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Recall: Wasserstein GANs formulation

◦ Ingredients:

▶ fixed noise distribution pΩ (e.g., normal)
▶ target distribution µ̂n (natural images)
▶ X parameter class inducing a class of functions (generators)
▶ Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [4]
Define a parameterized function dy(a), where y ∈ Y such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN optimization problem is given by

min
x∈X

(
max
y∈Y

Ea∼µ̂n [dy(a)]−Eω∼pΩ [dy(hx(ω))]
)

. (1)
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Difficulties of GAN training
Which Training Methods for GANs do actually Converge?

(a) SimGD (b) AltGD

Figure 2. Training behavior of the Dirac-GAN. The starting iterate
is marked in red.

✓ = 0, there is not even an optimal discriminator parameter
for the Dirac-GAN. Indeed, we found that two-time scale
updates as suggested by Heusel et al. (2017) do not help con-
vergence towards the Nash-equilibrium (see Figure 22 in the
supplementary material). However, our example seems to
be a prototypical situation for (unregularized) GAN training
which usually deals with distributions that are concentrated
on lower dimensional manifolds (Arjovsky & Bottou, 2017).

We now take a closer look at the discretized system.

Lemma 2.4. For simultaneous gradient descent, the Ja-
cobian of the update operator Fh(✓,  ) has eigenvalues
�1/2 = 1 ± hf 0(0)i with absolute values

p
1 + h2f 0(0)2

at the Nash-equilibrium. Independently of the learning rate,
simultaneous gradient descent is therefore not stable near
the equilibrium. Even stronger, for every initial condition
and learning rate h > 0, the norm of the iterates (✓k,  k)
obtained by simultaneous gradient descent is monotonically
increasing.

The behavior of simultaneous gradient descent for our ex-
ample problem is visualized in Figure 2a.

Similarly, for alternating gradient descent we have

Lemma 2.5. For alternating gradient descent with ng gen-
erator and nd discriminator updates, the Jacobian of the
update operator Fh(✓,  ) has eigenvalues

�1/2 = 1 � ↵2

2
±

s✓
1 � ↵2

2

◆2

� 1. (5)

with ↵ :=
p

ngndhf 0(0). For ↵  2, all eigenvalues are
hence on the unit circle. Moreover for ↵ > 2, there are
eigenvalues outside the unit circle.

Even though Lemma 2.5 shows that alternating gradient
descent does not converge linearly to the Nash-equilibrium,
it could in principle converge with a sublinear convergence
rate. However, this is very unlikely because – as Lemma 2.3
shows – even the continuous system does not converge. In-
deed, we empirically found that alternating gradient descent
oscillates in stable cycles around the equilibrium and shows
no sign of convergence (Figure 2b).

2.3. Where do instabilities come from?

Our simple example shows that naive gradient based GAN
optimization does not always converge to the equilibrium
point. To get a better understanding of what can go wrong
for more complicated GANs, it is instructive to analyze
these instabilities in depth for this simple example problem.

To understand the instabilities, we have to take a closer
look at the oscillatory behavior that GANs exhibit both for
the Dirac-GAN and for more complex systems. An intu-
itive explanation for the oscillations is given in Figure 1:
when the generator is far from the true data distribution,
the discriminator pushes the generator towards the true data
distribution. At the same time, the discriminator becomes
more certain, which increases the discriminator’s slope (Fig-
ure 1a). Now, when the generator reaches the target distri-
bution (Figure 1b), the slope of the discriminator is largest,
pushing the generator away from the target distribution. As
a result, the generator moves away again from the true data
distribution and the discriminator has to change its slope
from positive to negative. After a while, we end up with a
similar situation as in the beginning of training, only on the
other side of the true data distribution. This process repeats
indefinitely and does not converge.

Another way to look at this is to consider the local behavior
of the training algorithm near the Nash-equilibrium. Indeed,
near the Nash-equilibrium, there is nothing that pushes the
discriminator towards having zero slope on the true data
distribution. Even if the generator is initialized exactly on
the target distribution, there is no incentive for the discrimi-
nator to move to the equilibrium discriminator. As a result,
training is unstable near the equilibrium point.

This phenomenon of discriminator gradients orthogonal to
the data distribution can also arise for more complex exam-
ples: as long as the data distribution is concentrated on a
low dimensional manifold and the class of discriminators
is big enough, there is no incentive for the discriminator to
produce zero gradients orthogonal to the tangent space of
the data manifold and hence converge to the equilibrium
discriminator. Even if the generator produces exactly the
true data distribution, there is no incentive for the discrim-
inator to produce zero gradients orthogonal to the tangent
space. When this happens, the discriminator does not pro-
vide useful gradients for the generator orthogonal to the data
distribution and the generator does not converge.

Note that these instabilities can only arise if the true data
distribution is concentrated on a lower dimensional man-
ifold. Indeed, Nagarajan & Kolter (2017) showed that -
under some suitable assumptions - gradient descent based
GAN optimization is locally convergent for absolutely con-
tinuous distributions. Unfortunately, this assumption may
not be satisfied for data distributions like natural images to

Figure: Mode collapse (left). Simultaneous vs alternating generator/discriminator updates (right).

◦ Heuristics galore!

◦ Difficult to enforce 1-Lipschitz constraint

◦ Overall a difficult minimax problem: Scalability, mode collapse, periodic cycling...

◦ Privacy concerns due to memorization
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Application to 25 Gaussians: Algorithms matter [39]
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Abstract minmax formulation
Minimax formulation

min
x∈X

max
y∈Y

Φ(x, y), (2)

where
▶ Φ is differentiable and nonconvex in x and nonconcave in y,
▶ The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

A buffet of negative results [22]
“Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point
exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an
approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such
point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient
Descent/Ascent update dynamics.”
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The difficulty of the nonconvex-nonconcave setting

Minimax formulation
Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

min
x∈X

max
y∈Y

Φ(x, y), (3)

where Φ is differentiable and nonconvex in x and nonconcave in y.

From minimax to minimization
Assume Φ(x, y) = f(x) for all y. The minimax optimization problem then seeks to find x⋆ such that

f(x⋆) ≤ f(x), ∀x ∈ Rp,

where x⋆ is a global minimum of the nonconvex function f .

▶ Finding x⋆ is NP-Hard even when f is smooth! (see the complexity supplementary material)

▶ Finding solutions to a nonconvex-nonconvex min-max problem is harder in general.
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Question 1 with a twist: Where do the algorithms want to converge?

Definition (Saddle points & Local Nash equilibria)
The point (x⋆, y⋆) is called a saddle-point or a local Nash equilibrium (LNE) if it holds that

Φ (x⋆, y) ≤ Φ (x⋆, y⋆) ≤ Φ (x, y⋆) (Saddle Point / LNE)

for all x and y within some neighborhood of x⋆ and y⋆, i.e., ∥x− x⋆∥ ≤ δ and ∥y− y⋆∥ ≤ δ for some δ > 0.

Necessary conditions
Through a Taylor expansion around x⋆ and
y⋆ one can show that a LNE implies,

∇xΦ(x, y),−∇yΦ(x, y) = 0
∇xxΦ(x, y),−∇yyΦ(x, y) ⪰ 0

Figure: Φ(x, y) = x2 − y2
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Saddles of different shapes

Figure: The monkey saddle Φ(x, y) = x3 − 3xy2 (left). The weird saddle Φ(x, y) = −x2y2 + xy (right) [47].
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Recall SGD results from Lecture 10

min
x:x∈X

f(x)

◦ For a non-convex, smooth f , we have that

1. SGD converges to the critical points of f as N →∞.

2. SGD avoids strict saddles/traps (λmin(∇2f(x∗)) < 0) almost surely.

3. SGD remains close to Hurwicz minimizers (i.e., x∗ : λmin(∇2f(x∗)) > 0 almost surely).

◦ Nail in the coffin:

▶ not even sure if we obtain stochastic descent directions by approximately solving inner problems in GANs.

▶ GANs are fundamentally different from adversarial training!

◦ Need more direct approaches with the stochastic gradient estimates.
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Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x, y), define V (z) = [∇xΦ(x, y),−∇yΦ(x, y)] with z = [x, y].

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
▶ Gradient Descent Ascent (GDA)
▶ Proximal point method (PPM) [69, 33]
▶ Extra-gradient (EG) [49]
▶ Optimistic GDA (OGDA) [85, 61]
▶ Reflected-Forward-Backward-Splitting (RFBS) [13]

◦ EG and OGDA are approximations of the PPM
▶ zk+1 = zk − αV (zk).
▶ zk+1 = zk − αV (zk+1).
▶ zk+1 = zk − αV (zk − αV (zk))
▶ zk+1 = zk − α[2V (zk)− V (zk−1)]
▶ zk+1 = zk − αV (2zk − zk−1)
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Comparison of convergence rates for smooth convex-concave minimax

Method Assumption on Φ(·, ·) Convergence rate Reference Note
PP convex-concave O

(
ϵ−1

)
[70]

PP strongly convex- strongly concave O
(

κ log(ϵ−1)
)

[70] Implicit algorithm

PP Bilinear O
(

κ log(ϵ−1)
)

[70]

EG convex-concave O
(

ϵ−1
)

[29]

EG strongly convex- strongly concave O
(

κ log(ϵ−1)
)

[64, 29] 1 extra-gradient evaluation per iteration

EG Bilinear O
(

κ log(ϵ−1)
)

[64, 29]

OGDA convex-concave O
(

ϵ−1
)

[29]

OGDA strongly convex- strongly concave O
(

κ log(ϵ−1)
)

[64, 29] no obvious downside

OGDA Bilinear O
(

κ log(ϵ−1)
)

[64, 29]
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Minimax is more difficult than just optimization [40]
◦ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [8].

▶ For optimization, {attracting ICT} ≡ {solutions}

▶ For minimax, {attracting ICT} ≡ {solutions} ∪ {spurious sets}

◦ “Almost” bilinear , bilinear:

Φ(x, y) = xy + ϵϕ(x), ϕ(x) =
1
2

x2 −
1
4

x4

◦ The “forsaken” solutions:

Φ(y, x) = y(x−0.5)+ϕ(y)−ϕ(x), ϕ(u) =
1
4

u2−
1
2

u4+
1
6

u6
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When do the algorithms converge?

Assumption (weak Minty variational inequality)
For some ρ ∈ R, weak MVI implies

⟨V (z), z − z⋆⟩ ⩾ ρ∥V (z)∥2, for all z ∈ Rn. (4)

◦ A variant EG+ converges when ρ > −1/8L

▶ Diakonikolas, Daskalakis, Jordan, AISTATS 2021.
◦ It still cannot handle the examples of [40].

z⋆z

−V(z)

Figure: The operator V (z) is allowed to point away from
the solution by some amount when ρ is negative.

◦ Complete picture under weak MVI (ICLR Spotlight):
▶ Pethick, Lalafat, Patrinos, Fercoq, Cevher; 2021.
▶ constrained and regularized settings with

ρ > −1/2L

▶ matching lower bounds
▶ stochastic variants handling the examples of [40]
▶ adaptive variants handling the examples of [40]
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An alternative proposal: From pure to mixed Nash equilibrium (NE)

◦ Rethinking minimax problem as pure strategy game formulation

min
x∈X

max
y∈Y

Φ(x, y)

◦ A corresponding mixed strategy formulation

min
p∈M(X )

max
q∈M(Y)

Ex∼pEy∼q [Φ(x, y)]

▶ M(Z) B {all randomized strategies on Z}
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GAN training as infinite dimensional matrix games
◦ A different way of looking at GAN objective

▶ Iph B
∫

h dp for a measure p and function h (Riesz representation)

▶ the linear operator G and its adjoint G†:

(Gq)(x) B Ey∼q [Φ(x, y)]

(G†p)(y) B Ex∼p [Φ(x, y)] ,

where G :M(Y)→ ϕ(X ), and G† :M(X )→ ϕ(Y)

◦ Mixed NE formulation ≃ finite two-player games

min
p∈M(X )

max
q∈M(Y)

Ex∼pEy∼q [Φ(x, y)]

⇕
min

p∈M(X )
max

q∈M(Y)
⟨p, Gq⟩

▶ If X and Y are finite ⇒ mirror descent
▶ We can solve this infinite dimensional problem via sampling: Mirror descent + Langevin dynamics [39]
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Escaping traps with the mixed-NE concept1

max
ω∈[−2,2]

min
x∈[−2,2]

−ω2x2 + ωx
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1K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics" NeurIPS 2020.
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Application: Noisy action robust reinforcement learning1

1K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics" NeurIPS 2020.
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Two natural questions...

1. Can we learn natural distributions without needing to solve a difficult min-max objective?

2. What is the role of a NN architecture in robustness?
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The sampling problem

◦ We assume that a computer can generate a uniform random variable U ∈ [0, 1].

◦ We want simulations of random variables with more complicated distributions.

Sampling problem
Let π be a distribution of interest over Rp, with density

π(a) =
exp(−f(a))∫
Rp e−f(u)du

.

Is it possible to generate samples ai’s that are approximately distributed according to π (i = 1, . . . , n)?

Remarks: ◦ The notion of closeness to the target π will depend on the application.

◦ Common metrics are the TV norm, the KL divergence and Wassertein distances.

Definition
The function f is called the potential of π. The gradient of −f , i.e, −∇af(a) = ∇a log(π(a)), is called the
score or the Stein score of π.
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Iterative refinement like in optimization: MCMC
◦ Just like in optimization, we can iteratively transform an initial guess a0 to get close to a sample from π.

◦ Given oracle access to ∇f , Langevin Monte Carlo can output a variable close to π.

Langevin Monte Carlo (LMC)
The Langevin Monte Carlo algorithm, or Unadjusted Langevin Algorithm, is defined by the following recursion

ak+1 = ak − ηk∇f(ak) +
√

2ηkzk+1

where ηk is the step-size and (zk)k is a sequence of i.i.d N (0, Ip) random variables.

Remarks: ◦ LMC is actually a biased discretization of a gradient flow in the space of measures [46, 80].

◦ LMC is similar to the perturbed SGD we saw in Lecture 10, whose objective is to minimize f .

◦ Sampling can be faster than optimization in restricted settings [60].

Variants
▶ LMC (or ULA) is a discretization of an SDE - the overdamped Langevin diffusion.
▶ The underdamped Langevin diffusion yields analogues of Nesterov acceleration for sampling [59].
▶ For constrained distributions, projected [10, 50] and mirrored [38, 1] versions exist.
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Langevin Monte Carlo
◦ Extremely well studied: convergence of the algorithm established in the broadest settings [18].

Reference W2 TV KL

[24] - Õ(Lp3ϵ−4) Õ(Lp3ϵ−2)
[25] - Õ(L2p5ϵ−2) -
[21] Õ(Lp9ϵ−6) - -
[18] - Õ(L2p4ϵ−2) Õ(L2p4ϵ−1)
[54] Õ(L(f)2p4C3

P ϵ−4) - -
[71] Õ(Lp9ϵ−6) Õ(Lp3ϵ−3) Õ(Lp3ϵ− 3

2 )

Table: Complexity of obtaining an ϵ-close sample. L is the smoothness constant of f , Cp is the Poincare constant [14]. Õ
ignores logarithmic terms.

Definition
TV Norm and KL divergence Let p, q be two probability distributions on (Rp,B(Rp)),

TV(p, q) = sup
E∈B

|p(E)− q(E)| KL(p||q) = Ep

[
log

(p
q

)]

Takeaway message
If the score of the target distribution is known, sampling can be provably achieved for a broad class of targets.
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Learning the score

Figure: The score is the vector field pointing to higher density regions [74].

◦ The key quantity we need is ∇a log(π(a)).

Hyvärinen’s trick [43]
Given samples from a data distribution π, it is possible to learn ∇a log(π(a)) via integration-by-parts.

Remark: ◦ Originally proposed to learn unnormalized parametric distributions [43].
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Hyvärinen’s trick
◦ Approach: Parameterize the vector field with a neural network hx : Rp → Rp and approximate the score via

min
x∈X

Ea∼π

[
∥hx(a)−∇ log π(a)∥2

2
]

.

Integration by parts.

1
2
Ea∼π [∥∇a log p(a)− hx(a)∥2

2] =
∫ (1

2
∥hx(a)∥2 − hx(a)T ∇ap(a)

p(a)
+

1
2
∥∇ log p(a)∥2

)
p(a)da

=
1
2
Ea∼π [∥hx(a)∥2]−

∫
hx(a)T∇ap(a)da + constant

=
1
2
Ea∼π [∥hx(a)∥2] +

∫
tr(∇ahx(a))p(a)da + constant

= Ea∼π

[1
2
∥hx(a)∥2 + tr(∇ahx(a))

]
+ constant

≃
1
n

N∑
i=1

(1
2
∥hx(ai)∥2 + tr(∇ahx(ai))

)
+ constant.

□
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Hyvärinen’s trick

Implementable score matching loss
Given independent samples ai (i = 1, . . . , n) of the target distribution π, we can estimate the score by solving

min
x∈X

Ea∼π

[
tr(Jhx (a)) + ∥hx(a)∥2

2
]
≃

1
n

n∑
i=1

(1
2
∥hx(ai)∥2 + tr(∇ahx(ai))

)
, (5)

where Jhx (a) denotes the Jacobian of hx at a.

Remark: ◦ Optimizing this loss requires the computation of a neural network Hessian.

◦ Sliced score matching [75] and denoising score matching [79] circumvent this expensive step.
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Weaknesses of score matching

Figure: µ and π are very close in Fisher divergence but do not have the same mode mass [6].

Caveats
Score-matching using Hyvärinen’s trick is equivalent to solving

min
x∈X

J(π||µx). (6)

where J is the Fisher divergence [58] and µx is the distribution whose score is given by hx. Unfortunately,
closeness in Fisher divergence does not necessarily imply closeness in other distances.

Remarks: ◦ Score matching is not always the most sample efficient [48].

◦ The MLE estimator or minimizing KL may be more efficient.
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What about natural distributions?
Natural distributions: Manifold hypothesis
A natural distribution π, like that of images does not admit a density of the form e−f . It is assumed to be
supported on a low dimensional manifold. Can we still perform sampling when there is no defined score to learn ?

Figure: Samples from stable diffusion 3 [28].
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A denoising perspective on sampling

◦ Denoising corresponds to outputting the best guess for a random variable X given a noisy version Xnoisy.

◦ The optimal denoising function denoise can be defined as the one minimizing the mean squared error:

denoise⋆ = arg min
denoise

E[(X − denoise(Xnoisy))2].

Optimal denoising and the score function (Tweedie’s formula [27])
Let X be a random variable and define its noisy version Xσ = X + σZ, where Z is a standard Gaussian. Then,
the optimal denoising function that outputs the best guess for X given Xσ is the conditional expectation
E[X|Xσ ]. Moreover, the conditional expectation can be computed as follows:

E[X|Xσ ] = Xσ + σ2∇ log πσ(Xσ).

where πσ is the density of Xσ .

Remarks: ◦ Denoising corresponds to taking a gradient step along the score!

◦ Learning the score is the same as learning how to denoise.
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Examples of optimal denoising on MNIST

Figure: Denoising MNIST from various noise levels

Observations: ◦ Notice that denoising from high noise levels is an averaging of many samples.

◦ The denoising outputs a true digit as the noise level decreases.

Takeaway message
The conditional expectation E[X|Xσ ] is a good denoiser when σ is small. When σ is large, the conditional
expectation is an average of too many samples. Denoising from a high noise level is hard.
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How to sample with a denoiser
◦ Given a denoiser, the basic recipe for generating a new sample is the following:

▶ Generate a noisy sample Xnoisy = X + tZ.

▶ Denoise it to obtain X.

Remarks: ◦ How do we obtain a noisy sample if we do not even know how to obtain X?
◦ If t is large enough then Xnoisy is very close to being a Gaussian.
◦ Step 1 then becomes easy but recall that denoising from high noise levels is hard.
◦ How do we balance these tradeoffs ?
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Figure: As t increases the distribution of Xnoisy becomes more Gaussian.
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The answer: Diffusion models
◦ Diffusion models breakdown the denoising task into several smaller denoising steps.
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Figure: The vertical red line corresponds to the output of the denoiser, the blue density line is the actual distribution that needs
to be approximated. Denoising from a large t to 0 directly leads to misalignment of the denoiser and the true target.

◦ Instead of denoising from large noise levels, diffusion models denoise progressively:
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Figure: The denoiser (red vertical line) aligns with the distribution when making smaller denoising steps.
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An interpretation of the mathematical foundations for score-based generation

Progressively destroy an image and return back
Diffusion models progressively add noise to an image until it corresponds to pure noise. While doing so they
learn the path going in the reverse direction from noise to image.
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Analyzing what happens during the progressive denoising
◦ We can gain more understanding about the denoising process

▶ The Fourier spectrum of the image provides a revealing insight
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Figure: Notice that the images start of with a flat spectrum (white noise) and the frequeny profile takes shape progressively.
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Stochastic Differential Equations (SDE) formalism
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Score-based Generative Models with SDEs - Forward process
 

  

Forward SDEData Prior DataReverse SDE

  

Figure: The forward process: going from data distribution to noise [76].

Forward diffusion
Choose a diffusion process of the form

dat = f(at, t)dt + g(t)dwt (7)

where f and g are functions of your choice such that a0 ∼ p0 = pdata and aT is easy to sample from for some
T > 0 (e.g., a Gaussian).
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Reverse diffusion 

  

Forward SDEData Prior DataReverse SDE

  

Figure: The reverse process: going from noise to data distribution [76].

Reversing the SDE
The reverse of a diffusion process, as shown by [3], is a diffusion process given by

dat =
[
f(at, t)− g2(t)∇a log pt(a)

]
dt + g(t)dw̄t

where w̄ flows backward from T to 0 and dt is a negative time step.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 39/ 57



Joint training of the score network

Estimating scores for the SDE
Train a time dependent score-based model hx(a, t) by solving

x⋆ = arg min
x

Et∼Unif([0,T ])
[
λ(t)Ea0Eat|a0 [∥∇at log p0→t(at|a0)− hx(at, t)∥2]

]
,

where p0→t(at|a0) is the transition kernel from a0 to at and λ is a positive weight function.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 57



Theoretical guarantees

Sampling is as hard as learning the score [15]
Let q be a bounded data distribution. If the score estimation error in L2 is at most O(ϵ), then with an
appropriate choice of step size, the reverse diffusion outputs a measure which is ϵ-close in total variation (TV)
distance to q in O(L2p/ϵ2) iterations, where L is the Lipschitz constant of ∇ log q, and p is the dimension of
the input.

Question: ◦ How hard is it to learn the score ?

Learning “natural” distributions is hard
No polynomial time algorithm can learn the pushforward of a Gaussian by a single layer neural network.

Remark: ◦ In the statistical query model, no algorithm can learn the score efficiently [17].

◦ Neural network required at least two hidden layers and poly(p) neurons [16].

◦ A sample complexity bound for score-matching with rate 1√
n

[84].
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Modern tricks to generate appealing images

Diffusion models in practice
Additional components are
▶ Diffusion models conditioned on a text embedding [68].
▶ Classifier-guidance [68], or classifier free guidance, for better conditional generation [37].
▶ Sequence or cascade of conditional super-resolution diffusion models to increase resolution [36, 72].

Question: ◦ Is it better than GANs due to Graduate Student Descent?
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Recall: from empirical risk minimization to minimax optimization

Definition (Empirical Risk Minimization (ERM))
Let hx : Rp → R be a model with parameters x and let {(ai, bi)}n

i=1 be
samples with bi ∈ {−1, 1} and ai ∈ Rp. The ERM problem reads

min
x

{
Rn(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where L(hx(ai), bi) is the loss on the sample (ai, bi).

Robustness examples in ML
▶ minx

{
1
n

∑n

i=1

[
maxη:∥η∥∞≤ϵ L (hx (ai+η) , bi)

]}
Adversarial training [42].

▶ minx
{

1
n

∑n

i=1

[
maxη:∥η∥2≤ϵ L(hx+η (ai), bi)

]}
ϵ-stability training [9],

Sharpness-aware minimization [31].
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Robustness in deep learning: worst-case metric

Definition (Lipschitz constant with respect to the input)
The Lipschitz constant of a differentiable h is L = supa∈Rp ∥∇ahx(a)∥⋆, where ∥·∥⋆ is the dual norm.

Remarks: ◦ Lipschitz constant can be used to describe the worst-case robustness.

◦ [11, 12] claim that over-parameterization is necessary for the worst-case robustness.

◦ Lipschitz constant theoretically correlates with the generalization ability of NN classifiers [7].

◦ There is a trade off between perturbation stability and and approximation ability of NNs [23].
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Robustness in deep learning: average-case metric

Definition (Perturbation Stability [83])
The perturbation stability of a neural network hx(a) is defined as follows:

P(h, ϵ) = Ea,â,x

∥∥∇ahx(a)⊤(a − â)
∥∥

2
, ∀a ∼ DA, â ∼ Unif(B(ϵ, a)) .

where x is the neural network parameter, DA is the input data distribution, and ϵ is the perturbation radius.
Unif(B(ϵ, a)) means the uniform distribution inside the sphere with the center a and radius ϵ.

Remarks: ◦ Average-case robustness may be more meaningful in practice.

◦ Perturbation stability can be used to describe the average-case robustness.
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Robustness in deep learning: estimation of Lipschitz constant

◦ Goals: Compute better (tractable) upper bounds on the Lipschitz constant of NNs.

◦ Applications: Worst-case robustness certification/training.

Table: A comparison of methods for Lipschitz constant estimation.

Bound layers norm quality method

[67] single ℓ∞ good SDP

LipSDP [30] any ℓ2 good SDP

Product any {1, 2, · · · ,∞} bad various

LiPopt [51] any {1, 2, · · · ,∞} better LP/SDP

LipMIP [45] any {1, 2, · · · ,∞} exact LP/IP
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Robustness in deep learning: impact of the NN architecture
◦ It is important to understand the impact of the architecture design choices in NN training

◦ As a running example, let us consider an L-layer fully-connected neural network:

h(0)(a) = a,

h(l)(a) =

activationy
σ


weight

↓[
Xl

] input features
↓[

h(l−1)(a)

],

hx(a) = h(L)(a) =
1
α
σ

(
XLh(L−1)(a)

)
, x := [X1, X2, · · · , XL] .

(L-Layer NN)

▶ Parameters: X1 ∈ Rm×p, XL ∈ R1×m, Xl ∈ Rm×m for l = 2, 3, · · · , L− 1 (weights).

▶ Initialization: X1 ∼ N (0, β2
1), XL ∼ N (0, β2

L), Xl ∼ N (0, β2) for l = 2, 3, · · · , L− 1 (weights).

▶ Activation function ReLU: σ(·) = max(·, 0) : R→ R.

▶ Without loss of generality, we will avoid the bias variables in the sequel.
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Robustness in deep learning: lazy-training

Definition (Lazy-training (Linear) regime [56])
Define an L-layer fully-connected ReLU NN via (L-Layer NN). Let x(t) := [X1(t), X2(t), . . . , XL(t)] represent
the weights of network at training time t. As m→∞, if the following condition holds

sup
t∈[0,+∞)

∥Xl(t)−Xl(0)∥2
∥Xl(0)∥2

→ 0, ∀l ∈ [L] .

then the NN training dynamics falls into the lazy-training regime.

Remarks: ◦ [19] identify the lazy training behavior for m→∞.

◦ In the lazy training, NN parameters stay close to initialization during the training.

◦ The gradient flow of the NN effectively follows the linearization of the NN in lazy training.

◦ We also refer to the regime with this behavior as the linear regime.

◦ Lazy training has been extensively studied both empirically and theoretically [44, 53, 5].

◦ See further the Neural Tangent Kernel Supplementary Lecture.
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Robustness in deep learning: visualization for lazy training regime

X(0) X(t)

lazy training regime

Lecun, He

NTK

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ 0

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 20, 57].
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Robustness in deep learning: initialization in deep ReLU NNs

◦ Initialization: X1 ∼ N (0, β2
1), XL ∼ N (0, β2

L), Xl ∼ N (0, β2) for l = 2, 3, · · · , L− 1 (weights).

Table: Some commonly used initializations in neural networks.

Initialization name β2
1 β2 β2

L α

LeCun [52] 1
p

1
m

1
m

1

He [35] 2
p

2
m

2
m

1

NTK [2] 2
m

2
m

1 1

Xavier [32] 2
m+p

1
m

2
m+1 1

Mean-field [62] 1 1 1 m

E et al. [26] 1 1 β2
c 1

Figure: Phase diagram of two-layer ReLU NNs at
infinite-width limit in [56].
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Robustness in deep learning: main results (Lazy-training regime)

Theorem: perturbation stability ≲ Func(m, L, β)
Assumption Initialization Our bound for P(f, ϵ)/ϵ Trend of width m [1] Trend of depth L [1]

∥x∥2 = 1

Lecun initialization
(√

L3m
p

e−m/L3
+

√
1
p

)
(

√
2

2 )L−2 ↗ ↘ ↘

He initialization
√

L3m
p

e−m/L3
+

√
1
p

↗ ↘ ↗

NTK initialization
√

L3m
p

e−m/L3
+ 1 ↗ ↘ ↗

[1] The larger perturbation stability means worse average robustness.

◦ Takeaway messages: the good (width), the bad (depth), the ugly (initialization)

▶ width helps robustness in the over-parameterized regime
▶ depth helps robustness in Lecun initialization but hurts robustness in He/NTK initialization
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◦ Takeaway messages: the good (width), the bad (depth), the ugly (initialization)
▶ width helps robustness in the over-parameterized regime

▶ depth helps robustness in Lecun initialization but hurts robustness in He/NTK initialization
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[1] The larger perturbation stability means worse average robustness.

◦ Takeaway messages: the good (width), the bad (depth), the ugly (initialization)
▶ width helps robustness in the over-parameterized regime
▶ depth helps robustness in Lecun initialization but hurts robustness in He/NTK initialization
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Robustness in deep learning: width and depth & other trade-offs

Table: Comparison of the orders of the bound of three related works under NTK initialization. (The original result of [81] can
be reduced to

√
mL as the m

(log m)6 ≥ L12 condition is required).

Metrics [83] [81] [41]

P(h, ϵ)/ϵ
√

L3me−m/L3 + 1 L2m1/3√log m +
√

mL 2
3L−5

2
√

m

Remarks: ◦ Consider the over-parameterized regime under NTK initialization [83].

◦ The width is good but depth is bad for average robustness

◦ Lipschitz constant directly correlates with the generalization ability of neural network classifiers [7].

◦ But depth plays a more significant role than width in the expressive power of neural networks [78].

◦ The experimental results and the results of non-Lazy training are in the appendix.
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The good, the bad and the ugly in deep learning

good bad ugly
neural networks performance analysis over-parameterization
generalization benign overfitting catastrophic overfitting model complexity

robustness width depth initialization
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µ−transfer: Zero-shot hyperparameter transfer with µP

◦ Zero-shot hyperparameter transfer: can we leverage parameters tuned on smaller models for larger ones?

◦ Standard parameterizations (using He/LeCun initialization) do not allow for efficient hyperparameter transfer.

◦ Design principles of maximal update parameterization (µP):

▶ Scale the initialization variance and the learning rate in a specific manner

▶ Ensure effective updates (i.e., ∆Xlh
(l−1)(a) ∼ Θ(1)) hold at any layer l and each time step.

Remark: ◦ With this µP-recipe, we can transfer the hyperparameters across different scales.
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Implementation of µP: abc-parameterizations

◦ Initialize the weights of each layer as Xl = m−al Wl, where Wl is the actual trainable parameter.

◦ Initialize each entry of Wl such that [Wl]ij ∼ N (0, m−2bl ).

◦ Set the SGD learning rate to ηm−c, where η is a width-independent constant.

◦ The Maximal Update Parametrization, for an L-hidden-layer MLP, is defined by the following:

al =

−
1
2 for l = 1,

0 for 2 ≤ l ≤ L,
1
2 for l = L + 1,

bl =
1
2
∀l, c = 0
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µ−transfer: transferability and empirical results

Tensor Programs V:
Tuning Large Neural Networks via

Zero-Shot Hyperparameter Transfer

Greg Yang⇤⇥ Edward J. Hu⇤⇥† Igor Babuschkin� Szymon Sidor� Xiaodong Liu⇥

David Farhi� Nick Ryder� Jakub Pachocki� Weizhu Chen⇥ Jianfeng Gao⇥
⇥Microsoft Corporation �OpenAI

Abstract

Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively
so for neural networks (NNs) with billions of parameters. We show that, in the
recently discovered Maximal Update Parametrization (µP), many optimal HPs
remain stable even as model size changes. This leads to a new HP tuning paradigm
we call µTransfer: parametrize the target model in µP, tune the HP indirectly on a
smaller model, and zero-shot transfer them to the full-sized model, i.e., without
directly tuning the latter at all. We verify µTransfer on Transformer and ResNet.
For example, 1) by transferring pretraining HPs from a model of 13M parameters,
we outperform published numbers of BERT-large (350M parameters), with a total
tuning cost equivalent to pretraining BERT-large once; 2) by transferring from
40M parameters, we outperform published numbers of the 6.7B GPT-3 model, with
tuning cost only 7% of total pretraining cost. A Pytorch implementation of our
technique can be found at github.com/microsoft/mup and installable via pip
install mup.

1 Introduction
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Figure 1: Training loss against learning rate on
Transformers of varying dmodel trained with Adam.
Conventionally and in contrast with our technique,
different widths do not share the same optimal hy-
perparameter; wider networks do not always per-
form better than narrower ones; in fact they under-
perform the same-width networks in our technique
even after tuning learning rate (see dashed line).
See Sections 3 and 4 for experimental setup.

Hyperparameter (HP) tuning is critical to deep
learning. Poorly chosen HPs result in subpar
performance and training instability. Many pub-
lished baselines are hard to compare to one
another due to varying degrees of HP tuning.
These issues are exacerbated when training ex-
tremely large deep learning models, since state-
of-the-art networks with billions of parameters
become prohibitively expensive to tune.

Recently, [57] showed that different neural net-
work parametrizations induce different infinite-
width limits and proposed the Maximal Update
Parametrization (abbreviated µP) (summarized
in Table 3) that enables “maximal” feature learn-
ing in the limit. Intuitively, it ensures that each
layer is updated on the same order during train-
ing regardless of width.2 In contrast, while the
standard parametrization (SP) ensures activations are of unit order at initialization, it actually causes
them to blow up in wide models during training [57] essentially due to an imbalance of per-layer

†Work done partly during Microsoft AI Residency Program.
⇤Equal contribution. Order is random. Correspondence to {gregyang, edwardhu}@microsoft.com
2i.e., the updates’ effect on activations becomes roughly independent of width in the large width limit.
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Figure: Loss of Transformers trained with Adam against learning rate for different network widths [82].

Remarks: ◦ Under µP, the optimal learning rate remains largely unchanged when scaling network width.

◦ This is not the case with standard parameterizations (i.e., He or LeCun).

◦ Theoretical foundations for µ−transfer relate to the edge of stability [65].

◦ µP can be extended to more complex network architectures and algorithms,
such as state-space models (SSM) [77] and sharpness-aware minimization (SAM) [34].
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Wrap up!

◦ Homework 2 continues on Friday!
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⋆Theoretical guarantees for score-matching

A sample complexity bound for score-matching [84]
Suppose we train a DNN with SGD to estimate the score. For any ε ∈ (0, 1) and δ ∈ (0, 1), with probability at
least 1− 2δ − 2L exp(−Ω(m)) over the randomness of initialization and noise, it holds that

1
T − t0

∫ T

t0

∥∇at log p0→t(at|a0)− hx(a, t)∥2 dt ≲
1

nε2

(
p(T − log(t0))

T − t0

)
log
Nc( 1

n
,S)

δ
+

1
n

+ pε2 ,

where the Nc( 1
n

,S) is the covering number [63] of the function space S.

Remarks: ◦ By choosing ε2 = 1√
n

, we can obtain the best bound, which becomes O
(

1√
n

)
.

◦ When t0 = 0, neither the setting nor the result are meaningful.

◦ When T ≫ t0 ≂ 1, the bound simplifies to p+C2
d√

n
log Nc( 1

n
,S)

δ
, which independent of time steps T .
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⋆Robustness in deep learning: lazy training experiment for FCN
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Figure: Relationship between the perturbation stability and depth of FCN under different depths of L = 2, 4, 6, 8 and 10 in [83].
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⋆Robustness in deep learning: lazy training experiment for CNN
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Figure: Relationship between the perturbation stability and width of CNN under He initialization for different depths of
L = 4, 6, 8 and 10. More experimental results on ResNet can be found in [83].
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⋆Robustness in deep learning: Visualization for non-lazy training regime
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Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 20, 57].
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⋆Robustness in deep learning: main results (Non-lazy training regime)

A sufficient condition for DNNs
For large enough m and m≫ p, w.h.p, DNNs fall into non-lazy training regime if α≫ (m3/2

∑L

i=1 βi)L.

Remarks: ◦ L = 2, α = 1, β1 = β2 = β ∼ 1
mc with c > 1.5

Theorem (non-lazy training regime for two-layer NNs)
Under this setting with m≫ n2 and standard assumptions, then

perturbation stability ≤ Õ
(

n

mc+1.5

)
, whp.

Remarks: ◦ Width helps robustness in the over-parameterized regime in both lazy/non-lazy training regime
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⋆Robustness in deep learning: non-lazy training experiment

lazy training ratio κ :=

∑L
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⋆Robust Reinforcement Learning

◦ Discounted return:

Z =
∞∑

t=1

γt−1Rt

◦ State and state-action value functions:

V µ(s) := EsZ | S1 = s; µ,M
Qµ(s, a) := EsZ | S1 = s, A1 = a; µ,M

◦ Recall the standard performance objective: J(µ) := E
s∼D

sV µ(s) = E
s∼D

sQµ(s, µ(s))

◦ An action robust formulation:
max

µ
E

s∼D
smax

ν∈N
Qµ(s, µ(s) + ν)

◦ See [47] for further details and results.
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⋆Standard Reinforcement Learning

◦ Discounted return:

Z =
∞∑

t=1

γt−1Rt

◦ State and state-action value functions:

V µ(s) := E [Z | S1 = s; µ,M]
Qµ(s, a) := E [Z | S1 = s, A1 = a; µ,M]

◦ Performance objective:
max

µ
J(µ) := E

s∼D
[V µ(s)] = E

s∼D
[Qµ(s, µ(s))]
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⋆Deterministic Policy Gradient

◦ Deterministic policy parametrization:
{µθ : θ ∈ Θ}

◦ The off-policy performance objective:

max
θ∈Θ

J(θ) := J(µθ) = E
s∼D

[Qµθ (s, µθ(s))]

◦ The off-policy gradient: [73]

∇θJ(θ) ≈ Es∼D
[
∇θµθ(s)∇aQµθ (s, a)|a=µθ(s)

]
≈

1
N

∑
∇aQϕ(s, a)∇θµθ(s)

▷ biased gradient estimate

▷ function approximation Qϕ for critic
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⋆An optimization interpretation

◦ Objective (non-concave): maxθ∈Θ J(θ) := E

[∑∞
t=1 γt−1Rt

∣∣∣ µθ,M
]

◦ Exploitation: Progress in the gradient direction

θt+1 ← θt + ηt
̂∇θJ(θt)

◦ Exploration: Add stochasticity while collecting the episodes

▷ noise injection in the action space [73, 55]

a = µθ(s) +N (0, σ2I)

▷ noise injection in the parameter space [66]

θ̃ = θ +N (0, σ2I)
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⋆Robust Reinforcement Learning

◦ Discounted return:
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s∼D

[V µ(s)] = E
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[Qµ(s, µ(s))]

◦ An action robust formulation:
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µ
E

s∼D

[
max
ν∈N

Qµ(s, µ(s) + ν)
]

◦ See [47] for further details and results.
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