(X)=b

, X ⪰ 0, X∗ = X
}

(Max-cut SDP)

◦ Always delivers solutions 0.87856 times the optimal value after randomized rounding
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Example: Finding maximum-weight cut of a graph
◦ Goal: Given an undirected graph G = (V, E) with a set of weights c : E → R+
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∑
{i,j}∈E
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Example: Clustering with minimal sum-of-squares
◦ Goal: Given data points s1, s2, . . . , sp ∈ Rq , assign them into k disjoint clusters.

▶ Minimize the sum of squared distances of all points to their cluster centers

min
Z

{ k∑
j=1

p∑
i=1

Zij∥ si − wj(Z) ∥2 :
k∑

j=1

Zij = 1,

p∑
i=1

Zij ≥ 1, Zij ∈ {0, 1}
}

(MinSumClu.)

where Z∈{0, 1}p×k is the assignment matrix with Zij =
{

1 if si∈jth cluster
0 otherwise

where w1, . . . , wk are cluster centers with wj(z) =
(∑p

i=1 Zijsi

) (∑p

i=1 Zij

)−1

◦ The SDP approach: Lift & relax (details omitted)

min
X∈Rp×p

{
tr(CX) : X ≥ 0, X1 = 1, X ⪰ 0, X∗ = X, tr(X) = k

}
(Clustering SDP)

▶ where X = Z(Z∗Z)−1Z∗ and cij = ∥ si − sj ∥2

◦ Improved guarantees over LP relaxations

J.Peng and Y.Wei, Approximating K-means-type clustering via semidefinite programming, 2005
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Example: Neural networks

◦ Goal: Approximate the ℓ∞-Lipschitz constant Lh of 1-layer ReLU network

hx(a) := xT
2 σ(X1a + x1)

▶ applications to verification, robustness against adversarial examples, generalization...

◦ The SDP approach: Lift & relax (details omitted)

Lh ≤ L̄h := −
1
4

min
X∈Rp×p

{tr(CX) : X ⪰ 0, diag(X) = 1, X = X∗}

C := −

[
0 0 1T XT

2 Diag(x2)
0 0 XT

1 Diag(x2)
Diag(x2)T X11 Diag(x2)T X1 0

]

◦ An open research area

Ragunathan et al. SDP relaxations for certifying robustness agains adversarial examples. ICLR2017

F. Latorre, P. Rolland, and V. Cevher. Lipschitz constant estimation of neural networks via sparse polynomial optimization. ICLR 2020.
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CGM with quadratic penalty
Classical CGM does not apply to (3)
▶ lmo of the intersection of {x : Ax = b} and X is difficult to compute.
▶ Idea: Combine the CGM framework with the quadratic penalty approach.

Quadratic penalty strategy
◦ A quadratic penalty formulation:

min
x∈Rp

{ fβ(x)︷                          ︸︸                          ︷
f(x) +

β

2
∥Ax− b∥2

2 : x ∈ X
}

▶ β > 0 is the penalty parameter and fβ(x) is the penalized objective function.
▶ Note that fβ(x) is convex and smooth with parameter L + β∥A∥2.

◦ A simple strategy [43] ⇒ Take a CGM step on fβ and increase β progressively
Homotopy conditional gradient method (HCGM)

1. Choose x0 ∈ X , and β0 > 0.
2. For k = 0, 1, . . .:

x̂k := lmoX (∇f(xk) + βkAT (Axk − b))

xk+1 := (1− γk)xk + γkx̂k,

.

where γk := 2
k+2 and βk := β0

√
k + 2.
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Convergence guarantees of HCGM

Recall Lagrange duality

L(x,λλλ) := f(x) + ⟨λλλ, Ax− b⟩

max
λλλ

min
x∈X
L(x,λλλ)︸                   ︷︷                   ︸

dual problem

≤ min
x∈X

max
λλλ
L(x,λλλ)︸                   ︷︷                   ︸

primal problem

(Duality)

▶ λλλ is called the Lagrange multiplier.
▶ The function d(λλλ) is called the dual function, and it is concave!
▶ The optimal dual objective value is d⋆ = d(λλλ⋆).

(Duality) holds with equality under weak assumptions ⇒ (Strong duality).

Theorem (Simplified[43])
Assume that strong duality holds. Then, the iterates of HCGM satisfy{

|f(xk)− f⋆| ∈ O(k−1/2)

∥Axk − b∥ ∈ O(k−1/2).

∗ For an extension of HCGM to the case Ax− b ∈ K, please see Appendix A1.
∗∗Advanced material at the end of the lecture covers stochastic variants of HCGM.
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Augmented Lagrangian CGM: CGAL

Augmented Lagrangian approach
◦ Augmented problem formulation:

min
x∈Rp

{
f(x) +

β

2
∥Ax− b∥2

2 : Ax = b, x ∈ X
}

▶ Write down the Lagrangian:

Lβ(x,λλλ) = f(x) + ⟨λλλ, Ax− b⟩+
β

2
∥Ax− b∥2

▶ Note that Lβ( ·λλλ) is smooth with parameter L + β∥A∥2.

◦ Our strategy [41] ⇒

1. Take a CGM step wrt Lβ( · ,λλλ) (primal)
2. Take a gradient step wrt Lβ(x, · )(dual)
3. Increase β progressively

◦ Challenge: Step size in the dual domain (step 2.)
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Convergence guarantees of CGAL

Conditional gradient augmented Lagrangian method (CGAL)
1. Choose x0 ∈ X , λλλ0 ∈ Rn, and β0 > 0.
2. For k = 0, 1, . . .:

x̂k := lmoX (∇f(xk) + AT λλλk + βkAT (Axk − b))

xk+1 := (1− γk)xk + γkx̂k

λλλk+1 := λλλk + ωk(Axk+1 − b)
where γk := 2

k+2 , and βk := β0
√

k + 2.

Theorem (Simplified)
Assume that strong duality holds. Let us choose dual step size ωk by the following rule

ωk = αk := min
{

1
β0

,
η2

k(Lf + λλλk+1)D2
X

2∥Axk+1 − b∥2

}
if ∥λλλk + αk(Axk+1 − b)∥ ≤ DY

and ωk = 0 otherwise, for some DY ≥ 0. Then, the iterates of CGAL satisfy{
|f(xk)− f⋆| ∈ O( 1√

k
)

∥Axk − b∥ ∈ O( 1√
k

)

∗ For an extension of CGAL to the case Ax− b ∈ K, please see Appendix A2.
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Example: k-means clustering

min
X∈Rp×p

{
Tr (CX) : X1 = 1, X ≥ 0, X ∈ Sp

+, Tr (X) = α

}

iteration
100 101 102 103 104 105 106

d
is
t(
A
x
,K

)

10−3

10−2

10−1

100

101

102

iteration
100 101 102 103 104 105 106

|f
(x
)
−
f
⋆
|/
|f

⋆
|

10−4

10−3

10−2

10−1

100

101

102

CGAL
HCGM

▶ Test setup with preprocessed MNIST dataset [43]
▶ p = 1000 & α = 10 is the number of clusters
▶ Note: the worst-case guarantee is the same for HCGM and CGAL, but CGAL performs better in practice.
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Example: Max-cut SDP

max
X∈Rp×p

{1
4

Tr (LX) : diag(X) = 1, X ∈ Sp
+, Tr (X) = p

}

iteration
100 101 102 103 104 105

|f
(X

)
−

f
⋆
|/
|f

⋆
|

10−8

10−6

10−4

10−2

100

CGAL
HCGM

iteration
100 101 102 103 104 105

∥A
X

−
b∥
/∥

b∥

10−5

10−4

10−3

10−2

10−1

100

101

102

▶ UF Sparse graphs: GSet collection, G40 dataset p = 2000
▶ L is graph Laplacian matrix.
▶ Note: the worst-case guarantee is the same for HCGM and CGAL, but CGAL performs better in practice.
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Towards scalable semidefinite programming

Structures in SDP relaxations
min

X∈Rp×p
{Tr(CX) : AX = b, X ⪰ 0, Tr(X) = α} (10)

◦ X has O(p2)-degrees of freedom =⇒ needs Θ(p2) storage

←− this becomes a major problem

◦ Optimal solutions X⋆ typically or approximately have O(rp)-degrees of freedom
▶ r = rank & r ≪ p (low-rank)
▶ =⇒ need Θ(rp) storage for a rank-r approximate solution

◦ Example SDP’s typically have n = Õ(p) affine constraints
▶ During optimization we need to keep track of quantities such as

A(uv∗) u∗(A∗z) (A∗z)v, u ∈ Rp, v ∈ Rp, z ∈ Rn

=⇒ need Ω(n + p) storage for computations

Θ(n + rp) storage

▶ Relevant SDPs are often large =⇒ HCGM, CGAL have a storage bottleneck (e.g., MaxCut for graph of
2e6 nodes →∼ 2e12 variables!!)

▶ Can we leverage the problem structure for better storage performance? See advanced material.
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Wrap up!

◦ Next week: Mock exam!
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⋆An explicit inexact ALM: ASGARD-DL
Inexact ALM (Double Loop ASGARD [35])

1. x0 = x̂0,0 = x̄0,0 = x̃0,0 ∈ Rp, λλλ0 ∈ Rn, βk > 0, τ0 = 1, m0 > 2, ω > 1.
2. For k = 0, 1, · · · , perform:

2.a For i = 0, 1, · · · , mk − 1 : // accelerated proximal method
x̂k,i = (1− τk)x̄k,i + τkx̃k,i

x̃k,i+1 = prox f

βk∥A∥2

(
x̃k,i −

1
βk∥A∥2 A⊤(λλλk + βk(Ax̂k,i − b))

)
x̄k,i+1 = x̂k,i + τk(x̃k,i+1 − x̃k,i)

τk+1 =
2

k + 2

2.b Update primal and dual variables:
x̄k+1,0 = x̃k,mk

λλλk+1 = λλλk + βk(Ax̄k+1,0 − b), // update dual variable
τ0 = 1
βk+1 = βkω, // increase βk

mk+1 = mkω, //increase # of inner iterations
Remarks: ◦ Corresponds to inexact ALM with explicit inner termination rule.

◦ Attains optimal O(1/k) on the last iterate, with good empirical performance (see slide 17).
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⋆ADMM1

Primal problem with a specific decomposition structure

f⋆ := min
x:=(u,v)

{f(x) := g(u) + h(v) : Bu + Cv = b, u ∈ U , v ∈ V}

▶ X := U × V - nonempty, closed, convex and bounded.
▶ A := [B, C].

The Fenchel dual problem

d⋆ := max
λ∈Rn

{
d(λ) := −g∗U (−BT λ)− h∗V (−CT λ) + ⟨b, λ⟩

}
▶ g∗U and h∗U are the Fenchel conjugate of gU := g + δU and hV := h + δV , resp.

The dual function

d(λ) := min
u∈U

{
g(u) + ⟨BT λ, u⟩

}
︸                                ︷︷                                ︸

d1(λ)

+ min
v∈V

{
h(v) + ⟨CT λ, v⟩

}
︸                               ︷︷                               ︸

d2(λ)

−⟨b, λ⟩.
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⋆Splitting the problem

Standard ADMM
uk+1 := arg min

u∈U

{
g(u) + ⟨λk, Bu⟩+

βk

2
∥Bu + Cvk − b∥2

}
vk+1 := arg min

v∈V

{
h(v) + ⟨λk, Cv⟩+

βk

2
∥Buk+1 + Cv− b∥2

}
λk+1 := λk + βk

(
Buk+1 + Cvk+1 − b

)
.

Here, βk > 0 is a given penalty parameter of the associated augmented problem:

Lβ := g(u) + h(v) + ⟨λ, Bu + Cv− b⟩+
β

2
∥Bu + Cv− b∥2

◦ Note how minimizing over (u, v) together would reduce to the ALM formulation.
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Leveraging GANs for Signal Recovery

Original Noisy 
measurement

DCGAN Prior

ADMM

Reconstruction

Problem formulation
min
w,z

L(w) + R(w) + H(z) subject to w = G(z)

▶ L is convex and smooth
▶ R, H are convex and proximal friendly
▶ G differentiable generative model (non-linear and usually non-convex)
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⋆AL schemes for non-convex problems - challenges

Challenges
◦ More complicated requirements to prove global convergence of generic schemes for (7) (e.g., [31]):
▶ ∃ superset of the feasible-set, where feasibility is ‘good-enough’ (information zone - IZ)
▶ Objective & constraints need to be ‘sufficiently-regular’ within the IZ
▶ The iterates of the AL algorithm need to

▶ Enter the IZ in a finite number of steps.
▶ Stay inside the IZ thereafter.

◦ Literature studying this setting is scarce, and global convergence is not well-understood.
◦ A practically-relevant variation of (7) has recently been analyzed via the inexact AL scheme [32]. ←− up next

Same as before

Set-up
Assume the following template:

min
x∈Rp

f(x) + g(x) s.t. A(x) = b (11)

▶ f : Rp → R is a continuously-differentiable non-convex function that is Lf -smooth.
▶ g : Rp → R is a proximal-friendly convex function.
▶ A : Rp → Rn is a smooth nonlinear operator i.e., ∃LA > 0 s.t.: ∥JA(x)− JA(x)∥ ≤ LA∥x− y∥, where J

is the Jacobian of A.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 37



⋆AL schemes for non-convex problems - challenges

Challenges
◦ More complicated requirements to prove global convergence of generic schemes for (7) (e.g., [31]):
▶ ∃ superset of the feasible-set, where feasibility is ‘good-enough’ (information zone - IZ)
▶ Objective & constraints need to be ‘sufficiently-regular’ within the IZ
▶ The iterates of the AL algorithm need to

▶ Enter the IZ in a finite number of steps.
▶ Stay inside the IZ thereafter.

◦ Literature studying this setting is scarce, and global convergence is not well-understood.
◦ A practically-relevant variation of (7) has recently been analyzed via the inexact AL scheme [32]. ←− up next

Same as before

Set-up
Assume the following template:

min
x∈Rp

f(x) + g(x) s.t. A(x) = b (12)

▶ f : Rp → R is a continuously-differentiable non-convex function that is Lf -smooth.
▶ g : Rp → R is a proximal-friendly convex function.
▶ A : Rp → Rn is a smooth nonlinear operator i.e., ∃LA > 0 s.t.: ∥JA(x)− JA(x)∥ ≤ LA∥x− y∥, where J

is the Jacobian of A.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 37



⋆AL schemes for non-convex problems - optimality conditions

Reformulating (12) in terms of AL
◦ Solving (12) is equivalent to solving the following reformulation:

min
x

max
λ
Lβ(x,λλλ) + g(x)

where for a given β > 0, Lβ(x,λλλ) = f(x) + ⟨A(x)− b,λλλ⟩+ β
2 ∥A(x)− b∥2 - the Augmented Lagrangian.

Optimality conditions of (12)
◦ x ∈ Rp is a first order stationary point (FOS) of (12) if ∃λλλ ∈ Rn s.t.

−∇Lβ(x,λλλ) ∈ ∂g(x) and A(x) = b.

◦ When g = 0 and x is a FOS, x is also a second-order stationary point (SOS) if:

λmin
(
∇xxLβ(x,λλλ)

)
≥ 0

◦ Approximate stationarity is then defined for a given ϵ > 0 as:
▶ FOS: dist

(
−∇Lβ(x,λλλ), ∂g(x)

)
≤ ϵ and ∥A(x)− b∥ ≤ ϵ

▶ SOS: λmin
(
∇xxLβ(x,λλλ)

)
≥ −ϵ
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⋆An Inexact AL scheme for non-convex problems
◦ Main idea of [32]: solve primal problems with increasing accuracy ϵk and carefully choose the dual stepsize σk.

ALM - conceptual (reference) Inexact ALM - nonconvex (IALM)

1. Choose λλλ0 ∈ Rn and β > 0.
2. For k = 0, 1, . . .:

2.a. Solve (4) to get xk+1.

2.b. Update λλλk+1 := λλλk + β
(

Ax∗
β(λλλk)− b

)
.

1. Choose b > 1, λλλ0 ∈ Rn, σ0 > 0, τf , τs > 0.
2. For k = 0, 1, · · · , perform:

2.aa. Set ϵk+1 = 1/βk

2.a. Get xk+1 with a solver of choice, s.t.:

dist(−∇xLβk
(xk+1

, λλλk), ∂g(xk+1)) ≤ ϵk+1, [FOS]
or

λmin(∇xxLβk
(xk+1

, λλλ
k)) ≥ −ϵk+1 [SOS]

2.b. Update
βk+1 = b

k+1

σk+1 = σ0 min
(

1,
∥A(x1)− b∥ log2(2)

∥A(xk+1)− b∥(k + 1) log2(k + 2)

)
λλλ

k+1 = λλλ
k + σk+1

(
A(xk+1)− b

)
2.c. Stop if

dist(−∇xLβk
(xk+1

, λλλk), ∂g(xk+1))

+ ∥A(xk+1)− b∥ ≤ τf [FOS]

and if also λmin(∇xxLβk
(xk+1

, λλλ
k)) ≥ −ϵk+1 [SOS]
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⋆Convergence of the Inexact AL for non-convex problems

A key assumption
◦ For convex AL schemes we rely on Slater’s condition to prove convergence.
◦ We need a similar kind of assumption for our non-convex problem, called regularity condition2: for some
ν > 0, assume

ν∥A(xk)− b∥ ≤ dist
(
−JA(xk)⊤(A(xk)− b),

∂g(xk)
βk−1

)
, ∀k (13)

◦ Informally, condition (13) ensures that step 2.a of IALM improves feasibility as βk grows.

Theorem [32] (Simplified)
Under the framework (12) and assumption (13), IALM reaches
▶ FOS with Õ(ϵ3) complexity and
▶ SOS with Õ(ϵ5) complexity,

where Õ hides logarithmic factors3.
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⋆Example: k-means clustering
◦ Model free k-means clustering SDP:

min
X∈Rp×p

{
Tr(CX) : X1 = 1, X ≥ 0, X ∈ Sp

+, Tr (X) = α

}
◦ Nonconvex formulation:

min
u∈Rp

{
Tr(Cuu∗) : uu∗1 = 1, u ≥ 0, ∥u∥F ≤

√
α

}
,
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⋆Example: DARN with GANs (MNIST)
◦ De-adversarial-noise with generative adversarial networks:

min
w,z
{∥w − (w0 + η) ∥⋆ : w = G(z)}

iAL

Figure: ℓ∞ error per iteration

iAL

Figure: misclassification error per iteration
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⋆Example: Basis Pursuit
◦ Convex formulation:

min
x∈Rp

{
∥x∥1 : Ax = b

}
◦ Non-convex formulation:

change of variables

x := x+ − x−

x+ := u◦21 , x− := u◦22 and u := [u⊤1 , u⊤2 ]⊤

Ā := [A,−A]
−→ min

u∈Rp

{
∥u∥2

2 : Āu◦2 = b
}
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Figure 2: Basis Pursuit

the standard Gaussian distribution. Then the measurement vector is created as b = Bz + ✏, where ✏
is the noise vector with entries drawn independently from the zero-mean Gaussian distribution with
variance �2 = 10�6.

The results are compiled in Figure 2. Clearly, the performance of Algorithm 1 with a second-order
solver for BP is comparable to the rest. It is, indeed, interesting to see that these type of nonconvex
relaxations gives the solution of convex one and first order methods succeed.

Discussion: The true potential of our reformulation is in dealing with more structured norms
rather than `1, where computing the proximal operator is often intractable. One such case is the
latent group lasso norm [46], defined as

kzk⌦ =

IX

i=1

kz⌦ik,

where {⌦i}I
i=1 are (not necessarily disjoint) index sets of {1, · · · , d}. Although not studied here, we

believe that the nonconvex framework presented in this paper can serve to solve more complicated
problems, such as the latent group lasso. We leave this research direction for future work.

Condition verification: In the sequel, we verify that Theorem 4.1 indeed applies to (1) with
the above f, A, g. Note that

DA(x) = 2Bdiag(x), (61)

where diag(x) 2 R2d⇥2d is the diagonal matrix formed by x. The left-hand side of (18) then reads as

dist

✓
�DA(xk)

>A(xk),
@g(xk)

�k�1

◆

= dist
⇣
�DA(xk)

>A(xk), {0}
⌘

(g ⌘ 0)

= kDA(xk)
>A(xk)k

= 2kdiag(xk)B
>
(Bx�2

k � b)k. (see (61)) (62)

To bound the last line above, let x⇤ be a solution of (1) and note that Bx�2
⇤ = b by definition.

Let also zk, z⇤ 2 Rd denote the vectors corresponding to xk, x⇤. Corresponding to xk, also define

23
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⋆Stochastic HCGM for almost sure constraints

Problem formulation
f⋆ := min

x∈X
f(x) := E [f(x, ξ)] , A(ξ)x ∈ b(ξ) a. s.,

▶ f(x, ξ) : Rd → R - convex, Lf -Lipschitz gradient

▶ X ⊂ Rd - convex, compact

▶ A(ξ) ∈ Rm×d - matrix-valued random variable, b(ξ) ⊂ Rm - random convex set

Applications
◦ Target application: solving large scale SDPs

◦ Stochastic template =⇒ formulation of stochastic first order methods =⇒ can handle large problems, in
both dimension and constraints

◦ Two examples relevant to ML:
▶ K-Means clustering SDP [29, 24]
▶ Sparsest Cut SDP [1, 8]
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⋆Main idea

min
x∈X

f(x) := E [f(x, ξ)] , A(ξ)x ∈ b(ξ) a. s.~w�
min
x∈X

F (x) := E
[
f(x, ξ) + δb(ξ)(A(ξ)x)

]x y
min
x∈X

Fβ(x) := E
[
f(x, ξ) + 1

2β
dist(A(ξ)x, b(ξ))2

]
◦ Optimize increasingly accurate approxiamtions Fβ(x), as β → 0

◦ Control the exploding variance using variance reduction

δb(ξ)(z)
smoothing
−−−−−−→

β>0
1

2β
dist(z, b(ξ))2β → 0

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 37



⋆First method: H-1SFW

Algorithm - H-1SFW(x1 ∈ X , β0 > 0, P (ξ) )
for k = 1, 2, . . . do

Set ρk, γk, βk, sample ξk ∼ P (ξ) ←− γk ∈ O(1/k), βk ∈ O(1/
√

k)

vk = (1− ρk)vk−1 + ρk∇xFβk
(xk, ξk) ←− variance reduction on gradient estimator vk with single sample ξk [25]

xk+1 = fw_step(xk, vk, γk) ←− the usual lmoX (vk) and convex combination update

end for

Convergence H-1SFW
If E [∇f(x, ξ)] = ∇f(x), E

[
∥∇f(x, ξ)−∇f(x) ∥2

]
≤ σ2

f < +∞, supξ∥A(ξ) ∥2 < +∞ and Slater’s
condition holds, then for all k:

E [|f(xk, ξ)− f(x∗)|] ∈ O
(

k−1/6
)

,
√
E [dist(A(ξ)xk, b(ξ))2] ∈ O

(
k−1/6

)
.

The oracle complexity for ϵ-accuracy is: O
(

ϵ−6
)

stochastic first order oracles (#sfo) and O
(

ϵ−6
)

linear
minimization oracles (#lmo).
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⋆Second method: H-SPIDER-FW
Algorithm - H-SPIDER-FW(x̄1 ∈ X , β0 > 0, P (ξ))

for t = 1, 2, . . . do
Set xt,1 = x̄t; Kt = 2t; γt,1; βt,1;, sample ξQt

i.i.d∼ P (ξ) ←− Set minibatch size Kt

vt,1 = ∇̃Fβt,1 (xt,1, ξQt ) ←− Compute ‘high-accuracy’ averaged stochastic gradient

xt,2 = fw_step(xt,1, vt,1, γt,1)
for k = 2, . . . , Kt do

Set γt,k; βt,k, sample ξSt,k

i.i.d∼ P (ξ) ←− Decrease β ∈ O
(

1/

√
Kt + k

)
, set γ ∈ O (1/(Kt + k))

vt,k = vt,k−1 − ∇̃Fβt,k−1 (xt,k−1, ξSt,k
) + ∇̃Fβt,k

(xt,k, ξSt,k
) ←− var. red. on vk using minibatch [44]

xt,k+1 = fw_step(xt,k, vt,k, γt,k) ←− the usual lmoX (vk) and convex combination update

end for
x̄t+1 = xt,Kt+1

end for

Convergence H-SPIDER-FW
Denote by n := Kt + k the global iteration #. Under identical assumptions as H-1SFW, for all k it holds that:

E
[
|f(xt,k, ξ)− f(x∗)|

]
∈ O

(
n−1/2

)
,

√
E
[
dist(A(ξ)xt,k, b(ξ))2

]
∈ O

(
n−1/2

)
.

The oracle complexity for ϵ-accuracy is: O
(

ϵ−2
)

#sfo and O
(

ϵ−4
)

#lmo.
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∗Experiments: Uniform Sparsest Cut SDP

◦ Approximation algorithm [1] is based on SDP relaxation: dimension O
(

d2
)

, constraints O
(

d3
)

min
X∈X

⟨L, X⟩

subject to dTr(X)− Tr(1d×dX) =
d2

2
Xi,j + Xj,k −Xi,k −Xj,j ≤ 0 ∀ i, j, k ∈ V

◦ From left to right (columns): 25 nodes, ∼ 7e3 constraints; 55 nodes, ∼ 8e4 constraints; 102 nodes, ∼ 5e5 constraints. Graphs from [38]
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⋆Towards scalable semidefinite programming

The road to storage optimality
▶ SDPs often have a low rank solutions =⇒ instead of storing Xk∈{1...T} at every iteration, use a

compressed representation Sk given by a matrix sketching technique.
▶ Formally - Consider a PSD matrix X ∈ Rp×p and let R > 0 be a parameter that controls the storage cost

of a sketch (and its accuracy). Construct a so-called Nyström sketch by drawing a fixed standard normal
matrix Ω ∈ Rp×R, and produce a sketch S of X as follows:

S = XΩ ∈ Rp×R

▶ Reconstruction - Given Ω and S, we recover a rank-R approximation X̂ of X by

X̂ := S(ΩT S)†ST with EΩ
[
∥X− X̂∥∗

]
≤
(

1 +
r

R + r + 1

)
∥X− [X]r∥∗ ∀r < R (14)

where ∥ · ∥∗ denotes the nuclear norm and [·]r is an r-truncated singular-value decomposition of the matrix,
which is a best rank-r approximation with respect to every unitarily-invariant norm.

▶ =⇒ We can reduce the storage from Θ(p2) to Θ(rp)!
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⋆The algorithm - SketchyCGAL
▶ The Augmented Lagrangian of (10) is

Lβ(X,λλλ) = Tr(CX)+⟨λλλ, AX−b⟩+
β

2
∥AX−b∥2, ∇XLβ(X,λλλ) = C+AT (λλλk+βk(AXk−b))

▶ The constraint set of (10) is X = {X ∈ Rp×p : X ⪰ 0, Tr(X) = α} and lmoX (Y) = αvvT where v is the
eigenvector corresponding to the minimum eigenvalue of Y.

▶ The algorithm performs linear updates directly on zk := AXk ∈ Rn =⇒ the iterates Xk become implicit!

CGAL SketchyCGAL (simplified)4

1. Choose X0 = 0p×p ∈ X , λλλ0 = 0n, β0 > 0, T > 0.

2. For k = 0, 1, . . . T :

(ξ, vk) := ApproxMinEvec(C + AT (λλλ
k + βk(AXk − b)))

Xk+1 := (1− γk)Xk + γk(αvkv
T
k )

λλλ
k+1 := λλλ

k + ωk(AXk+1 − b)

where γk := 2
k+2 , and βk :=

√
k+2

β0
.

1. Choose λλλ0 = 0n, z0 = 0n, S = 0p×R,
β0 > 0, T > 0, R > 0, Ω = randn(p, R).

2. For k = 0, 1, . . . T :

(ξ, vk) := ApproxMinEvec(C + AT (λλλ
k + βk(zk − b)))

zk+1 := (1− γk)zk + γkA(αvkv
T
k )

λλλ
k+1 := λλλ

k + wk(zk+1 − b)

Sk+1 := (1− γk)Sk + γkvk(v
T
k Ω)←− update the sketch

where γk := 2
k+1 , and βk :=

√
k+1

β0
.

3. Recover X̂T from ST using (14)
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⋆SketchyCGAL: Convergence
◦ Observations:
▶ The iterate update procedure of SketchyCGAL is the same as that of CGAL, thoughXk are implicit:

zk+1 = (1− γk)zk + γkA(αvvT )

by def. of zk→ = A
(

(1− γk)Xk + γkαvvT
)

= AXk+1

▶ The same computation holds for the sketch updates, where Sk+1 = (1− γk)Sk + γkvvT Ω = Xk+1Ω.
▶ =⇒ the variables in SketchyCGAL track the variables of some invocation of CGAL and inherit their

behavior.

Theorem [46]
Assume problem (10) satisfies strong duality, and let Ψ∗ be its solution set. Then

1. The implicit iterates converge to the solution set Ψ∗ at the same rate as CGAL.
2. For each r < R, the iterates X̂k computed by SketchyCGAL satisfy

lim sup
k→∞

EΩdist∗(X̂k, Ψ∗) ≤ (1 +
r

R− r − 1
) max

Y∈Ψ∗
∥Y− [Y]r∥∗

Here, dist∗ is the nuclear-norm distance between a matrix and a set of matrices.
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⋆Example: Convex phase retrieval

Problem formulation

f⋆ := min
X∈Cp×p

{
Tr(X) : A(X) = b, ∥X∥∗ ≤ κ, X ⪰ 0

}
. (15)

▶ This formulation is a convex and semidefinite relaxation of the original, much more difficult Phase Retrieval
problem of recovering x♮ ∈ Cp from the measurements

b ∈ Rn, bi =
∣∣⟨ai, x♮⟩

∣∣2 + ωi,

where ai ∈ Cp are known measurement vectors, ωi models noise. Details can be found in [5, 42].
▶ This type of problem arises, for example, in X-ray crystallography and astronomical imaging.
▶ Note that the problem is constrained to X := {X ∈ Rp×p : X ⪰ 0, ∥X∥∗ ≤ κ}, which is convex and

compact.
▶ X has an expensive prox operator, but an efficient lmo.
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⋆Example: Convex Phase Retrieval memory usage

f⋆ := min
X∈Cp×p

{
Tr(X) : A(X) = b, ∥X∥∗ ≤ κ, X ⪰ 0

}
.
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⋆Example: Max-Cut SDP

max
X∈Rp×p

{1
4

Tr (LX) : diag(X) = 1, X ∈ Sp
+, Tr (X) = p

}
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Appendix A1: Generalization of HCGM for Ax − b ∈ K (self-study)

Quadratic penalty strategy for min{f(x) : Ax − b ∈ K, x ∈ X }
Define the distance function

dist(y,K) := min
z∈K
∥y− z∥.

Quadratic penalty takes the form

min
x∈Rp

{
f(x) +

β

2
dist2(Ax− b,K) : x ∈ X

}
Gradient of dist2(z,K) is

∇dist2(y,K) = 2(y− projK(y)).

Hence, HCGM can be generalized by changing lmo step as

x̂k := lmoX (∇f(xk) + βkAT (Axk − b− projK(Axk − b))).

Same guarantees hold, by replacing ∥Ax− b∥ by dist(Ax− b,K).
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Appendix A2: Generalization of CGAL for Ax − b ∈ K (self-study)

Augmented Lagrangian for min{f(x) : Ax − b ∈ K, x ∈ X }
Similarly, CGAL can be extended for Ax− b ∈ K constraint, by replacing
▶ lmo step as

x̂k := lmoX
(
∇f(xk) + AT λk + βkAT

(
Axk − b− projK(Axk − b + β−1

k
λk)
))

▶ and dual update step as

λk+1 := λk + ωk

(
Axk+1 − b + projK(Axk+1 − b + β−1

k+1λk)
)

Same guarantees hold, by replacing ∥Ax− b∥ by dist(Ax− b,K).
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