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Recall: Swiss army knife of convex formulations

A primal problem prototype
f* := min {f(x):AxbeIC, XEX},

f is proper, closed and convex

X and K are nonempty, closed convex sets

A € R"*P and b € R™ are known

An optimal solution x* satisfies f(x*) = f*, Ax* —b € K and x* € X

Broad context for the problem template:

> Many real-world applications (e.g., linear inverse problems) can be directly formulated as (3).

> Often times, computational limitations require the translation of existing unconstrained problems (e.g.,
composite convex minimization, consensus optimization, and convex splitting) into constrained ones (3).

> Many standard convex optimization formulations naturally fall under (3), such as linear programming,
convex quadratic programming, second order cone programming, semidefinite programming and geometric
programming.
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Recall: Swiss army knife of convex formulations

A primal problem prototype

f* := min {f(x):Ax—belC, XEX},
f is proper, closed and convex

A € R"XP and b € R" are known

>

> X and K are nonempty, closed convex sets

>

> An optimal solution x* to (3) satisfies f(x*) = f*, Ax* —b € K and x* € X

A simplified template
f* := min {f(x):Ax:b,}7 (1)

> f is proper, closed and convex
> A € R"*P and b € R™ are known
> An optimal solution x* to (1) satisfies f(x*) = f*, Ax* = b.
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Recall: Finding the solutions in affine constrained convex minimization

A performance metric: Time-to-reach ¢

time-to-reach € = number of iterations to reach ¢ X per iteration time

A key issue: Number of iterations to reach ¢

The notion of e-accuracy is elusive in constrained optimization!

Our definition of e-accurate solutions [36]
Given a numerical tolerance € > 0, a point x} € RP is called an e-solution of (1) if

f(x¥) — f* < € (objective residual),
[|[Ax* —b|| < e (feasibility gap),

> When x* is unique, we can also obtain ||x* — x*|| < e (iterate residual).

Remark: o € can be different for the objective, feasibility gap, or the iterate residual.

ILHEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 32



Plenty of primal-dual methods for solving (1):

o Penalty and augmented Lagrangian methods:
> Exact penalty method [3].
> Quadratic penalty method [4]. See Lecture 13
> Augmented Lagrangian method [23, 30]. This lecture

o Variants of the Arrow-Hurwitz’s method:

> Proximal-based decomposition (Chen-Teboulle's algorithm) [9].
> Primal-dual Hybrid Gradient (PDHG) method and its variants [15, 18].
> Chambolle-Pock’s algorithm [7], and its variants, e.g., He-Yuan's variant [20]. See supp. lecture

o Splitting techniques from monotone inclusions:
> Primal-dual splitting algorithms [2, 10, 37, 11, 12].
> Three-operator splitting [13]. See supp. lecture

o Dual splitting techniques:
> Alternating minimization algorithms (AMA) [16, 37].
> Alternating direction methods of multipliers (ADMM) [14, 22].
> Accelerated variants of AMA and ADMM [12, 19].
> Preconditioned ADMM, Linearized ADMM and inexact Uzawa algorithms [7, 27].

o Second-order decomposition methods:
> Dual (quasi) Newton methods [39].
> Smoothing decomposition methods via barriers functions [26, 34].
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Recall: Quadratic penalty & Lagrangian formulations

o The problem: f* := mingerp {f(x) tAx = b}

o Reformulations:

Quadratic Penalty ‘ The Lagrangian
f* = f(x*)+ gHAx* —b|?, VB8>0. f* = f(x*) + maxycgn (A, AX* — b).
Fa(x) = f(x) + 5| Ax — b]|2. Fx(x) = f(x) + maxyezn (A, Ax — b)

£ + 0, if Ax = b,
= f(x
400, if Ax # b.

i Ax=bl= 1 i 5||Ax — b2 i :Ax=bl= mi -
min {f(x): Ax =b} Bgr;o;glﬂg{f(XH ZllAx = bl } | min {f(x): Ax =b}= min max {f(x) + (A Ax—b)}
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Recall: Quadratic penalty & Lagrangian methods

o The problem: f* := minyxecgp {f(x) P Ax = b}

o The methods:

Quadratic penalty method (QP) | Dual subgradient method (DSGM)
1. Choose x° € RP and 3¢ > 0. 1. Choose A° € R™.
2. Fork=0,1,---, perform: 2. Fork=0,1,---, perform:
sy kY . : ky o k
2.a. x" := arg min {f(x) + %HAK — b”z}, 2.a. x"(A%) := argfeuRr;J {E(X7A )= f(x) + (A7, Ax — b)}
xERP ) .
2.b. Update Bri1 > Br. 2.b. Compute the subgradient Vd(A*) := Ax*(A*) — b.
2.c. Update | A*1! = A% + ——vd(\") |,
p T (A%
where R is a given constant.
o Drawbacks: o Drawbacks:
» x* := arg min { f(x) + &HAX _b|? > d(X) ;5 not necessarily smooth :> slower rates.
xERP 2 > 2" (A") is not necessarily well-defined for all A.
becomes ill-conditioned as B — oo. » Finding R is not always straightforward.
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Unifying the Lagrangian and the penalty approaches

o Quadratic penalty: Fg(x) = f(x) + §||Ax —b||?
+
o The Lagrangian: L(x,A) = f(x)+ (X Ax—Db)

4

o Augmented Lagrangian (AL): Lg(x,A) = f(x) + (A\,Ax —b) + gHAx - b||?

Properties of AL

o The dual function is concave and %—smooth:

45 () = min {769 + (%, Ax— ) + 2] Ax— |},

’ Can apply gradient or accelerated gradient methods in the dual! ‘

o B does not need to increase until infinity.

’ No more ill-conditioned subproblems!
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Example: Behavior of the AL dual function

Consider a constrained convex problem:

: 2 2
min x):=x7+x5¢,
x€ER3 {f( ) 1 2}
s.t. 2r3 —x1 —w2 =1,
x € X :=[-2,2] x [-2,2] x [0,2].

The AL dual function is concave, smooth and defined as

dg(A) = H.IEI‘;I% {x% + a2+ A(2z3 —x1 — a2 — 1) + (8/2)]|223 — 21 — 22 — lHﬁ}

-4 -2 0 2 4 6 8
A-axis
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Example: Behavior of the AL dual function

Consider a constrained convex problem:
; 2 2
min x):=x7+x
min {f(x) =22 +23},
s.t. 2x3 —x1 —x2 =1,
x € X :=[-2,2] x [-2,2] x [0,2].

The AL dual function is concave, smooth and defined as
dg(X) := min {x% + a2+ A(2z3 —x1 — a2 — 1) + (8/2)]|223 — 21 — 22 — lHﬁ}
xeX

<

'S Sast

2}
s 2 o ) o g

d(\) = min{z} + x5 + M(223 — 21 — 22 — 1)}
zeXN
14 : : . . ; L L a0 . . . . . .
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Augmented dual problem

o Dual problem:

d* = d(\) = mi A, Ax —Db) ;. 2
max {d3) = min 160+ (1, Ax—b) } @

o Augmented dual problem:
@3 = o {450 = min 760 + O, Ax )+ S ax b}, 550 3)
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Augmented dual problem

o Dual problem:

d* = d(\) = mi A, Ax —Db) ;. 2
max {d3) = min £+ (1 Ax~ b) } @

o Augmented dual problem:
@3 = o {450 = min 760 + O, Ax )+ S ax b}, 550 3)

Relation between augmented dual problem and dual problem

If a primal solution exists and Slater’s condition holds, we have
> The dual solution set of (3) coincides with the one of the dual problem (2).
> f*:d*:d; for any 8 > 0.

o Recall: The augmented dual problem (3) is smooth and concave

= Gradient and accelerated gradient methods can be applied to solve it.
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Augmented Lagrangian method: The ideal algorithm

ds(A) = min {f(x) + (0 Ax—b) + §||Ax7 bH2}

x5(A) € arg:rel%&r; {f(x) + (XA, Ax —b) + §||Axf sz}

Augmented Lagrangian method (ALM)

1. Choose A% € R” and 8 > 0.
2. Fork=0,1,---:
2.a. Solve (4).

2.b. Compute Vdg(A*) := Axg()\k) —b.
2.c. Update At .= AF + BVdg(AF).
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Augmented Lagrangian method: The ideal algorithm

as) = min {769 + O Ax  b) + 2 Ax - b|*} @)

xj5(3) € arg min {f(x) + (O Ax —b) + §||Ax7 bHQ}

Accelerated ALM (AALM)

Augmented Lagrangian method (ALM)

1. Choose A° € R™ and 3 > 0. 1. Choose A2 € R™ and 8 > 0. Set A% = A0 and to:=1
2. Fork=0,1,---: 2. Fork=0,1,---, perform:
2.a. Solve (4). 2.a. Solve (4).
2.b. Compute Vds(AF) := Ax3(A*) —b. 2.b. Compute Vds(A") := Axy(A") — b.
2.c. Update A"+ = A% 4 fVdg(AF). 2.c. Update AE+1 := X, + BVds(A"),
Tk+1 ' ot '
XThm AR (8 — 1) /b ) AFFE — AF),
ty1i= (1 + /1 +4t2)/2.
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Convergence of ALM and AALM

Theorem (Convergence [21])
o Let {\F} be the sequence generated by ALM. Then

[[A® — XI5

") < 28(k+1)

o Let {\*} be the sequence generated by AALM. Then

20° - XI5

* k
—dsA) s B(k + 1)2

Remarks: o Guarantees are given for the dual problem and not for the primal!

o Approximate solution for primal via averaging: x¢ = % Z (/\’ 45]

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 32



Drawbacks and enhancements

o At each step, ALM solves

x5(A) = arg;rel]iRnp {Eg(x,)\) = f(x) + (XA, Ax —b) + §||Ax - b||2} . (5)
Drawbacks

1. Drawback 1: The quadratic term ||Ax — b||2 in (5) destroys the separability as well as the tractable
proximity of f.
2. Drawback 2: Solving (5) exactly is impractical.
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Drawbacks and enhancements

o At each step, ALM solves

x5(A) = arg){rel]ilg) {Lg(x,)\) = f(x) + (XA, Ax —b) + gHAx - b||2} . (5)
Drawbacks

1. Drawback 1: The quadratic term ||Ax — b||2 in (5) destroys the separability as well as the tractable
proximity of f.
2. Drawback 2: Solving (5) exactly is impractical.

Enhancements

1. Allow inexactness of solving (5), while guaranteeing the same convergence rate.

2. Linearize the term ||[Ax — b||? in the same way we did for Quadratic Penalty formulations.
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An inexact approach for subproblems of ALM

o Primal subproblem as a composite optimization problem:

x5 (A) = arg min {Eﬁ(x,)\) = f(x) + (A, Ax — b) —Q—é |Ax — b]? }
xERP — 2~ —

=:h(x) =:g(x)
proximally
tractable

= can use accelerated proximal methods (e.g. FISTA) to solve this up to some accuracy.

Conceptual inexact augmented Lagrangian method:

1. Choose AU € R™, B > 0 and a decreasing sequence ¢, > 0, Vk.
2. For k=0,1,---, perform:

2.b. Update A1 := AF 4 B(Ax( (AF) — b).

2.a. Solve (6) with FISTA until Lg(x3f (A\¥),AF) < Lg(x5(AF),AF) + €.

Remarks: o Conceptual since xg(/\k) is unknown.

o Solve (6) for increasing (explicit) number of iterations my > 0.

o See advanced material at the end of the lecture for DL-ASGARD method.
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Linearized Augmented Lagrangian method (LALM)

1. Majorize the augmented Lagrangian:
x#*1 .= arg min {f(x) + (A, Ax — b) + équ — b||2+}|\x —x"|2 } .
xEX ’ 2 2 Qr
2. Using the same calculation as in Lecture 12, when Q) = oI — BATA > 0 and oy, > B||A||%, we get:
1
k+1 _ k T k k
x = prox_i_ (x ——A' (NP+pB(AXx"—Db )
oy (- AT (o (at - ))

3. Picking a, = B||A||2, we obtain the following method:

Accelerated LALM (Alg.1 + parameters of eq. (30) in [40] )
1. Choose x? € R, AU € R™ and 3 > 0.
2. Fork=0,1,...:

1
k1, ( B T (\F k_ )
X I= prox_ 1 X A + B (Ax b ,
EIFYERS BllAI? ( ( )

AR = AR 4 BAxFTT —b).
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Convergence of Accelerated LALM

Theorem (Convergence result of Theorem 2.5 in [40])
Let B > 0 and define x* = % Ele x*. Then, the iterates of LALM satisfy:

max { (14 X172, 41 2

laE—bll< o [ Dl + { ; }
| max { (14 X172, 41 2
18— s < & [ Bt e 4 22 5 )

Remarks: o Guarantees are for the primal and in fact optimal [28].
o No need to solve difficult subproblems at each iteration.

o Guarantees are for x*, and not x*.
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Example: Basis pursuit

Problem: Basis pursuit

Given A € R"*P and b € R", solve

> Applications in de-noising, data compression.

> Experiment: A is a row-normalized standard Gaussian

10°

Noiseless case: b := Ax*

100 \“.k
3

F*|

|F(x)

10-10

-3 LALM-last
-% LALM-avg
> inexact ALM

Lok S 2 T

>4

108 -D> inexact ALM
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F* := mi :Ax=b;.
min {lxll: Ax = b}

matrix, x* is a k-sparse

Noisy case: b :

randomly generated vector.

Ax* +
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Nonconvex optimization problems with nonlinear constraints
Problem template
7= min {169 + (A () |,
xXERP

f:RP — R is a proper continuously-differentiable & nonconvex

>

> g:R™ — R is proper, lower-semicontinuous

> A :RP — R"™ is a nonlinear operator and b € R™
>

An optimal solution x* to (7) satisfies f(x*) = f*, A(x*) =b.
Example: Blind Image Deconvolution

o One of the most challenging problems in imaging sciences

> Goal: Recover an image X and an unknown blurring transformation T from a blurred image B € RP*4.

> Formally: ) 1 .
min JA(X,T)+ =||T*«X—-BJ* ¢,

TER"*® 2

XEeRP* 4

where h : RP*X? X R"*5R — (—o0, 00| is a non-convex & possibly non-smooth regularizer, and * is an
appropriate convolution operator.

Remark: o Advanced material at the end of the lecture covers inexact Augmented Lagrangian for (7).
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Recall the prototype problem

A primal problem prototype

\4

v

o Standard convex optimization formulations in (8):

>

>
>
>
>

f is a proper, closed and convex function.
A € R"XP and b € R™ are known.

X is nonempty, closed and convex.

(®)

We further assume X is a bounded set! This assumption is motivated by practical applications.

linear programming

quadratic programming

convex quadratic programming
second order cone programming

semidefinite programming
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Cone programming

Semidefinite programming

Second order cone progr

Quadratically constrained QP

Quadratic progr

Linear progra
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The SDP formulation

The standard form of an SDP

min  (C,X)
Xex

s.t. (A, Xy =0b;, fori=1,...m
> X = {X € RP*P : X > 0} - the positive semidefinite cone.
> C € RPXP, A; € RPXP are symmetric and b; € R, and are given. By definition, (A;, X) = Tr(ATX).

> Any SDP can be written in standard form.

Trace-constrained SDPs
Consider the following SDP formulation:

PN 9

s.t. (A, X) =b;, fori=1,...m
(I,X) :=Tr(X) = a € Ry «— the trace constraint
> Observe that (9) belongs to the template (8).
> This formulation is of broad interest [46]. In the sequel, SDP relaxations for non-convex problems.
> Problem (9) can be large in practice, making Interior Point Methods inefficient.
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Example: Finding maximum-weight cut of a graph
o Goal: Given an undirected graph G = (V, E) with a set of weights ¢: E — Ry

. 1 .
;reuzr}) {5 Z cij(1 —mizy)  x; € {—1, +1}} (Weighted max-cut)
{ijler
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Example: Finding maximum-weight cut of a graph
o Goal: Given an undirected graph G = (V, E) with a set of weights ¢: E — Ry

. 1 .
;reuzr}) {5 Z cij(1 —mizy)  x; € {—1, +1}} (Weighted max-cut)
{ijler

o The SDP approach: Lift & relax

> lift as a matrix optimization problem X = xx*:

1
min {5 E cij (1 —Xy5) s diag(X) =1, X = 0, X* =X, rank(X) = 1}
XERPXP

{i,j}eE

> relax the non-convex rank constraint

1
min { - E Cij(l — Xz]) : dlag(X) = 17 X t 0, X* = X} (Max—cut SDP)
Xerpxp (2 ~————
{i.j}eE A(X)=b

tr(CX)
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Example: Finding maximum-weight cut of a graph
o Goal: Given an undirected graph G = (V, E) with a set of weights ¢: E — Ry

. 1 .
;reuzr}) {5 Z cij(1 —mizy)  x; € {—1, +1}} (Weighted max-cut)
{ijler

o The SDP approach: Lift & relax

> lift as a matrix optimization problem X = xx*:

1
min {5 E cij (1 —Xy5) s diag(X) =1, X = 0, X* =X, rank(X) = 1}
XERPXP

{i,j}eE

> relax the non-convex rank constraint

1
min { - E Cij(l — Xz]) : dlag(X) = 17 X t 0, X* = X} (Max—cut SDP)
Xerpxp (2 ~————
{i.j}eE A(X)=b

tr(CX)
o Always delivers solutions 0.87856 times the optimal value after randomized rounding
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Example: Clustering with minimal sum-of-squares

o Goal: Given data points s1,52,...,5p € R, assign them into £ disjoint clusters.

> Minimize the sum of squared distances of all points to their cluster centers

mln{zzzuusz —w;(2)]*: ZZ ij =1 ZZ” >1,Z;; € {0, 1}} (MinSumClu.)

Jj=1 i=1

1 if s; €5th cluster
where Z € {0, 1}P** is the assignment matrix with Z;; = i ej_ .
0 otherwise

where w1, ..., wy are cluster centers with w;(z) = (Zle Zijsi) (Zle Zij)71
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Example: Clustering with minimal sum-of-squares

o Goal: Given data points s1,52,...,5p € R, assign them into £ disjoint clusters.
> Minimize the sum of squared distances of all points to their cluster centers

mm{zzzu\\sz w;(Z) ||? : Zz”_l ZZ”>1 Zi; € {0, 1}}

Jj=1 i=1

1 if s; €5th cluster

where Z € {0, 1}P** is the assignment matrix with Z;; = .
0 otherwise

-1
where w1, ..., wy are cluster centers with w;(z) = (Zle Zijsi) (Zle Zij)
o The SDP approach: Lift & relax (details omitted)

min {tr(CX) (X >0, X1=1, X =0, X* =X, tr(X) = k:}
XERPXP

> where X = Z(Z*Z)"1Z* and ¢;; = || s; — s; ||
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Example: Clustering with minimal sum-of-squares

o Goal: Given data points s1,52,...,5p € R, assign them into £ disjoint clusters.

> Minimize the sum of squared distances of all points to their cluster centers

mm{zzzu\\sz w;(Z) ||? : Zz”_l ZZ”>1 Zi; € {0, 1}}

Jj=1 i=1

1 if s; €5th cluster

where Z € {0, 1}P** is the assignment matrix with Z;; = .
0 otherwise

-1
where w1, ..., wy are cluster centers with w;(z) = (Zle Zijsi) (Zle Zij)
o The SDP approach: Lift & relax (details omitted)

min {tr(CX) (X >0, X1=1, X =0, X* =X, tr(X) = k:}
X ERPXP
> where X = Z(Z*Z)"'Z* and c;; = || s; — s ||?
ij i 55
o Improved guarantees over LP relaxations
J.Peng and Y.Wei, Approximating K-means-type clustering via semidefinite programming, 2005
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Example: Neural networks

o Goal: Approximate the £oo-Lipschitz constant L;, of 1-layer ReLU network
hx(a) := x3 o(X1a + x1)

> applications to verification, robustness against adversarial examples, generalization...
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Example: Neural networks

o Goal: Approximate the £oo-Lipschitz constant L;, of 1-layer ReLU network
_ T
hx(a) := x5 o(X1a + x1)
> applications to verification, robustness against adversarial examples, generalization...

o The SDP approach: Lift & relax (details omitted)

1
min {tr(CX) : X > 0,diag(X) =1,X =X"}

Ly <Lj:=—=
4 Xerrxp
0 0 17XT Diag(x2)
C:=— 0 0 XT Diag(xz)
Diag(x2)TX11 Diag(x2)"X1 0
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Example: Neural networks

o Goal: Approximate the £oo-Lipschitz constant L;, of 1-layer ReLU network
_ T
hx(a) := x5 o(X1a + x1)
> applications to verification, robustness against adversarial examples, generalization...

o The SDP approach: Lift & relax (details omitted)

1
min {tr(CX) : X > 0,diag(X) =1,X =X"}

Ly <Lj:=—=
4 Xerrxp
0 0 17XT Diag(x2)
C:=— 0 XT Diag(xz)
Diag(x2)TX11 Diag(x2)"X1 0

o An open research area

Ragunathan et al. SDP relaxations for certifying robustness agains adversarial examples. ICLR2017
F. Latorre, P. Rolland, and V. Cevher. Lipschitz constant estimation of neural networks via sparse polynomial optimization. ICLR 2020.
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CGM with quadratic penalty
Classical CGM does not apply to (3)

> lmo of the intersection of {x : Ax = b} and X is difficult to compute.

> |dea: Combine the CGM framework with the quadratic penalty approach.
Quadratic penalty strategy

o A quadratic penalty formulation: fa(x)

. B 2 }
—||Ax —b|5:xe X
min { 160 + FlAx — bl : x

> B> 0 is the penalty parameter and fg(x) is the penalized objective function.
> Note that fz(x) is convex and smooth with parameter L + 3||A||%.

o A simple strategy [43] = Take a CGM step on fz and increase 3 progressively

Homotopy conditional gradient method (HCGM)

1. Choose xY € X, and By > 0.

2. For k=0,1,...:
** = lmox (Vf(x") + BLAT (Ax* — b)).
xktl._ (1— %)xk + ,ykf(k7

where v, := %H and B := Bo Vk + 2.
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Convergence guarantees of HCGM

Recall Lagrange duality
L(x,) i= f(x) + (A, Ax — b)
max min £(x,A) <  minmax £(x,A)
A xEX xXeEX A
dual problem primal problem

> X is called the Lagrange multiplier.
> The function d(\) is called the dual function, and it is concave!
> The optimal dual objective value is d* = d(A\*).

(Duality) holds with equality under weak assumptions =- (Strong duality).

Theorem (Simplified[43])

Assume that strong duality holds. Then, the iterates of HCGM satisfy
If(F) = 1] € O(k=1/2)
|[Ax* —b|| € O®F1/2).

* For an extension of HCGM to the case Ax — b € K, please see Appendix A1.

**Advanced material at the end of the lecture covers stochastic variants of HCGM.
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Augmented Lagrangian CGM: CGAL

Augmented Lagrangian approach

o Augmented problem formulation:
. B 2. Ay —
min < f(x) + =||Ax —bl|j5: Ax=b, x € X
XERP 2
> Write down the Lagrangian:
£5(x,X) = 709 + O, Ax —b) + 2 ax b
> Note that £3(- ) is smooth with parameter L + 3||A||2.

1. Take a CGM step wrt Lg(-,A) (primal)
o Our strategy [41] = 2. Take a gradient step wrt £g(x, - )(dual)
3. Increase [3 progressively

o Challenge: Step size in the dual domain (step 2.)
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Convergence guarantees of CGAL

Conditional gradient augmented Lagrangian method (CGAL)
1. Choose x° € X', AU € R”, and 3o > 0.
2. Fork=0,1,...:

%% = lmox (Vf(xF) + ATA* 4+ 8, AT (Ax* — b))

X = (L ) 4 i

ARFL = AF 4 wk(Axk+1 —b)
where v 1= %_'_2 and B := BoVk + 2.

Theorem (Simplified)

Assume that strong duality holds. Let us choose dual step size wy, by the following rule

2 2
_ s 1 Mi(Lf +Apq1)Dy . k k+1
Wi = ag 1= mm{ﬂo, oA b2 if |IA® 4+ o (Ax —b)|| < Dy

and wy, = 0 otherwise, for some Dy > 0. Then, the iterates of CGAL satisfy
Fa) — 4 € O(L)
IAxk bl € O(L)
* For an extension of CGAL to the case Ax — b € K, please see Appendix As.
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Example: k-means clustering

min {Tr (CX):X1=1,X>0, Xe Si., Tr (X) = 04}

X ERPXP
102 L i L n L
I 102 L
— 10! L .
S~ Yo 101 3
= 10" F .
x 10 E
~ -1 ] =
\ 10 ~ S/ -1
St = 10 E
= 1072 .24
= T
= -3 ] [—CGAL L 10 3
- = HCGM .
104 lUE b 1073 L
10° 10! 10% 10° 10* 10° 106 10° 10' 10% 10° 10* 10° 106
iteration iteration

> Test setup with preprocessed MNIST dataset [43]
> p=1000 & a = 10 is the number of clusters
> Note: the worst-case guarantee is the same for HCGM and CGAL, but CGAL performs better in practice.
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Example: Max-cut SDP

XERPXP
1 1 1 1 102 1 ! 1 !
0
10 -1 101 ]
g 10—2 i E 100 -
= = -1
~ =10
107t L1072
< <
= =108
=06 =
1[——CGAL 10-4
- - HCGM 3
10_8 T T T T i 107') T T T T
10 10t 10> 10® 10 107 10 108 10> 10 10*  10°
iteration iteration

> UF Sparse graphs: GSet collection, G40 dataset p = 2000
> L is graph Laplacian matrix.
> Note: the worst-case guarantee is the same for HCGM and CGAL, but CGAL performs better in practice.
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Towards scalable semidefinite programming

Structures in SDP relaxations

min {Tr(CX): AX =0,X = 0,Tr(X) = a} (10)
XERPXP

o X has O(p?)-degrees of freedom =—> needs ©(p?) storage

o Optimal solutions X* typically or approximately have O(rp)-degrees of freedom
> r =rank & r < p (low-rank)

> — need O(rp) storage for a rank-r approximate solution

o Example SDP’s typically have n = O(p) affine constraints

> During optimization we need to keep track of quantities such as
A(uwv®) u*(A*z) (A*2)v, u€RP, v eRP, z€R"

—> need Q(n + p) storage for computations
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Towards scalable semidefinite programming

Structures in SDP relaxations
min
X ERPXP

{Tr(CX) : AX = b,X = 0, Tr(X) = a}

o X has O(p?)-degrees of freedom =—> needs ©(p?) storage
o Optimal solutions X* typically or approximately have O(rp)-degrees of freedom

> r =rank & r < p (low-rank)
> — need O(rp) storage for a rank-r approximate solution

o Example SDP’s typically have n = O(p) affine constraints

> During optimization we need to keep track of quantities such as
A(uwv®) u*(A*z) (A*2)v, u€RP, v eRP, z€R"

—> need Q(n + p) storage for computations

(10)

<— this becomes a major problem

O(n + rp) storage

> Relevant SDPs are often large = HCGM, CGAL have a storage bottleneck (e.g., MaxCut for graph of

2¢% nodes —~ 2¢1? variables!!)

> Can we leverage the problem structure for better storage performance? See advanced material.
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Wrap up!

o Next week: Mock exam!
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*An explicit inexact ALM: ASGARD-DL

Inexact ALM (Double Loop ASGARD [35])
1. x0=300=2300=300cRP, A\g€R", B, >0, 70=1,mp >2, w > 1.

2. Fork=0,1,---, perform:

2.a Fori=0,1,--- ,m; — 1: // accelerated proximal method

£ = (1= )% 4 b
) ) 1 )
%L —prox (xk - ——— AT(F 4 B (AP — b)))
BrllAl? BrellAll
ghoitl gk g Tk(f(k’i+1 _ ikz)
2

Te+1 = k+2

2.b Update primal and dual variables:

ik+1’0 — ik,'mk

AL = Ak 4 g (AXFTL0 _ b)), // update dual variable

0 =1

Br+1 = Brw, // increase Sy

MEt1 = Miw, //increase # of inner iterations
Remarks: o Corresponds to inexact ALM with explicit inner termination rule.

o Attains optimal O(1/k) on the last iterate, with good empirical performance (see slide 17).

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 1/ 37



*ADMM!

Primal problem with a specific decomposition structure

f*:= min ){f(x) :=g(u)+h(v):Bu+ Cv=b, ucld, veV}

x:=(u,v
> X :=U X V - nonempty, closed, convex and bounded.
» A:=[B,C].
The Fenchel dual problem

d* = d\) := —g5(—=BTA) — %5 (—CTX) + (b, A
max {d(3) = —gi( ) = B3 ( )+ (b, N}

> g7, and h}, are the Fenchel conjugate of gy := g + &y and hy := h + 6y, resp.
The dual function

d(\) = min {g(u) + BT u)} +min {r(v) +(CTA,v)} —(b,A).

dt(X) dZ(X)
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*Splitting the problem

Standard ADMM
uFtl = argmin {g(u) + (\F, Bu) + %HBU + CvFk — b||2}
ueld

vktl .= argmin {h(v) + Nk, Cv) + %CHBuk"'1 +Cv — b||2}
vey
ARFL = \E 4 gy (Bubtt + CvRHL —b).

Here, B > 0 is a given penalty parameter of the associated augmented problem:

L :=g(u) + h(v) + (\,Bu+ Cv —b) + §||Bu+ Cv—b|?

o Note how minimizing over (u,v) together would reduce to the ALM formulation.
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Leveraging GANs for Signal Recovery

measurement

Reconstruction

DCGAN Prior

Problem formulation

min L(w) + R(w) + H(z) subject to w = G(z)
W,z

> L is convex and smooth

> R, H are convex and proximal friendly

> @ differentiable generative model (non-linear and usually non-convex)
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*AL schemes for non-convex problems - challenges

Challenges

o More complicated requirements to prove global convergence of generic schemes for (7) (e.g., [31]):
> 3 superset of the feasible-set, where feasibility is ‘good-enough’ (information zone - 1Z)

> Objective & constraints need to be ‘sufficiently-regular’ within the 1Z
> The iterates of the AL algorithm need to Sar

> Enter the 1Z in a finite number of steps.
> Stay inside the 1Z thereafter.

o Literature studying this setting is scarce, and global convergence is not well-understood.

o A practically-relevant variation of (7) has recently been analyzed via the inexact AL scheme [32]. +— up next

Set-up
Assume the following template:
min f(x)+ g(x) s.t. A(x)=b (11)
xERP
> f:RP — R is a continuously-differentiable non-convex function that is L s-smooth.
> g:RP — R is a proximal-friendly convex function.

> A :RP — R" is a smooth nonlinear operator i.e., 3La > 0 s.t.: [[Ja(x) —Ja(x)|| < Lal/x —yl||, where J
is the Jacobian of A.
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*AL schemes for non-convex problems - optimality conditions
Reformulating (12) in terms of AL
o Solving (12) is equivalent to solving the following reformulation:

min T La(x,A) + g(x)

where for a given 8 > 0, Lg(x,A) = f(x) + (A(x) — b, A) + §||A(x) — b||? - the Augmented Lagrangian.
Optimality conditions of (12)
o x € RP is a first order stationary point (FOS) of (12) if 3 € R™ s.t.
—VLg(x,A) € 9g(x) and A(x) =b.
o When g = 0 and x is a FOS, x is also a second-order stationary point (SOS) if:
Amin (VaexLp(x,)) > 0

o Approximate stationarity is then defined for a given € > 0 as:

- ek dist (—VEB(X,A),GQ(X)) <e and |A(x)—-b||<e
- ek Amin (VL (%, X)) > —e
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*An Inexact AL scheme for non-convex problems

o Main idea of [32]: solve primal problems with increasing accuracy € and carefully choose the dual stepsize o.

ALM - conceptual (reference) |

Inexact ALM - nonconvex (IALM)

1. Choose Ag € R™ and 3 > 0.
2. Fork=0,1,...:

2.a. Solve (4) to get x*+1.

2.b. Update A" 1 5= A% 4 8 (Ax5(A%) = b) .

1. Choose b > 1, A° € R", o9 > 0, 74, 75 > 0.
2. For k=0,1,---, perform:
2.aa. Set €k+1 = 1/ﬁk

2.a. Get x*T1 with a solver of choice, s.t.:
dist(—= Vo Lg, ("1, Ar), 09(x* 1)) < ery1, [FOS]
or
Amin (Vi Lg (55T A)) > —epn [sOs]
2.b. Update
Brr = b | )
o A (x") — b log?(2)
P " TAGKTT) = bl[(k + 1) log?(k + 2)
AL 2R o (A(x’““) - b)
2.c. Stop if

dist(—=V,Lg, (x*T A), 09(x* 1))
+ A" —b|| < 7p [FOS]
and if also Amin (Vxx L, (="t AF) > —epy1 [SOS]
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*Convergence of the Inexact AL for non-convex problems

A key assumption

o For convex AL schemes we rely on Slater’s condition to prove convergence.

o We need a similar kind of assumption for our non-convex problem, called regularity condition?: for some
v > 0, assume

" Br—1

o Informally, condition (13) ensures that step 2.a of IALM improves feasibility as 8 grows.

V|[A(x*) — b|| < dist (_JA(xk)T(A(xk)_b) ag(xk)) Vk (13)

Theorem [32] (Simplified)

Under the framework (12) and assumption (13), IALM reaches
> FOS with O(e3) complexity and
> SOS with O(€5) complexity,

where O hides logarithmic factors3.
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*Example: k-means clustering

o Model free k-means clustering SDP:

min {Tr(CX) :X1=1,X>0, Xe87, Tr(X) = a}
XERPXP

o Nonconvex formulation:

min {Tr(Cuu*) cuufl=1,u>0, [ullrp < \/E},
ucRkP

Objective Residual

Feasibility
10°
An
0 102 W\/ ]
S 10 ]
\ [—
| — 10*
— E
H K
= 10° | [—IAL IBFGS(r = 20) R
- —— 1AL APGM(r = 20)
—— SDPNAL+ 10
HCGM
10710 10710 L
10° 10! 102 10! 102 103
time(secs) time(secs)
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*Example: DARN with GANs (MNIST)

o De-adversarial-noise with generative adversarial networks:

min{|w = (wo +7) |+ : w = G(2)}

—& 100

0 _ i

. 1077 N —}— /> adam

= 1 80 O oo iAL

< ] —=- base

E 6x107" A < 60

e 5

=] o

3 ) E 40

é 4x107 1 —— gd o

2 3x10°" - -©- AL 20

= —f¢— adam
LA B LAY B 0 === ===
10° 10! 102 103 0 50 100 150 200 250 300

iteration (t) time

Figure: £, error per iteration Figure: misclassification error per iteration
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*Example: Basis Pursuit

o Convex formulation:

o Non-convex formulation:

X =xt —x~
change of variables { xT := ui’2, X = qu and u := [u;r,u;—]T — min {Hu” : Au®?
_ ucRkP
A =[A,-A
10° N ‘ ‘ 100 [ IS [ T
\ NN
S
¥ ¥
e = | |
s — AL IBFGS G
S ——iAL TR <
S~— . —
= o0 ——iAL APGM T ot) |
- —— ASGARD
ASGARD-DL
—— Chambolle-Pock \\_ ¥\7’\
10'12 10'12
10° 10' 102 10° 10 10' 10 10 10*
iters iters
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*Stochastic HCGM for almost sure constraints

Problem formulation
7 e —Iréln f(@) =E[f(z,8)], A(§)z €b(§) a

> f(z,€): R% — R - convex, L-Lipschitz gradient
> X C R? - convex, compact

> A(¢) € R™*9 - matrix-valued random variable, b(¢) C R™ - random convex set

Applications
o Target application: solving large scale SDPs

o Stochastic template = formulation of stochastic first order methods = can handle large problems, in
both dimension and constraints

o Two examples relevant to ML:
> K-Means clustering SDP [29, 24]
> Sparsest Cut SDP [1, 8]
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*Main idea

min f(z) :=E[f(z,&)], A)z € b(§) a. s.
TeEX

min (o) = E [£(2,€) + Sye) (A(€))]

smoothing
8—0 Sb(e) (2) — S5 dist(z, b(¢))?

min Fa(z) =B [f(2,€) + F5dist(A(&)z, b(€))?]

o Optimize increasingly accurate approxiamtions Fig(x), as 3 — 0

o Control the exploding variance using variance reduction
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*First method: H-1SFW

Algorithm - H-1SFW(z1 € X, 80 > 0, P(£) )

for k=1,2,... do
Set pi, Yk, Br, sample & ~ P(§) «— v, € O(1/k), B € O(1/ V)
VE = (1 — pk)kal + pkszBk ((Ek, gk) <—— variance reduction on gradient estimator v}, with single sample £} [25]
Tp4+1 = fW_step(J;k, Vi, ’Yk) <—— the usual Imo y (vg ) and convex combination update

end for

Convergence H-1SFW
FE[Vf(z,8)]=Vf(z), E [H Vi, &) — Vi(z) ||2] < 0% < oo, supe|| A(€) [|* < 400 and Slater’s

condition holds, then for all k:

B[lf(zr. &) — f@)]] €O (kV/%),  EMsHA©wb©)?] €O (k).

The oracle complexity for e-accuracy is: O (5*6) stochastic first order oracles (#sfo) and O (5*6) linear

minimization oracles (#Imo).
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*Second method: H-SPIDER-FW

Algorithm - H-SPIDER-FW(z; € X, By > 0, P(€))

fort=1,2,... do
Set Tt1 = Te; K = Qt; Y, 15 5@1;, sample th lde P({) <+— Set minibatch size K¢
vt,1 = ﬁFthl (aft’l,fgt) <—— Compute ‘high-accuracy’ averaged stochastic gradient
x¢,2 = fw_step(z¢,1,ve,1,7¢,1)

for k=2,...,K: do
Set Yt ks ﬁt,kv sample fstk Lflvd P(E) <— Decrease 8 € O (l/ \/ K¢+ ]\T>, set vy € O(1/(K¢ + k))

Vt k = Vi k-1 — ﬁFBt_k,l (Tt k—1,85, ;) + @th.k(lt,kfshk) 4<—— var. red. on v}, using minibatch [44]
T 1 = fW_step(Ts i, Ve ko, Ye,k) — the usual Imox (vy,) and convex combination update
end for
Tt+1 = Tt K +1
end for

Convergence H-SPIDER-FW
Denote by n := K + k the global iteration #. Under identical assumptions as H-1SFW, for all k it holds that:

B[~ ] €0(n?), \fB[dsa@meb©)?] €O (n2).

The oracle complexity for e-accuracy is: O (672) #sfo and O (5*4) #Imo.
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*Experiments: Uniform Sparsest Cut SDP

o Approximation algorithm [1] is based on SDP relaxation: dimension O (d2), constraints O (ds)

min (L, X)
Xex
2

d
subject to  dTr(X) — Tr(1gxqgX) = 5
Xijg+Xje—Xik—X;,;, <0 Vi, jkeV

104 10
10| —SHCGM 100 0%
S - 1SFW ©
H.SPIDER.FW
10° 10t 3 "
10° 10’ 10% 10 10° 10’ 10% 10° 10
Contraint Constraiut epocks
10*, 10*,
102, 102,
e 10° e 100 =
102 10? 102
0! 2 3 . 0! o 2 3 . 0! o 2 3 .
10° 10" 10° 10 10° 10° 10" 10° 10 10 10° 10 10° 10° 10
Constraint epochs Constraint epochs Constraint epochs

o From left to right (columns): 25 nodes, ~ 7e> constraints; 55 nodes, ~ 8e* constraints; 102 nodes, ~ 5¢° constraints. Graphs from [38]
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*Towards scalable semidefinite programming

The road to storage optimality

> SDPs often have a low rank solutions = instead of storing Xkef1...T}y at every iteration, use a
compressed representation Sy given by a matrix sketching technique.

> Formally - Consider a PSD matrix X € RPXP and let R > 0 be a parameter that controls the storage cost
of a sketch (and its accuracy). Construct a so-called Nystrém sketch by drawing a fixed standard normal
matrix € RPXE and produce a sketch S of X as follows:

S =XQ e rP¥E
> Reconstruction - Given €2 and S, we recover a rank-R approximation X of X by

X :=8(Q78)'s” with Egq [||X - X||.] < (1 + ) IX = [X]-ll« Vr<R (14)

R+r+1

where || - ||« denotes the nuclear norm and [-] is an r-truncated singular-value decomposition of the matrix,
which is a best rank-r approximation with respect to every unitarily-invariant norm.

> — We can reduce the storage from ©(p?) to O(rp)!
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*The algorithm - SketchyCGAL
> The Augmented Lagrangian of (10) is
L5(X,A) = Tr(CX)+(A, AX—b>+§HAX—bH2, VxLs(X,A) = C+AT (A 45, (AXF b))

> The constraint set of (10) is X = {X € RPXP : X = 0, Tr(X) = a} and Imox (Y) = avv” where v is the
eigenvector corresponding to the minimum eigenvalue of Y.

> The algorithm performs linear updates directly on z; := AX; € R™ = the iterates X} become implicit!

CGAL | SketchyCGAL (simplified)*
1. Choose X° = 0%, € X, A’ =0,,, Bo >0, T > 0. 1. Choose A° = 0,,, 2o = 0,,, S = Opx R,
Bo>0,T>0, R>0, Q=randn(p, R).
2.Fork=0,1,...T: 2.Fork=0,1,...T:
(&, vi) := ApproxMinEvec(C + AT (\F + g, (AX" — b))) (&, vi) := ApproxMinEvec(C + AT (AF + 8, (z" — b)))
XM= (1= ) XE 4 e (aviof) 2= (1= )z + v Aavv])
ARFL AR (AXFT — ) AL = AR (2" — b)
- 1- 'yk)Sk + 'ykvk(vgﬂy—— update the sketch
where i = %H and B, := \/;0? where i, 1= 727, and By := ‘/;0?
3. Recover X1 from St using (14)
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*SketchyCGAL: Convergence
o Observations:
> The iterate update procedure of SketchyCGAL is the same as that of CGAL, thoughX¥ are implicit:
2" = (1 —)z" + A (awo”)
by def. of 2 — = A ((1 — ’yk)Xk + ’Ykav’UT)
= AXF*H
> The same computation holds for the sketch updates, where ~ SF*1 = (1 — ’Yk)Sk +yvvTQ = XFHIQ,

> — the variables in SketchyCGAL track the variables of some invocation of CGAL and inherit their
behavior.

Theorem [46]

Assume problem (10) satisfies strong duality, and let ¥* be its solution set. Then
1. The implicit iterates converge to the solution set U* at the same rate as CGAL.
2. For each 7 < R, the iterates Xy, computed by SketchyCGAL satisfy

5 T
li Eqdists (X, ¥*) < (1 + ———— Y - [Y],
im sup Eq iste(Xp, U°) < (14 ——7) max [|¥ = [¥]-[.

Here, dist. is the nuclear-norm distance between a matrix and a set of matrices.
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*Example: Convex phase retrieval

Problem formulation

f*:= min {Tr(X) : AX)=b, [X[«<k X*x 0}. (15)
Xecpxp

> This formulation is a convex and semidefinite relaxation of the original, much more difficult Phase Retrieval
problem of recovering x! € CP from the measurements

b eR™, bi = |(ai, x| +wi,

where a; € CP are known measurement vectors, w; models noise. Details can be found in [5, 42].
> This type of problem arises, for example, in X-ray crystallography and astronomical imaging.

> Note that the problem is constrained to X := {X € RP*P : X > 0, ||X|«+ < s}, which is convex and
compact.

> X has an expensive prox operator, but an efficient Imo.
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lions

*Example: Convex Phase Retrieval memory usage

{Tr(X) C AX)=b, X<k X 0}.

= min
Xecpxp
16GB | I I | | | | | | |
I CGAL 10° ‘jf—
4GB - |l ThinCGAL s
[ SketchyCGAL 104 |
1GB - ’g
g)o ~ 10:& [
£ 256MB .
Q B=i
% * 10% 4 +
64MB .
<«
10" -
16 MB - —
10° -
4 MB - : :
10? 10° 10* 10° 10° 10% 10% 10* 10° 10°
problem size: n problem size: n
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*Example: Max-Cut SDP

max {}lTr (LX) : diag(X) =1, X € S, Tr(X) = p}

XERPXP
) 1 ) ) 10 ) 1 1 " 6500 ) ) 1 )
107" 4 L 1004 i 6000 -
E 5500
R - = 5500 o
1024 E £10'4 F 2
53 = “ 5
g = 5000 o
© 107 4 [ 21029 -
E e 5o 4500 r
g g1 ][—Er=10 £ 107% 4 F g /
g 3|—R=2 3 4000 o L
5 R =100 10744 E .
107" 1 | Full matrix (implicit) 3 3500 1 r
1079
T T T T T T T T T T T T T T T
10° 10' 10° 10° 10* 10° 10° 10° 10" 10° 10° 10* 10° 10° 10° 10' 10? 10° 10* 10° 10°
iteration iteration iteration
' t t 10" $28 : : 4 L L 6500 sl . . .
— 1074 Eoow0 1\ [ 60004
£ 5500
21074 [ 2101 N ———— g 55004 L
7 2 g
< = %5 5000 =
S 10 ] L= 102 L2
= v & ) 5 4500 | -
€ 101 ] [ 21074 -}
= 4000 -
° . 10! o 3
10 = 3500 4 F
107° 4 k- /
T T T T T T T T T T T T T T T T T T
w0t 10 10t 107 100 10t 0t 100 10t 107 100 10t w0t 100 10t 100 10t 10t
cpu time (sec) cpu time (sec) cpu time (sec)
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Appendix A;: Generalization of HCGM for Ax — b € K (self-study)

Quadratic penalty strategy for min{f(x): Ax —b € K,x € X}

Define the distance function
dist(y, ) := min ||y — z||.
zeK

Quadratic penalty takes the form

B

min {f(x) + Sdist?’(Ax — b,K) : x € /\’}
xERP 2

Gradient of dist?(z, K) is
Vdistz(y, K) = 2(y — projx(y))-

Hence, HCGM can be generalized by changing lmo step as

%% = Imox (VF(x*) + B AT (AxF — b — proji (Ax* — b))).

Same guarantees hold, by replacing ||Ax — b|| by dist(Ax — b, K).
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Appendix A,: Generalization of CGAL for Ax — b € K (self-study)

Augmented Lagrangian for min{f(x): Ax —b € K,x € X'}
Similarly, CGAL can be extended for Ax — b € K constraint, by replacing

> Imo step as
%% .= lmoy (Vf(x’“) + ATNF 4 g AT (Axk — b — projc (Ax* —b + Bk—l,\k))>

> and dual update step as

ARl Nk (Axk'H — b + proj (Ax*t! — b + Bklek))

Same guarantees hold, by replacing ||[Ax — b|| by dist(Ax — b, K).

ILHEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 37



References |

[1] Sanjeev Arora, Satish Rao, and Umesh Vazirani.
Expander flows, geometric embeddings and graph partitioning.
Journal of the ACM (JACM), 56(2):5, 2009.
(Cited on pages 57 and 61.)

[2] Heinz H. Bauschke and Patrick L. Combettes.
Convex analysis and monotone operator thoery in Hilbert spaces.
Springer, New York, NY, 2011.
(Cited on page 6.)

[3] Dimitri P Bertsekas.
Necessary and sufficient conditions for a penalty method to be exact.
Mathematical programming, 9(1):87-99, 1975.

(Cited on page 6.)

Dimitri P Bertsekas.

On penalty and multiplier methods for constrained minimization.
SIAM Journal on Control and Optimization, 14(2):216-235, 1976.
(Cited on page 6.)

[4

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 37 EPFL



References ||

[5] E.J. Candeés, T. Strohmer, and V. Voroninski.
Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming.
IEE Trans. Signal Processing, 60(5):2422-2432, 2012.
(Cited on page 65.)

[6] Coralia Cartis, Nicholas IM Gould, and Ph L Toint.
Complexity bounds for second-order optimality in unconstrained optimization.
Journal of Complexity, 28(1):93-108, 2012.
(Not cited.)

[7] Antonin Chambolle and Thomas Pock.
A first-order primal-dual algorithm for convex problems with applications to imaging.
J. Math. Imaging Vis., 40:120-145, 2011.
(Cited on page 6.)

[8] Vaggos Chatziafratis, Rad Niazadeh, and Moses Charikar.

Hierarchical clustering with structural constraints.
arXiv preprint arXiv:1805.09476, 2018.
(Cited on page 57.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 37 EPFL



References Il

[9] G. Chen and M. Teboulle.
A proximal-based decomposition method for convex minimization problems.
Math. Program., 64:81-101, 1994.
(Cited on page 6.)

[10] P. L. Combettes and V. R. Wajs.
Signal recovery by proximal forward-backward splitting.
Multiscale Model. Simul., 4:1168-1200, 2005.
(Cited on page 6.)

[11] D. Davis.
Convergence rate analysis of the forward-Douglas-Rachford splitting scheme.
UCLA CAM report 14-73, 2014.
(Cited on page 6.)

[12] D. Davis and W. Yin.
Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.
UCLA CAM report 14-58, 2014.
(Cited on page 6.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 37 EPFL



References IV

[13] D. Davis and W. Yin.
A three-operator splitting scheme and its optimization applications.
Tech. Report., 2015.
(Cited on page 6.)

[14] Jonathan Eckstein and Dimitri P. Bertsekas.
On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone
operators.
Math. Program., 55:293-318, 1992.
(Cited on page 6.)

[15] J. E. Esser.
Primal-dual algorithm for convex models and applications to image restoration, registration and nonlocal
inpainting.
Phd. thesis, University of California, Los Angeles, Los Angeles, USA, 2010.
(Cited on page 6.)

[16] D. Gabay and B. Mercier.
A dual algorithm for the solution of nonlinear variational problems via finite element approximation.
Comp. Math. with Apps., 2(1):17 — 40, 1976.
(Cited on page 6.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 37 EPFL



References V

[17] Saeed Ghadimi and Guanghui Lan.
Accelerated gradient methods for nonconvex nonlinear and stochastic programming.
Math. Program., 156(1-2):59-99, March 2016.
(Not cited.)

[18] T. Goldstein, E. Esser, and R. Baraniuk.
Adaptive Primal-Dual Hybrid Gradient Methods for Saddle Point Problems.
Tech. Report., http://arxiv.org/pdf/1305.0546v1.pdf:1-26, 2013.
(Cited on page 6.)

[19] T. Goldstein, B. ODonoghue, and S. Setzer.
Fast Alternating Direction Optimization Methods.
SIAM J. Imaging Sci., 7(3):1588-1623, 2012.
(Cited on page 6.)

[20] B. He and X. Yuan.
Convergence analysis of primal-dual algorithms for saddle-point problem: from contraction perspective.
SIAM J. Imaging Sciences, 5:119-149, 2012.
(Cited on page 6.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 37 EPFL



References VI

[21] Bingsheng He and Xiaoming Yuan.
On the acceleration of augmented lagrangian method for linearly constrained optimization.
2010.
(Cited on page 16.)

[22] B.S. He and X.M. Yuan.
On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method.
SIAM J. Numer. Anal., 50:700-709, 2012.
(Cited on page 6.)

[23] Magnus R Hestenes.
Multiplier and gradient methods.
Journal of optimization theory and applications, 4(5):303-320, 1969.
(Cited on page 6.)

[24] Dustin G Mixon, Soledad Villar, and Rachel Ward.
Clustering subgaussian mixtures by semidefinite programming.
arXiv preprint arXiv:1602.06612, 2016.

(Cited on page 57.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 37 EPFL



References VII

[25] Aryan Mokhtari, Hamed Hassani, and Amin Karbasi.
Stochastic conditional gradient methods: From convex minimization to submodular maximization.
arXiv preprint arXiv:1804.09554, 2018.
(Cited on page 59.)

[26] I. Necoara and J.A.K. Suykens.
Interior-point lagrangian decomposition method for separable convex optimization.
J. Opt. Theory and Apps., 143(3):567-588, 2009.
(Cited on page 6.)

[27] Y. Ouyang, Y. Chen, G. LanG. Lan., and E. JR. Pasiliao.
An accelerated linearized alternating direction method of multiplier.
Tech, 2014.
(Cited on page 6.)

[28] Yuyuan Ouyang and Yangyang Xu.
Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems.
arXiv preprint arXiv:1808.02901, 2018.
(Cited on page 21.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 37 EPFL



References VIII

[29] Jiming Peng and Yu Wei.
Approximating k-means-type clustering via semidefinite programming.
SIAM journal on optimization, 18(1):186—205, 2007.
(Cited on page 57.)

[30] Michael JD Powell.
A method for nonlinear constraints in minimization problems.
Optimization, pages 283-298, 1969.
(Cited on page 6.)

[31] Shoham Sabach and Marc Teboulle.
Lagrangian methods for composite optimization.
In Handbook of Numerical Analysis, volume 20, pages 401-436. Elsevier, 2019.
(Cited on pages 49 and 50.)

[32] Mehmet Fatih Sahin, Ahmet Alacaoglu, Fabian Latorre, Volkan Cevher, et al.
An inexact augmented lagrangian framework for nonconvex optimization with nonlinear constraints.
In Advances in Neural Information Processing Systems, pages 13943-13955, 2019.
(Cited on pages 49, 50, 52, and 53.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 37 EPFL



References IX

[33] Defeng Sun, Kim-Chuan Toh, Yancheng Yuan, and Xin-Yuan Zhao.
Sdpnal+: A matlab software for semidefinite programming with bound constraints (version 1.0).
Optimization Methods and Software, 35(1):87-115, 2020.
(Not cited.)

[34] Q. Tran-Dinh, I. Necoara, C. Savorgnan, and M. Diehl.
Asymptotic pseudotrajectories and chain recurrent flows, with applications.
SIAM J. Optim., 8(1):141-176, 1996.
(Cited on page 6.)

[35] Quoc Tran-Dinh, Ahmet Alacaoglu, Olivier Fercoq, and Volkan Cevher.
An adaptive primal-dual framework for nonsmooth convex minimization.
arXiv preprint arXiv:1808.04648, 2018.

(Cited on page 45.)

[36] Quoc Tran-Dinh and Volkan Cevher.
Constrained convex minimization via model-based excessive gap.
In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1,
NIPS'14, 2014.
(Cited on page 5.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 37 EPFL



References X

[37] P. Tseng.
Applications of splitting algorithm to decomposition in convex programming and variational inequalities.
SIAM J. Control Opt., 29:119-138, 1991.
(Cited on page 6.)

[38] Maria-Luiza Vladarean, Ahmet Alacaoglu, Ya-Ping Hsieh, and Volkan Cevher.
Conditional gradient methods for stochastically constrained convex minimization.
In International Conference on Machine Learning, pages 9775-9785. PMLR, 2020.
(Cited on page 61.)

[39] E. Wei, A. Ozdaglar, and A.Jadbabaie.
A Distributed Newton Method for Network Utility Maximization.
http: //web. mit. edu/ asuman/www/publications. htm, 2011.
(Cited on page 6.)

[40] Yangyang Xu.
Accelerated first-order primal-dual proximal methods for linearly constrained composite convex
programming.
SIAM Journal on Optimization, 27(3):1459-1484, 2017.
(Cited on pages 20 and 21.)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 37 EPFL


http://web.mit.edu/asuman/www/publications.htm

lions@

References Xl

[41] Alp Yurtsever, Olivier Fercoq, and Volkan Cevher.
A conditional gradient-based augmented lagrangian framework.
Technical report, 2018.
(Cited on page 37.)

[42] Alp Yurtsever, Ya-Ping Hsieh, and Volkan Cevher.
Scalable convex methods for phase retrieval.
In 6th IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2015.
(Cited on page 65.)

[43] Alp Yurtsever, Fercoq Olivier, Locatello Francesco, and Volkan Cevher.
A conditional gradient framework for composite convex minimization with applications to semidefinite
programming.
In Proceedings of the 35th International Conference on International Conference on Machine Learning -
Volume 28, ICML'18, 2018.
(Cited on pages 35, 36, and 39.)

[44] Alp Yurtsever, Suvrit Sra, and Volkan Cevher.
Conditional gradient methods via stochastic path-integrated differential estimator.
In International Conference on Machine Learning, pages 7282-7291. PMLR, 2019.
(Cited on page 60.)

pfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 37

EPFL



lions@

References XlI

[45] Alp Yurtsever, Quoc Tran-Dinh, and Volkan Cevher.
A universal primal-dual convex optimization framework.
In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2,
NIPS'15, 2015.
(Cited on page 16.)

[46] Alp Yurtsever, Joel A Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher.
Scalable semidefinite programming.
SIAM Journal on Mathematics of Data Science, 3(1):171-200, 2021.
(Cited on pages 25 and 64.)

pfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 37/ 37

EPFL



	Recap: Constrained Convex optimization
	Dual approach: The Augmented Lagrangian Method
	Augmented Lagrangian: The non-convex case
	Conditional Gradient methods for linearly constrained optimization
	Appendix

