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General nonsmooth problems

◦ We will show that the restricted template captures the familiar composite minimization:

min
x∈Rp

f(x) + g(Ax).

▶ f , g are convex, nonsmooth functions; and A is a linear operator.

Examples
▶ g(Ax) = ∥Ax − b∥1 or g(Ax) = ∥Ax − b∥2

2.

▶ g(Ax) = δ{b}(Ax), where δ{b}(Ax) =
{

0, if Ax = b,

+∞, if Ax , b.

Observations: ◦ The indicator example covers constrained problems, such as minx∈X {f(x) : Ax = b}.

◦ We need a tool, called Fenchel conjugation, to reveal the underlying minimax problem.
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Conjugation of functions

◦ Idea: Represent a convex function in max-form:

Definition
Let Q be a Euclidean space and Q∗ be its dual space. Given a
proper, closed and convex function f : Q → R ∪ {+∞}, the
function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yT x − f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

f(x)

y

T
x

x

0

(0,�f⇤(y))

x̂

y

T
x̂

f(x̂)

Friday, July 11, 14

Figure: The conjugate function f∗(y) is the
maximum gap between the linear function
xT y (red line) and f(x).

Observations: ◦ y : slope of the hyperplane
◦ −f∗(y) : intercept of the hyperplane
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Conjugation of functions

Definition
Given a proper, closed and convex function f : Q → R ∪ {+∞}, the function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yT x − f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

Properties
◦ f∗ is a convex and lower semicontinuous function by construction as the supremum of affine functions of y.

◦ The conjugate of the conjugate of a convex function f is the same function f ; i.e., f∗∗ = f for f ∈ F(Q).

◦ The conjugate of the conjugate of a non-convex function f is its lower convex envelope when Q is compact:

▶ f∗∗(x) = sup{g(x) : g is convex and g ≤ f , ∀x ∈ Q }.

◦ For closed convex f , µ-strong convexity w.r.t. ∥ · ∥ is equivalent to 1
µ

smoothness of f∗ w.r.t. ∥ · ∥∗.

▶ Recall dual norm: ∥y∥∗ = supx{⟨x, y⟩ : ∥x∥ ≤ 1}.

▶ See for example Theorem 3 in [12].
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Examples

ℓ2-norm-squared
f(x) = λ

2 ∥x∥2 ⇒ f∗(y) = maxx⟨y, x⟩ − λ
2 ∥x∥2.

◦ Take the derivative and equate to 0: 0 = y − λx ⇐⇒ x⋆ = 1
λ

y ⇐⇒ f∗(y) = 1
λ

∥y∥2 − 1
2λ

∥y∥2 = 1
2λ

∥y∥2.

ℓ1-norm
f(x) = λ∥x∥1 ⇒ f∗(y) = maxx⟨y, x⟩ − λ∥x∥1.

◦ By definition of the ℓ1-norm: f∗(y) = maxx
∑n

i=1 yixi − λ|xi| = maxx
∑n

i=1 yisign(xi)|xi| − λ|xi|.

◦ By inspection:

▶ If all |yi| ≤ λ, then ∀i, (yisign(xi) − λ)|xi| ≤ 0. Taking x = 0 gives the maximum value: f∗(y) = 0.

▶ If for at least one i, |yi| > λ, (yisign(xi) − λ)|xi| → +∞ as |xi| → +∞.

◦ f∗(y) = δy:∥·∥∞≤λ(y) =
{

0, if ∥y∥∞ ≤ λ

+∞, if ∥y∥∞ > λ

Remark: ◦ See advanced material at the end for non-convex examples, such as f(x) = ∥x∥0.
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General nonsmooth problems

min
x∈Rp

f(x) + g(Ax)

◦ By Fenchel-conjugation, we have g(Ax) = maxy⟨Ax, y⟩ − g∗(y), where g∗ is the conjugate of g.

◦ Min-max formulation:

min
x∈Rp

f(x) + g(Ax) = min
x∈Rp

max
y

{Φ(x, y) := f(x) + ⟨Ax, y⟩ − g∗(y)}

An example with linear constraints

◦ If g(Ax) = δ{b}(Ax) =
{

0, if Ax = b,

+∞, if Ax , b,

⇒ g∗(y) = max
x

⟨y, x⟩ − δ{b}(x) = max
x:x=b

⟨y, x⟩ = ⟨y, b⟩.

◦ We reach the minimax formulation (or the so-called “Lagrangian”) via conjugation:

min
x

{f(x) : Ax = b} = min
x

f(x) + g(Ax) = min
x

max
y

f(x) + ⟨Ax − b, y⟩.
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A special case in minimax optimization

Bilinear min-max template

min
x∈X

max
y∈Y

f(x) + ⟨Ax, y⟩ − h(y),

where X ⊆ Rp and Y ⊆ Rn.
▶ f : X → R is convex.
▶ h : Y → R is convex.
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Example: Sparse recovery

An example from sparseland b = Ax♮ + w: constrained formulation
The basis pursuit denoising (BPDN) formulation is given by

x⋆ ∈ arg min
x∈Rp

{∥ x ∥1 : ∥ Ax − b ∥2 ≤ ∥ w ∥2, ∥x∥∞ ≤ 1} . (BPDN)

A primal problem prototype

f⋆ := min
x∈Rp

{
f(x) : Ax − b ∈ K x ∈ X

}
,

The above template captures BPDN formulation with
▶ f(x) = ∥x∥1.
▶ K = {∥u∥ ∈ Rn : ∥u∥ ≤ ∥w∥2}.
▶ X = {x ∈ Rp : ∥x∥∞ ≤ 1}.
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An alternative formulation

A primal problem prototype

f⋆ := min
x∈Rp

{
f(x) : Ax − b ∈ K, x ∈ X

}
, (1)

▶ f is a proper, closed and convex function
▶ X and K are nonempty, closed convex sets
▶ A ∈ Rn×p and b ∈ Rn are known
▶ An optimal solution x⋆ to (1) satisfies f(x⋆) = f⋆, Ax⋆ − b ∈ K and x⋆ ∈ X

A simplified template without loss of generality

f⋆ := min
x∈Rp

{
f(x) : Ax = b

}
, (2)

▶ f is a proper, closed and convex function
▶ A ∈ Rn×p and b ∈ Rn are known
▶ An optimal solution x⋆ to (2) satisfies f(x⋆) = f⋆, Ax⋆ = b
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Reformulation between templates

A primal problem template

min
x∈Rp

{
f(x) : Ax − b ∈ K, x ∈ X

}
.

First step: Let r1 = Ax − b ∈ Rn and r2 = x ∈ Rp.

min
x,r1,r2

{
f(x) : r1 ∈ K, r2 ∈ X , Ax − b = r1, x = r2

}
.

◦ Define z =

[
x
r1
r2

]
∈ R2p+n, Ā =

[
A −In×n 0n×p

Ip×p 0p×n −Ip×p

]
, b̄ =

[
b
0

]
, f̄(z) = f(x) + δK(r1) + δX (r2),

where δX (x) = 0, if x ∈ X , and δX (x) = +∞, o/w.

The simplified template

min
z∈R2p+n

{
f̄(z) : Āz = b̄

}
.
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From constrained formulation back to minimax

A general template

min
x∈Rp

{f(x) : Ax = b}.

Other examples:
▶ Standard convex optimization formulations: linear programming, convex quadratic programming, second

order cone programming, semidefinite programming and geometric programming.
▶ Reformulations of existing unconstrained problems via convex splitting: composite convex minimization,

consensus optimization, . . .

Formulating as min-max

max
y∈Rn

⟨y, Ax − b⟩ =
{

0, if Ax = b,

+∞, if Ax , b.

min
x∈Rp

{
f(x) : Ax = b

}
= min

x∈Rp
max
y∈Rn

{
Φ(x, y) := f(x) + ⟨y, Ax − b⟩

}
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Dual problem

min
x∈Rp

{
f(x) : Ax = b

}
= min

x∈Rp
max
y∈Rn

{
Φ(x, y) := f(x) + ⟨y, Ax − b⟩

}
◦ We define the dual problem

max
y∈Rn

d(y) := max
y∈Rn

{ min
x∈Rp

f(x) + ⟨y, Ax − b⟩︸                                ︷︷                                ︸
d(y)

}.

Concavity of dual problem
Even if f(x) is not convex, d(y) is concave:

▶ For each x, d(y) is linear; i.e., it is both convex and concave.

▶ Pointwise minimum of concave functions is still concave.

Remark: ◦ If we can exchange min and max, we obtain a concave maximization problem.
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Example: Nonsmoothness of the dual function
◦ Consider a constrained convex problem:

min
x∈R3

{
f(x) := x2

1 + 2x2
}

,

s.t. 2x3 − x1 − x2 = 1,
x ∈ X := [−2, 2] × [−2, 2] × [0, 2].

◦ The dual function is concave and nonsmooth as written and then illustrated below.

d(λ) := min
x∈X

{
x2

1 + 2x2 + λ(2x3 − x1 − x2 − 1)
}
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nonsmooth peak
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Exchanging min and max: A dangerous proposal
◦ Weak duality:

max
y∈Rn

d(y)︸        ︷︷        ︸
Dual problem

=: max
y∈Rn

min
x∈Rp

Φ(x, y) ≤ min
x∈Rp

max
y∈Rn

Φ(x, y) = min
x∈Rp

{
f(x) : Ax = b

}
︸                             ︷︷                             ︸

Primal problem

=
{

f⋆, if Ax = b
+∞, if Ax , b

f3(x)

f2(x)
f1(x)

x

min
x�0

max
i

fi(x)

max
x�0

min
i

fi(x)
max

i
min
x�0

fi(x)
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A proof of weak duality

f⋆ := min
x∈Rp

{
f(x) : Ax = b

}
= min

x∈Rp
max
y∈Rn

{
Φ(x, y) := f(x) + ⟨y, Ax − b⟩

}
◦ Since Ax⋆ = b, it holds for any y

Φ(x⋆, y) = f⋆ = f(x⋆) + ⟨y, Ax⋆ − b⟩

≥ min
x∈Rp

{
f(x) + ⟨y, Ax − b⟩

}
= min

x∈Rp
Φ(x, y).

◦ Take maximum of both sides in y and note that f⋆ is independent of y:

f⋆ = min
x∈Rp

max
y∈Rn

Φ(x, y) ≥ max
y∈Rn

min
x∈Rp

Φ(x, y) =: max
y∈Rn

d(y) = d⋆.
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Strong duality and saddle points

Strong duality

f⋆ = f(x⋆) = min
x∈Rp

max
y∈Rn

Φ(x, y) = max
y∈Rn

min
x∈Rp

Φ(x, y) =: max
y∈Rn

d(y) = d⋆.

Under strong duality and assuming existence of x⋆, Φ(x, y) has a saddle point. We have primal and dual
optimal values coincide, i.e., f⋆ = d⋆.

Recall saddle point / LNE
A point (x⋆, y⋆) ∈ Rp × Rn is called a saddle point of Φ if

Φ(x⋆, y) ≤ Φ(x⋆, y⋆) ≤ Φ(x, y⋆), ∀x ∈ Rp, y ∈ Rn.

saddle point x̄
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Toy example: Strong duality

Primal problem
◦ Consider the following primal minimization problem: minx P (x) := f(x) + g(x) := 1

2 ∥x∥2 + ∥x∥1

◦ Using conjugation and strong duality

P (x⋆) = min
x

P (x) = min
x

max
y

f(x) + ⟨x, y⟩ − g∗(y), by conjugation

= max
y

−g∗(y) + min
x

f(x) + ⟨x, y⟩, by changing min-max

= max
y

−g∗(y) − max
x

⟨x, −y⟩ − f(x), by min f = − max −f

= max
y

−g∗(y) − f∗(−y), by conjugation.

Dual problem
◦ Dual problem: d⋆ = maxy d(y) = −g∗(y) − f∗(−y)

◦ Recall f∗(−y) = 1
2 ∥y∥2 and g∗(y) = δy:∥y∥∞≤1(y).
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Toy example: Strong duality

Primal problem: min
x

P (x) =
1
2

∥x∥2 + ∥x∥1

Dual problem: max
y

−
1
2

∥y∥2 − δy:∥y∥∞≤1(y)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
P(x)
D(y)d

d(y) =

(
� 1

2kyk2, if kyk1  1

�1, if kyk1 > 1

<latexit sha1_base64="fH/zgow5ddDoUhJ5FnhzR51zwPM="></latexit>
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Back to convex-concave: Necessary and sufficient condition for strong duality

◦ Existence of a saddle point is not automatic even in convex-concave setting!

◦ Recall the minimax template:

min
x∈Rp

max
y∈Rn

{Φ(x, y) := f(x) + ⟨y, Ax − b⟩}

Theorem (Necessary and sufficient optimality condition)
Under the Slater’s condition: relint(dom f) ∩ {x : Ax = b} , ∅, strong duality holds, where the primal and
dual problems are given by

f⋆ :=
{

min
x∈Rp

f(x)

s.t. Ax = b,
and d⋆ := max

y∈Rn
d(y).

Remarks: ◦ By definition of f⋆ and d⋆, we always have d⋆ ≤ f⋆ (weak duality).

◦ If a primal solution exists and the Slater’s condition holds, we have d⋆ = f⋆ (strong duality).
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Slater’s qualification condition

◦ Denote relint(dom f) the relative interior of the domain.

◦ The Slater condition requires
relint(dom f) ∩ {x : Ax = b} , ∅. (3)

Special cases
▶ If dom f = Rp , then (3) ⇔ ∃x̄ : Ax̄ = b .
▶ If dom f = Rp and instead of Ax = b, we have the feasible set {x : h(x) ≤ 0}, where h is Rp → Rq is

convex, then
(3) ⇔ ∃x̄ : h(x̄) < 0.
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Example: Slater’s condition

Example
Let us consider solving minx∈Dα f(x) and so the feasible set is Dα := X ∩ Aα, where

X := {x ∈ R2 : x2
1 + x2

2 ≤ 1}, Aα := {x ∈ R2 : x1 + x2 = α},

where α ∈ R.

Two cases where Slater’s condition holds and does not hold

x1

x2

0 1

1

1

2

1

2

x
1 +

x
2 = 1

2

x2
1 + x2

2  1

relative interior of D

x1

x2

0 1

1

x2
1 + x2

2  1

relative interior of D = ;

x
1 +

x
2 = p

2

Tuesday, July 1, 14

D1/2 satisfies Slater’s condition – D √
2-does not satisfy Slater’s condition

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 37



Example: Slater’s condition

Example
Let us consider solving minx∈Dα f(x) and so the feasible set is Dα := X ∩ Aα, where

X := {x ∈ R2 : x2
1 + x2

2 ≤ 1}, Aα := {x ∈ R2 : x1 + x2 = α},

where α ∈ R.

Two cases where Slater’s condition holds and does not hold

x1

x2

0 1

1

1

2

1

2

x
1 +

x
2 = 1

2

x2
1 + x2

2  1

relative interior of D

x1

x2

0 1

1

x2
1 + x2

2  1

relative interior of D = ;

x
1 +

x
2 = p

2

Tuesday, July 1, 14

D1/2 satisfies Slater’s condition – D √
2-does not satisfy Slater’s condition

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 37



Performance of optimization algorithms

f⋆ := min
x∈Rp

{
f(x) : Ax = b,

}
, (Affine-Constrained)

Exact vs. approximate solutions
▶ Computing an exact solution x⋆ to (Affine-Constrained) is impracticable
▶ Algorithms seek x⋆

ϵ that approximates x⋆ up to ϵ in some sense

A performance metric: Time-to-reach ϵ

time-to-reach ϵ = number of iterations to reach ϵ × per iteration time

A key issue: Number of iterations to reach ϵ

The notion of ϵ-accuracy is elusive in constrained optimization!
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Numerical ϵ-accuracy

◦ Unconstrained case: All iterates are feasible (no advantage from infeasibility)!
f(x⋆

ϵ ) − f⋆ ≤ ϵ

f⋆ = min
x∈Rp

f(x)

◦ Constrained case: We need to also measure the infeasibility of the iterates!
f⋆ − f(x⋆

ϵ ) ≤ ϵ !!!

f⋆ = min
x∈Rp

{
f(x) : Ax = b

}
(4)

Our definition of ϵ-accurate solutions [16]
Given a numerical tolerance ϵ ≥ 0, a point x⋆

ϵ ∈ Rp is called an ϵ-solution of (4) if{
f(x⋆

ϵ ) − f⋆ ≤ ϵ (objective residual),
∥Ax⋆

ϵ − b∥ ≤ ϵ (feasibility gap),

▶ When x⋆ is unique, we can also obtain ∥x⋆
ϵ − x⋆∥ ≤ ϵ (iterate residual).
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Numerical ϵ-accuracy

Constrained problems
Given a numerical tolerance ϵ ≥ 0, a point x⋆

ϵ ∈ Rp is called an ϵ-solution of (4) if{
f(x⋆

ϵ ) − f⋆ ≤ ϵ (objective residual),
∥Ax⋆

ϵ − b∥ ≤ ϵ (feasibility gap),

▶ When x⋆ is unique, we can also obtain ∥x⋆
ϵ − x⋆∥ ≤ ϵ (iterate residual).

General minimax problems
Since duality gap is 0 at the solution, we measure the primal-dual gap

Gap(x̄, ȳ) = max
y∈Y

Φ(x̄, y) − min
x∈X

Φ(x, ȳ) ≤ ϵ. (5)

Remarks: ◦ ϵ can be different for the objective, feasibility gap, or the iterate residual.

◦ It is easy to show Gap(x, y) ≥ 0 and Gap(x̄, ȳ) = 0 iff (x̄, ȳ) is a saddle point.
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Primal-dual gap function for nonsmooth minimization

min
x∈X

f(x) + g(Ax) = min
x∈X

max
y∈Y

f(x) + ⟨Ax, y⟩ − g∗(y)︸                               ︷︷                               ︸
Φ(x,y)

= max
y∈Y

min
x∈X

f(x) + ⟨Ax, y⟩ − g∗(y)

◦ Primal problem: minx∈X P (x) where

P (x) = max
y∈Y

Φ(x, y).

◦ Dual problem: maxy∈Y d(y) where

d(y) = min
x∈X

Φ(x, y).

◦ The primal-dual gap, i.e., Gap(x̄, ȳ), is literally (primal value at x̄) − (dual value at ȳ):

Gap(x̄, ȳ) = P (x̄) − d(ȳ) = max
y∈Y

Φ(x̄, y) − min
x∈X

Φ(x, ȳ).
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Toy example for nonnegativity of gap

◦ P (x) = 1
2 ∥x∥2 + ∥x∥1

◦ d(y) = − 1
2 ∥y∥2 − δy:∥y∥∞≤1(y)

Recall the indicator function

δy:∥y∥∞≤1(y) =
{

0, if ∥y∥∞ ≤ 1
+∞, if ∥y∥∞ > 1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
P(x)
D(y)d

d(y) =

(
� 1

2kyk2, if kyk1  1

�1, if kyk1 > 1

<latexit sha1_base64="fH/zgow5ddDoUhJ5FnhzR51zwPM="></latexit>
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Primal-dual gap function in the general case

min
x∈X

max
y∈Y

Φ(x, y) = max
y∈Y

min
x∈X

Φ(x, y)

◦ Saddle point (x⋆, y⋆) is such that ∀x ∈ Rp, ∀y ∈ Rn:

Φ(x⋆, y)
(∗)
≤ Φ(x⋆, y⋆)

(∗∗)
≤ Φ(x, y⋆).

◦ Nonnegativity of Gap:

Gap(x̄, ȳ) = max
y∈X

Φ(x̄, y) − min
x∈X

Φ(x, ȳ)

≥ Φ(x̄, y⋆) − min
x∈X

Φ(x, ȳ), by the definition of maximization

≥ Φ(x⋆, y⋆) − min
x∈X

Φ(x, ȳ), by the inequality (∗∗)

≥ Φ(x⋆, ȳ) − min
x∈X

Φ(x, ȳ), by the inequality (∗)

≥ 0, by the definition of minimization.

◦ If (x̄, ȳ) = (x⋆, y⋆), then all the inequalities will be equalities and Gap(x̄, ȳ) = 0.
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Optimality conditions for minimax

Saddle point
We say (x⋆, y⋆) is a primal-dual solution corresponding to primal and dual problems

f⋆ :=
{

min
x∈Rp

f(x)

s.t. Ax = b,
and d⋆ := max

y∈Rn
d(y) = max

y∈Rn
min

x
Φ(x, y).

if it is a saddle point of Φ(x, y) = f(x) + ⟨y, Ax − b⟩:

Φ(x⋆, y) ≤ Φ(x⋆, y⋆) ≤ Φ(x, y⋆), ∀x ∈ Rp, y ∈ Rn.

Karush-Khun-Tucker (KKT) conditions
Under our assumptions, an equivalent characterization of (x⋆, y⋆) is via the KKT conditions of the problem

min
x∈Rp

f(x) : Ax = b,

which reads {
0 ∈ ∂xΦ(x⋆, y⋆) = AT y⋆ + ∂f(x⋆),
0 = ∇yΦ(x⋆, λ⋆) = Ax⋆ − b.
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Primal approach: The Penalty Method

min
x∈Rp

{
f(x) : Ax = b

}
Penalty methods
◦ Convert constrained problem (difficult) to unconstrained (easy).

◦ Penalized function with penalty parameter µ > 0:

Fµ(x) :=
{

f(x) +
µ

2
∥Ax − b∥2

}
µ→∞⇐⇒ min

x∈Rp

{
f(x) : Ax = b

}
.

◦ Observations:
▶ Minimize a weighted combination of f(x) and ∥Ax − b∥2 at the same time.

▶ µ determines the weight of ∥Ax − b∥2.

▶ As µ → ∞, we enforce Ax = b.

▶ Other functions than the quadratic 1
2 ∥ · ∥2 are also possible e.g., exact nonsmooth penalty functions:

▶ µ∥Ax − b∥2 or µ∥Ax − b∥1

▶ They work with finite µ, but they are difficult to solve [13, Section 17.2], [4]
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Quadratic penalty: Intuition

min
x2Rp

f(x)

min
x2Rp

f(x) : Ax = b
Solve min

x2Rp
f(x) +

µk

2
kAx � bk2

µk ! 1

f(x)

kAx � bk2

unattainable

kAx � bk = 0

µ0

µ1
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Quadratic penalty: Conceptual algorithm
Quadratic penalty method (QP):

1. Choose x0 ∈ Rp and µ0 > 0.
2. For k = 0, 1, · · · , perform:

2.a. xk := arg min
x∈Rp

{
f(x) +

µk

2
∥Ax − b∥2

}
.

2.b. Update µk+1 > µk.

Theorem [13, Theorem 17.1]
Assume that f is smooth and µk → ∞. Then, every limit point x̄ of the sequence {xk} is a solution of the
constrained problem

x⋆ ∈ arg min
x∈Rp

{
f(x) : Ax = b

}
.

Limitation
◦ The minimization problems of step 2.a. of the algorithm become ill-conditioned as µk → ∞.

◦ Common improvements:
▶ Solve the subproblem inexactly, i.e., up to ϵ accuracy.
▶ Linearization to simplify subproblems (up next).
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Quadratic penalty: Linearization

Generalized quadratic penalty method:
1. Choose x0 ∈ Rp, µ0 > 0 and positive semidefinite matrix Qk.
2. For k = 0, 1, · · · , perform:

2.a. xk := arg min
x∈Rp

{
f(x) +

µk

2
∥Ax − b∥2 +

1
2

∥x − xk−1∥2
Qk

}
.

2.b. Update µk+1 > µk.

Ideas
◦ Minimize a majorizer of Fµ(x), parametrized by Qk in step 2.a..

◦ Qk = 0 gives the standard QP; Qk = I gives strongly convex subproblems.

◦ Qk = αkI − µkA⊤A, with αk ≥ µk∥A∥2 gives

xk = prox 1
αk

f

(
xk−1 −

µk

αk
A⊤(Axk−1 − b)

)
Only one proximal operator!

and picking αk = µk∥A∥2 gives

xk = prox 1
µk∥A∥2 f

(
xk−1 −

1
∥A∥2 A⊤(Axk−1 − b)

)
.
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Per-iteration time: The key role of the prox-operator

Recall: Prox-operator

proxf (x) := arg min
z∈Rp

{
f(z) +

1
2

∥z − x∥2
}

.

Key properties:
▶ single valued & non-expansive since f is a proper convex function.
▶ distributes when the primal problem has decomposable structure:

f(x) :=
m∑

i=1

fi(xi), and X := X1 × · · · × Xm.

where m ≥ 1 is the number of components.
▶ often efficient & has closed form expression. For instance, if f(z) = ∥z∥1, then the prox-operator performs

coordinate-wise soft-thresholding by 1.
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Quadratic penalty: Linearized methods
Linearized QP method (LQP) Accelerated linearized QP method (ALQP)

1. Choose x0 ∈ Rp, σ0 = 1, µ0 > 0.

2. For k = 0, 1, · · · :

2.a. xk+1 := prox 1
µk∥A∥2 f

(
xk − 1

∥A∥2 A⊤(Axk − b)

)
.

2.b. Update σk+1 s.t.
(1−σk+1)2

σk+1
= 1

σk
.

2.c. Update µk+1 = √
σk+1.

1. Choose x0, y0 ∈ Rp, τ0 = 1, µ0 > 0.

2. For k = 0, 1, · · · :

2.a. xk+1 := prox 1
µk∥A∥2 f

(
yk − 1

∥A∥2 A⊤(Ayk − b)

)
.

2.b. yk+1 := xk+1 + τk+1(1−τk)
τk

(xk+1 − xk).

2.c. Update µk+1 = µk(1 + τk+1).

2.d. Update τk+1 ∈ (0, 1) as the unique positive
root of τ3 + τ2 + τ2

k τ − τ2
k = 0.

Theorem (Convergence [17])
◦ LQP:

|f(xk) − f(x⋆)| ≤ O
(

µ0k−1/2 + µ−1
0 k−1/2

)
∥Axk − b∥ ≤ O

(
µ−1

0 k−1/2
)

◦ ALQP:
|f(xk) − f(x⋆)| ≤ O

(
µ0k−1 + µ−1

0 k−1
)

∥Axk − b∥ ≤ O
(

µ−1
0 k−1

)
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In practice: poor (worst case) performance
◦ A nonsmooth problem: SQRT Lasso

min
x∈Rp

∥Ax − b∥2 + λ∥x∥1.

Next in 
 the lecture

ALQP

100 101 102 103

iteration

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
|F

(x
)
−

F
∗
|

SQRT Lasso

ASGARD
ASGARD-R
ASGARD-DL
Chambolle Pock
Chambolle Pock-avg
Linearized ADMM
Linearized ADMM-avg
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Wrap up!

◦ Try to finish Homework #2...
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A convex proto-problem for structured sparsity

A combinatorial approach for estimating x♮ from b = Ax♮ + w
We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

x̂ ∈ arg min
x∈Rp

{∥ x ∥s : ∥ b − Ax ∥2 ≤ κ, ∥x∥∞ ≤ 1} (Ps)

with some κ ≥ 0. If κ = ∥ w ∥2, then the structured sparse x♮ is a feasible solution.

Sparsity and structure together [6]
Given some weights d ∈ Rd, e ∈ Rp and an integer input c ∈ Zl, we define

∥x∥s := min
ω

{dT ω + eT s : M

[
ω
s

]
≤ c,1supp(x) = s, ω ∈ {0, 1}d}

for all feasible x, ∞ otherwise. The parameter ω is useful for latent modeling.

A convex candidate solution for b = Ax♮ + w
We use the convex estimator based on the tightest convex relaxation of ∥ x ∥s:
x̂ ∈ arg minx∈dom(∥ · ∥s) {∥ x ∥∗∗

s : ∥ b − Ax ∥2 ≤ κ} with some κ ≥ 0, dom(∥ · ∥s) := {x : ∥ x ∥s < ∞}.
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Tractability & tightness of biconjugation

Proposition (Hardness of conjugation)
Let F (s) : 2P → R ∪ {+∞} be a set function defined on the support s = supp(x). Conjugate of F over the
unit infinity ball ∥x∥∞ ≤ 1 is given by

g∗(y) = sup
s∈{0,1}p

|y|T s − F (s).

Observations:
▶ F (s) is general set function

Computation: NP-Hard

▶ F (s) = ∥x∥s

Computation: Integer Linear Program (ILP) in general. However, if
▶ M is Totally Unimodular TU
▶ (M , c) is Total Dual Integral TDI

then tight convex relaxations with a linear program (LP, which is “usually” tractable)

Otherwise, relax to LP anyway!

▶ F (s) is submodular
Computation: Polynomial-time
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Tree sparsity [11, 5, 3, 18]

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent ≥ schild over tree T

T1supp(x) := T s ≥ 0

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: ∥x∥∗∗
s = mins∈[0,1]p {1T s : T s ≥ 0, |x| ≤ s}

⋆=
∑

G∈GH
∥xG∥∞

for x ∈ [−1, 1]p, ∞ otherwise.

The set G ∈ GH are defined as each node and all its descendants.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 16



Tree sparsity [11, 5, 3, 18]

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent ≥ schild over tree T

T1supp(x) := T s ≥ 0

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: ∥x∥∗∗
s = mins∈[0,1]p {1T s : T s ≥ 0, |x| ≤ s}

⋆=
∑

G∈GH
∥xG∥∞

for x ∈ [−1, 1]p, ∞ otherwise.

The set G ∈ GH are defined as each node and all its descendants.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 16



Tree sparsity [11, 5, 3, 18]

GH = {{1, 2, 3}, {2}, {3}} valid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent ≥ schild over tree T

T1supp(x) := T s ≥ 0

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: ∥x∥∗∗
s = mins∈[0,1]p {1T s : T s ≥ 0, |x| ≤ s} ⋆=

∑
G∈GH

∥xG∥∞

for x ∈ [−1, 1]p, ∞ otherwise.

The set G ∈ GH are defined as each node and all its descendants.
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Group knapsack sparsity [20, 8, 7]

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4

x5

x6

x7

x8

0

1

0

0

1

0

1

0

1supp(x)

support
indicator vector

sparse

1

2

2

3

1

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

knapsack
constraints vector

cu

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound cℓ ≤ BT s ≤ cu.
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Group knapsack sparsity [20, 8, 7]

�

B
T =


1 1 · · · 1 1 0 0 · · · 0

0 1 1 · · · 1 1 0 · · · 0

.
.

.

0 · · · 0 0 1 1 · · · 1 1


(p−∆+1)×p

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound cℓ ≤ BT s ≤ cu.

Biconjugate: ∥x∥∗∗
s =

{
∥x∥1 if x ∈ [−1, 1]p,BT |x| ≤ cu,
∞ otherwise

For the neuronal spike example, we have cu = 1.
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Group knapsack sparsity [20, 8, 7]

(left) ∥x∥∗∗
s ≤ 1 (middle) ∥x∥∗∗

s ≤ 1.5 (right) ∥x∥∗∗
s ≤ 2 for G = {{1, 2}, {2, 3}}

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound cℓ ≤ BT s ≤ cu.

Biconjugate: ∥x∥∗∗
s =

{
∥x∥1 if x ∈ [−1, 1]p,BT |x| ≤ cu,
∞ otherwise

For the neuronal spike example, we have cu = 1.
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Group knapsack sparsity example: A stylized spike train

▶ Basis pursuit (BP): ∥x∥1
▶ TU-relax (TU):

∥x∥∗∗
s =

{
∥x∥1 if x ∈ [−1, 1]p,BT |x| ≤ cu,
∞ otherwise
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Figure: Recovery for n = 0.18p.
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Group knapsack sparsity: A simple variation

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4

x5

x6

x7

x8

0

1

0

0

1

0

1

0

1supp(x)

support
indicator vector

sparse

1

2

2

3

1

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

knapsack
constraints vector

cu

Structure: We seek the signal with the minimal overall group allocation.

Objective: 1T s → ∥x∥ω =
{

minω∈Z++ ω if x ∈ [−1, 1]p,BT s ≤ ω1,
∞ otherwise

Linear description: A valid support obeys budget constraints over G

BT s ≤ ω1

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.

Biconjugate: ∥x∥∗∗
s =

{
maxG∈G ∥xG∥1 if x ∈ [−1, 1]p,

∞ otherwise
Remark: The regularizer is known as exclusive Lasso [20, 15].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 16



Group cover sparsity: Minimal group cover [2, 14, 9]

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4

x5

x6

x7

x8

0

1

0

0

1

0

1

0

1supp(x)

support
indicator vector

sparse

0

0

0

1

0

group “support”
indicator vector

Ê

group sparse

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

Structure: We seek the signal covered by a minimal number of groups.

Objective: 1T s → dT ω

Linear description: At least one group containing a sparse coefficient is selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.

Remark: Weights d can depend on the sparsity within each groups (not TU) [6].
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Group cover sparsity: Minimal group cover [2, 14, 9]

Figure: G = {{1, 2}, {2, 3}}, unit group weights d = 1.

Structure: We seek the signal covered by a minimal number of groups.
Objective: 1T s → dT ω

Linear description: At least one group containing a sparse coefficient is selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.

Biconjugate: ∥x∥∗∗
ω = minω∈[0,1]M {dT ω : Bω ≥ |x|} for x ∈ [−1, 1]p, ∞ otherwise

⋆= minvi∈Rp {
∑M

i=1 di∥vi∥∞ : x =
∑M

i=1 vi, ∀supp(vi) ⊆ Gi},
Remark: Weights d can depend on the sparsity within each groups (not TU) [6].
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ω = minω∈[0,1]M {dT ω : Bω ≥ |x|} for x ∈ [−1, 1]p, ∞ otherwise

⋆= minvi∈Rp {
∑M

i=1 di∥vi∥∞ : x =
∑M

i=1 vi, ∀supp(vi) ⊆ Gi},
Remark: Weights d can depend on the sparsity within each groups (not TU) [6].
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Budgeted group cover sparsity

G2 = {1, 2, 3, 4, 5}
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Structure: We seek the sparsest signal covered by G groups.

Objective: dT ω → 1T s

Linear description: At least one of the G selected groups cover each sparse coefficient.

Bω ≥ s,1T ω ≤ G

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .

When
[
B

1

]
is an interval matrix, it is TU.
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G1 = {1}

Structure: We seek the sparsest signal covered by G groups.
Objective: dT ω → 1T s

Linear description: At least one of the G selected groups cover each sparse coefficient.

Bω ≥ s,1T ω ≤ G

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .

When
[
B

1

]
is an interval matrix, it is TU.

Biconjugate: ∥x∥∗∗
ω = minω∈[0,1]M {∥x∥1 : Bω ≥ |x|,1T ω ≤ G}

for x ∈ [−1, 1]p, ∞ otherwise.
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Budgeted group cover example: Interval overlapping groups

▶ Basis pursuit (BP): ∥x∥1
▶ Sparse group Lasso (SGLq):

(1 − α)
∑
G∈G

√
|G|∥xG∥q + α∥xG∥1

▶ TU-relax (TU):

∥x∥∗∗
ω = min

ω∈[0,1]M
{∥x∥1 : Bω ≥ |x|, 1T

ω ≤ G}

for x ∈ [−1, 1]p, ∞ otherwise.
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Figure: Recovery for n = 0.25p, s = 15, p = 200, G = 5 out of M = 29 groups.
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Group intersection sparsity [10, 19, 1]

G2 = {1, 2, 3, 4, 5}
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Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s → dT ω

Linear description: All groups containing a sparse coefficient are selected

Hks ≤ ω, ∀k ∈ P

where Hk(i, j) =
{

1 if j = k, j ∈ Gi

0 otherwise
, which is TU.

Remark: For hierarchical GH , group intersection and tree sparsity models coincide.
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Group intersection sparsity [10, 19, 1]

G = {{1, 2}, {2, 3}}, unit group weights d = 1

(left) intersection (right) cover.
Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s → dT ω

Linear description: All groups containing a sparse coefficient are selected
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{
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0 otherwise
, which is TU.

Biconjugate: ∥x∥∗∗
ω = minω∈[0,1]M {dT ω : Hk|x| ≤ ω, ∀k ∈ P}

⋆=
∑

G∈G ∥xG∥∞

for x ∈ [−1, 1]p, ∞ otherwise.

Remark: For hierarchical GH , group intersection and tree sparsity models coincide.
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Beyond linear costs: Graph dispersiveness

Figure: (left) ∥x∥∗∗
s = 0 (right) ∥x∥∗∗

s ≤ 1 for E = {{1, 2}, {2, 3}} (chain graph)

Structure: We seek a signal dispersive over a given graph G(P, E)

Objective: 1T s →
∑

(i,j)∈E sisj (non-linear, supermodular function)

Linearization:

∥x∥s = minz∈{0,1}|E| {
∑

(i,j)∈E zij : zij ≥ si + sj − 1}

When edge-node incidence matrix of G(P, E) is TU (e.g., bipartite graphs), it is TU.
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Beyond linear costs: Graph dispersiveness

Figure: (left) ∥x∥∗∗
s = 0 (right) ∥x∥∗∗

s ≤ 1 for E = {{1, 2}, {2, 3}} (chain graph)

Structure: We seek a signal dispersive over a given graph G(P, E)

Objective: 1T s →
∑

(i,j)∈E sisj (non-linear, supermodular function)

Linearization:

∥x∥s = minz∈{0,1}|E| {
∑

(i,j)∈E zij : zij ≥ si + sj − 1}

When edge-node incidence matrix of G(P, E) is TU (e.g., bipartite graphs), it is TU.
Biconjugate: ∥x∥∗∗

s =
∑

(i,j)∈E (|xi| + |xj | − 1)+ for x ∈ [−1, 1]p, ∞ otherwise.
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