Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 12: Diffusion Models and Robustness

Laboratory for Information and Inference Systems (LIONS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

. " STIFTUNG esnscm
llons@epfl aws AN swim i% Google Al [




License Information for Mathematics of Data Slides

\4

This work is released under a Creative Commons License with the following terms:
Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

» Non-Commercial
> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor's permission.
» Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.

v

» Full Text of the License

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 57


http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

Teamwork feedback for homework 1

Please provide your feedback on teamwork for Homework 1 below. L Copy chart

55 responses

@ Very positive: Our group worked
collaboratively, and each member
contributed as expected.

@ Generally positive: There were some
variations in individual contributions,
but we have a mutual understanding
for moving forward.

@ Some concerns: | recognize that |
could have contributed more and
intend to do so for future
assignments.

@ Issues with workload: | felt | had to
cover additional tasks due to lack of
contribution from one or more group
members, without prior agreement.
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Teamwork feedback for homework 1

If you selected the last option in the previous question, would you like a follow-
up to address this issue? We may consider adjusting final scores based on each
student's contribution if needed.

8 responses

@ yes
® no
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Teamwork feedback for homework 1

Do you plan to change teammates for Homework 2? |_|:| Copy chart

55 responses

® yes
®no

If you plan to change teammates for Homework 2 and have found new teammates, please indicate
their name and sciper number below

1 response

/
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Recall: Wasserstein GANs formulation

o Ingredients:

> fixed noise distribution pg (e.g., normal)

> target distribution fi,, (natural images)

> X parameter class inducing a class of functions (generators)

> Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [4]

Define a parameterized function dy(a), where y € ) such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN optimization problem is given by

ps (Iyng; Eanp, [dy(a)] — Bu~pg [dy(hx(w))]> :
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Difficulties of GAN training
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Figure: Mode collapse (left). Simultaneous vs alternating generator/discriminator updates (right).

o Heuristics galore!

o Difficult to enforce 1-Lipschitz constraint

o Overall a difficult minimax problem: Scalability, mode collapse, periodic cycling...

o Privacy concerns due to memorization
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Application to 25 Gaussians: Algorithms matter [39]
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Abstract minmax formulation

Minimax formulation

min max ®(x,y), 2
e y) )

where
> & s differentiable and nonconvex in x and nonconcave in y,

> The domain is unconstrained, specifically X = R™ and ) = R".

o Key questions:
1. Where do the algorithms converge?

2. When do the algorithm converge?
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Abstract minmax formulation

Minimax formulation
min max ®(x,y), (2)
x€EX yeY
where
> & s differentiable and nonconvex in x and nonconcave in y,

> The domain is unconstrained, specifically X = R™ and ) = R".

o Key questions:
1. Where do the algorithms converge?

2. When do the algorithm converge?

A buffet of negative results [22]

“Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point
exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an
approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such
point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient
Descent/Ascent update dynamics.”
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The difficulty of the nonconvex-nonconcave setting

Minimax formulation
Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

min max ®(x,y), 3
min max (x,5) (3)

where @ is differentiable and nonconvex in x and nonconcave in y.

From minimax to minimization

Assume ®(x,y) = f(x) for all y. The minimax optimization problem then seeks to find x* such that
f(x¥) < f(x),¥x € RP,

where x* is a global minimum of the nonconvex function f.

> Finding x* is NP-Hard even when f is smooth! (see the complexity supplementary material)

> Finding solutions to a nonconvex-nonconvex min-max problem is harder in general.
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Question 1 with a twist: Where do the algorithms want to converge?

Definition (Saddle points & Local Nash equilibria)
The point (x*,y*) is called a saddle-point or a local Nash equilibrium (LNE) if it holds that
®(x*,y) <@ (x*,y") <D (x,y") (Saddle Point / LNE)

for all x and y within some neighborhood of x* and y*, i.e., ||x — x*|| < § and ||y — y*|| < § for some é > 0.

Necessary conditions

Through a Taylor expansion around x* and
y* one can show that a LNE implies,

Vx®(x,y), —Vy®(x,y) =0
Vxx@(x) y)’ _vyy(b(xJ’) t 0

Figure: ®(z,y) = z? — g2
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Saddles of different shapes

0 15

Figure: The monkey saddle ®(z,y) = x® — 3zy? (left). The weird saddle ®(x,y) = —x2y? + xy (right) [47].
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Recall SGD results from Lecture 10

xI:IJ:iGHX f(X)

o For a non-convex, smooth f, we have that

1. SGD converges to the critical points of f as N — oc.
2. SGD avoids strict saddles/traps (Amin(V?f(x*)) < 0) almost surely.

3. SGD remains close to Hurwicz minimizers (i.e., x* : Amin (V2 £(x*)) > 0 almost surely).
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Recall SGD results from Lecture 10

min f(x)

x:xeX

o For a non-convex, smooth f, we have that

1. SGD converges to the critical points of f as N — oc.
2. SGD avoids strict saddles/traps (Amin(V?f(x*)) < 0) almost surely.

3. SGD remains close to Hurwicz minimizers (i.e., x* : Amin (V2 £(x*)) > 0 almost surely).

o Nail in the coffin:

> not even sure if we obtain stochastic descent directions by approximately solving inner problems in GANs.
> GANs are fundamentally different from adversarial training!

o Need more direct approaches with the stochastic gradient estimates.
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Basic algorithms for minimax

o Given minye x maxycy ®(x,y), define V(z) = [VxP(x,y), —VyP(x,y)] with z = [x, y].

Figure: Trajectory of different algorithms for a simple bilinear game min, max, xy.

o (In)Famous algorithms

>
>
>
>
>

lions@epfl

Gradient Descent Ascent (GDA)

Proximal point method (PPM) [69, 33]
Extra-gradient (EG) [49]
Optimistic GDA (OGDA) [85, 61]

Reflected-Forward-Backward-Splitting (RFBS) [13]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

o EG and OGDA are approximations of the PPM
> zhtl — gk _ aV(zk).

zFtl = gk — aV (zF11).

zFtl = zF — aV(zF — aV(2¥))

zFtl = gk — a2V (2F) — V(2 1))

zFtl =gk — aV(22F — 2P~ 1)

»
>
>
>
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Comparison of convergence rates for smooth convex-concave minimax

Method Assumption on ®(-, -) Convergence rate Reference Note

PP convex-concave o (et [70]
PP strongly convex- strongly concave O (klog(e™ 1) [70] Implicit algorithm
PP Bilinear O (klog(e 1) [70]
EG convex-concave (@] (67 1) [29]
EG strongly convex- strongly concave O (rlog(e™ 1) [64, 29] 1 extra-gradient evaluation per iteration
EG Bilinear O (klog(e™ 1) [64, 29]

OGDA convex-concave (@] (67 1) [29]

OGDA strongly convex- strongly concave O (rlog(e™ 1) [64, 29] no obvious downside

OGDA Bilinear O (rlog(e™ 1) [64, 29]
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Minimax is more difficult than just optimization [40]
o Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [8].
> For optimization, {attracting ICT} = {solutions}

> For minimax, {attracting ICT} = {solutions} U {spurious sets}

o “Almost” bilinear # bilinear: o The “forsaken” solutions:

1 1
B(e,) =2y + 0(2),02) = 127 — 1ot Blyya) = y(a—05)+0(4)—6(2), o(u) = Jud—Tutral

-15 -10 -0.5 0.0 0.5 10 15

x
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When do the algorithms converge?

Assumption (weak Minty variational inequality) V)

For some p € R, weak MVI implies

(V(2),z—2%) 2 p|[V(2)||?, forallz€R". (4) z ®*

o A variant EG+ converges when p > —1/8L
> Diakonikolas, Daskalakis, Jordan, AISTATS 2021. Figure: The operator V' (z) is allowed to point away from

o It still cannot handle the examples of [40]. the solution by some amount when p is negative.

o Complete picture under weak MVI (ICLR Spotlight):
> Pethick, Lalafat, Patrinos, Fercoq, Cevher; 2021.

> constrained and regularized settings with
p>—1/2L

> matching lower bounds

> stochastic variants handling the examples of [40]

> adaptive variants handling the examples of [40]
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An alternative proposal: From pure to mixed Nash equilibrium (NE)

o Rethinking minimax problem as pure strategy game formulation

min max ®(x,y)
XEX yeEY

o A corresponding mixed strategy formulation
min max  Ex~pByq [P(x,y)]

peEM(X) geM(Y)

> M(Z) = {all randomized strategies on Z}
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GAN training as infinite dimensional matrix games
o A different way of looking at GAN objective

> Iph = f h dp for a measure p and function h (Riesz representation)
> the linear operator G and its adjoint G':

(Ga)(x)
(GTp)(y)
where G : M(Y) — ¢(X), and GT : M(X) = ¢(I)

Ey~g [@(x,Y)]
EXNP [q)(x7 y)] ’

o Mixed NE formulation =~ finite two-player games

min max Ex~pEy~q [P(x,
PEM(X) geM(Y) I q[ ( y)}
s

min  max (p,Gq)
PEM(X) geM(Y)

> If X and ) are finite = mirror descent

> We can solve this infinite dimensional problem via sampling: Mirror descent + Langevin dynamics [39]
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Escaping traps with the mixed-NE concept!

max min —w?’x? + wx

we[—2,2] xe[—-2,2]
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Tk Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics" NeurlPS 2020.
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Application: Noisy action robust reinforcement learning!
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Tk Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics" NeurlPS 2020.
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Two natural questions...

1. Can we learn natural distributions without needing to solve a difficult min-max objective?

2. What is the role of a NN architecture in robustness?
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The sampling problem

o We assume that a computer can generate a uniform random variable U € [0, 1].
o We want simulations of random variables with more complicated distributions.

Sampling problem

Let 7 be a distribution of interest over RP, with density

exp(—f(a))

m(a) = ————————.
=i
fRP e=f(W)du
Is it possible to generate samples a;’s that are approximately distributed according to w (i =1,...,n)?
Remarks: o The notion of closeness to the target 7 will depend on the application.

o Common metrics are the TV norm, the KL divergence and Wassertein distances.

Definition

The function f is called the potential of 7. The gradient of —f, i.e, —Vaf(a) = Valog(w(a)), is called the
score or the Stein score of .
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Iterative refinement like in optimization: MCMC

o Just like in optimization, we can iteratively transform an initial guess ap to get close to a sample from 7.

o Given oracle access to V f, Langevin Monte Carlo can output a variable close to .

Langevin Monte Carlo (LMC)

The Langevin Monte Carlo algorithm, or Unadjusted Langevin Algorithm, is defined by the following recursion

apt1 = ag — MV Sf(ar) + \/2nkZk11
where 7y, is the step-size and (zg) is a sequence of i.i.d N(0, I;) random variables.

Remarks: o LMC is actually a biased discretization of a gradient flow in the space of measures [46, 80].
o LMC is similar to the perturbed SGD we saw in Lecture 10, whose objective is to minimize f.
o Sampling can be faster than optimization in restricted settings [60].

Variants

> LMC (or ULA) is a discretization of an SDE - the overdamped Langevin diffusion.
> The underdamped Langevin diffusion yields analogues of Nesterov acceleration for sampling [59].

> For constrained distributions, projected [10, 50] and mirrored [38, 1] versions exist.
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Langevin Monte Carlo

o Extremely well studied: convergence of the algorithm established in the broadest settings [18].

‘ Reference H Wy ‘ TV ‘ KL ‘
[24] - O(Lp®c™) | O(LpPc—?)
[25] - O(L2p5e2) -

[21] O(Lp°e9) - -
[18] - O(L?p*e=?) | O(L?pte!)
[54] O(L(f)*p*Che™) - -
[71] O(Lpe%) O(Lp¥e?) | O(LpPe?)

Table: Complexity of obtaining an e-close sample. L is the smoothness constant of f, C}, is the Poincare constant [14]. O
ignores logarithmic terms.

Definition
TV Norm and KL divergence Let p, q be two probability distributions on (RP, B(RP)),

TV(p. q) = sup, Ip(E) —a(E)|  KL(pla) =Ep {log (2)]

Takeaway message
If the score of the target distribution is known, sampling can be provably achieved for a broad class of targets.
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Learning the score
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Figure: The score is the vector field pointing to higher density regions [74].

o The key quantity we need is V4 log(7(a)).

Hyvarinen's trick [43]

Given samples from a data distribution 7, it is possible to learn Va log(w(a)) via integration-by-parts.

Remark: o Originally proposed to learn unnormalized parametric distributions [43].
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Hyvarinen’s trick
o Approach: Parameterize the vector field with a neural network hx : RP — RP and approximate the score via

. 2
)I(rélEEan [Hhx(a) - Vlogﬂ'(a)HQ] .

Integration by parts.

5Ba~nllValogp(a) — hx(a) 3 / (3@ 2 — hx(a)™ T2E2 29 10g p(a) ) pla)da

p(a)

lI[-E,a~7r[||hx(a)||2] f/hx(a)TVap(a)daJrconstant

2

%EaNW[||hx(a)||2]+/tr(Vahx(a))p(a)da+constant

1
Earr [5Hhx(a)||2 + tr(Vahx(a))} + constant

N
1 1
=2 Z (iHhx(aiHF + ”(Vahx(ai))) + constant.
1=1
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Hyvarinen’s trick

Implementable score matching loss

Given independent samples a; (i = 1,...,n) of the target distribution 7, we can estimate the score by solving
1y (1
min Bavr [tr(Jh (2)) + (@8] = = 37 (S Ix(@)l* + tr(Vahx(a)) (5)
i=1

where Jj,_ (a) denotes the Jacobian of hx at a.

Remark: o Optimizing this loss requires the computation of a neural network Hessian.

o Sliced score matching [75] and denoising score matching [79] circumvent this expensive step.
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Weaknesses of score matching

lllustrative plot of 1 and u for m = 2

\RRVA

\

010 \// \

o = 5 H i

Figure: v and 7 are very close in Fisher divergence but do not have the same mode mass [6].

Caveats
Score-matching using Hyvarinen's trick is equivalent to solving

min J(rpix). (©)
xeX
where J is the Fisher divergence [58] and ux is the distribution whose score is given by hx. Unfortunately,
closeness in Fisher divergence does not necessarily imply closeness in other distances.
Remarks: o Score matching is not always the most sample efficient [48].
o The MLE estimator or minimizing KL may be more efficient.
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What about natural distributions?

Natural distributions: Manifold hypothesis

A natural distribution 7, like that of images does not admit a density of the form e~f. It is assumed to be
supported on a low dimensional manifold. Can we still perform sampling when there is no defined score to learn ?

Figure: Samples from stable diffusion 3 [28].
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A denoising perspective on sampling

o Denoising corresponds to outputting the best guess for a random variable X given a noisy version Xyisy-

o The optimal denoising function denoise can be defined as the one minimizing the mean squared error:
denoise* = arg min E[(X — denoise(Xnoisy))?].

denoise

Optimal denoising and the score function (Tweedie's formula [27])

Let X be a random variable and define its noisy version X, = X + 0Z, where Z is a standard Gaussian. Then,
the optimal denoising function that outputs the best guess for X given X, is the conditional expectation
E[X|X]. Moreover, the conditional expectation can be computed as follows:

E[X|Xs] = X5 + 02V log 7o (Xo ).
where 7, is the density of X, .

Remarks: o Denoising corresponds to taking a gradient step along the score!

o Learning the score is the same as learning how to denoise.
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Examples of optimal denoising on MNIST

Original Noised o=15.0 o=10.0 o= .0 0=0.5 0=0.1 0=0.01

s|slsls]z]5]5]s

Figure: Denoising MNIST from various noise levels
Observations: o Notice that denoising from high noise levels is an averaging of many samples.

o The denoising outputs a true digit as the noise level decreases.

Takeaway message

The conditional expectation E[X|Xs] is a good denoiser when o is small. When o is large, the conditional
expectation is an average of too many samples. Denoising from a high noise level is hard.
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How to sample with a denoiser

o Given a denoiser, the basic recipe for generating a new sample is the following:

> Generate a noisy sample Xyoisy = X +tZ.

> Denoise it to obtain X.

Remarks: o How do we obtain a noisy sample if we do not even know how to obtain X?
o If t is large enough then Xy,isy is very close to being a Gaussian.
o Step 1 then becomes easy but recall that denoising from high noise levels is hard.

o How do we balance these tradeoffs ?

t=0 t=0.1 t=0.5 t=0.75 t=1
1.25F 1.25F 125F 125F 15F
1.00 - 1.00 1.00 - 1.00-
> 10+
2075+ 0.75- 075~ 075~
2
I3 L L E L
&8 050 0.50 0.50 050 o5k
025~ 0.25- 025~ 025+
0.00 =% T 1 0.00 -y 0 i 0.00 F=" i i 0.00 == i i 00— 0 i
-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5
X, X X, X, X

Figure: As t increases the distribution of X isy becomes more Gaussian.
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The answer: Diffusion models
o Diffusion models breakdown the denoising task into several smaller denoising steps.

t=0.01 t=0.1 t=0.5 t=0.75 t=1
os — H%I) 05— i) 0sF — EXX; i — EXX; 0° — E%IX)
04t 04 04 04
o3 03 303 303
Zo2 Zo2 Zo2 Zo2
01 01 01 01
00 00 0ot ; 00 00
R 5 R 5 ) 5 ) 5 R 5
XolX, = 0.1 Xol%, = 0.1 XolX, = 0.1 Xol%, = 0.1 XolX, = 0.1

Figure: The vertical red line corresponds to the output of the denoiser, the blue density line is the actual distribution that needs
to be approximated. Denoising from a large ¢ to O directly leads to misalignment of the denoiser and the true target.

o Instead of denoising from large noise levels, diffusion models denoise progressively:

fromt=0.01tot=0 from t=0.1to t=0.01 from t=0.25tot=0.1 from¢=0.5to t=0.25 fromt=0.75to t=0.5 fromt=1.0to t=0.75

0.6F =
08 250
08k 1.00 4l
06 200
2 o6k Zoar 2 2 075F H] iy
15+

5 — EIX, X L — ElXiX] Z04r —_— EXX] = —_— EXe X = — EXi X o — EX, X
0ar 050~ 20
5 £ o2k = 5 ERUE E
02r R 025+ 05k 1
0.0 == L T 0.0 == : T 0.0 == i T 0.00 == i T 0.0p=—= © T 0= i T
- 0o 5 -5 0o 5 -5 0 5 -5 0 5 -5 0 s -5 0 s
X 1|X, =01 Xi 11X, =01 X, 11X =01 X 1| X, =0.1 X 1|X, =0 X 1]X, =01

Figure: The denoiser (red vertical line) aligns with the distribution when making smaller denoising steps.
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An interpretation of the mathematical foundations for score-based generation

Progressively add .
Target Di noise to destroy Noise that
samples N 3 can be generated
information

TE

VELVEVEVEVAVAY

While destroying information,
Learn how to reverse each
step

‘ denoise

Progressively destroy an image and return back

Diffusion models progressively add noise to an image until it corresponds to pure noise. While doing so they
learn the path going in the reverse direction from noise to image.
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Analyzing what happens during the progressive denoising

o We can gain more understanding about the denoising process

> The Fourier spectrum of the image provides a revealing insight

Power

107

T T T
Frequency Frequency Frequency

Figure: Notice that the images start of with a flat spectrum (white noise) and the frequeny profile takes shape progressively.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 57 EPFL



Stochastic Differential Equations (SDE) formalism

da; = f(ag,t)dt + g(t)dw

Noise that

Target Distribution -

only have samples

can be generated

da; = [f(at,t) — g*(t)Vlog pt(at)] dt + g(t)dwy

Score of the
intermediate steps
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Score-based Generative Models with SDEs - Forward process

\/ \/

Figure: The forward process: going from data distribution to noise [76].

Forward diffusion

Choose a diffusion process of the form
da; = f(at, t)dt + g(t)dwt (7)

where f and g are functions of your choice such that ag ~ py = pgat, and ar is easy to sample from for some
T > 0 (e.g., a Gaussian).
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Reverse diffusion

Figure: The reverse process: going from noise to data distribution [76].

Reversing the SDE

The reverse of a diffusion process, as shown by [3], is a diffusion process given by
da; = [f(at»t) — ¢%(t)Valog Pt(a)] dt + g(t)dwy

where w flows backward from 7" to 0 and dt is a negative time step.
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Joint training of the score network

Estimating scores for the SDE
Train a time dependent score-based model hx(a,t) by solving

*

x* = arg min E; Lynif(jo,77) [)‘(t)anEat|ag [[[Va; log pg_¢(at|ao) — hx(at, t)HQ]] 5

where po_st(at|ag) is the transition kernel from ag to a; and X is a positive weight function.
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Theoretical guarantees

Sampling is as hard as learning the score [15]

Let q be a bounded data distribution. If the score estimation error in Ly is at most O(e), then with an
appropriate choice of step size, the reverse diffusion outputs a measure which is e-close in total variation (TV)
distance to q in O(L?p/€?) iterations, where L is the Lipschitz constant of V logq, and p is the dimension of
the input.

Question: o How hard is it to learn the score ?

Learning “natural” distributions is hard

No polynomial time algorithm can learn the pushforward of a Gaussian by a single layer neural network.

Remark: o In the statistical query model, no algorithm can learn the score efficiently [17].

o Neural network required at least two hidden layers and poly(p) neurons [16].

o A sample complexity bound for score-matching with rate —— [84].

vn
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Modern tricks to generate appealing images

256256

32x32

Class ID = 213
“Irish Setter”

*o—— —_—
Model 1 Model 2]

throwing
trumpet

CUp objective img
=" [ |encoder
a corgi
playing a E

flame

prior decoder

Diffusion models in practice

Additional components are
> Diffusion models conditioned on a text embedding [68].
> Classifier-guidance [68], or classifier free guidance, for better conditional generation [37].

> Sequence or cascade of conditional super-resolution diffusion models to increase resolution [36, 72].

Question: o Is it better than GANs due to Graduate Student Descent?
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Recall: from empirical risk minimization to minimax optimization

Definition (Empirical Risk Minimization (ERM))

Let hx : RP — R be a model with parameters x and let {(a;, b;)}}* ; be
samples with b; € {—1,1} and a; € ]Rp The ERM problem reads

in { Ran(z) := L(hx(a ,
m’:n (@) Z(xz 3)

where L(hx(a;),b;) is the loss on the sample (a4,b).

Robustness examples in ML

> miny {% Z:;l [maxn:HnHOOSE L (hx (ai+m) ,bi)] } Adversarial training [42].

> miny {% Z:_L:l [maXTI:HnHzﬁe L(hxyn (a;), bz)] } e-stability training [9],
Sharpness-aware minimization [31].
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Robustness in deep learning: worst-case metric

Definition (Lipschitz constant with respect to the input)

The Lipschitz constant of a differentiable h is L = sup,crp [|[Vahx(a)||,, where ||-||, is the dual norm.

Remarks: o Lipschitz constant can be used to describe the worst-case robustness.
o [11, 12] claim that over-parameterization is necessary for the worst-case robustness.
o Lipschitz constant theoretically correlates with the generalization ability of NN classifiers [7].

o There is a trade off between perturbation stability and and approximation ability of NNs [23].
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Robustness in deep learning: average-case metric

Definition (Perturbation Stability [83])

The perturbation stability of a neural network hx(a) is defined as follows:
P(h,€) =Baag || Vahx(a) (a— -;1)||2 , Va~Dy, a~ Unif(B(e a)).

where x is the neural network parameter, D 4 is the input data distribution, and € is the perturbation radius.
Unif(B(e,a)) means the uniform distribution inside the sphere with the center a and radius e.

Remarks: o Average-case robustness may be more meaningful in practice.

o Perturbation stability can be used to describe the average-case robustness.
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Robustness in deep learning: estimation of Lipschitz constant

o Goals: Compute better (tractable) upper bounds on the Lipschitz constant of NNs.

o Applications: Worst-case robustness certification/training.

Table: A comparison of methods for Lipschitz constant estimation.

Bound layers norm quality method
[67] single loo good SDP
LipSDP [30] any Ly good SDP
Product any {1,2,-++ ,00} bad various
LiPopt [51] any {1,2,--- ,00} | better | LP/SDP
LipMIP [45] any {1,2,--- ,00} | exact LP/IP
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Robustness in deep learning: impact of the NN architecture

o It is important to understand the impact of the architecture design choices in NN training

o As a running example, let us consider an L-layer fully-connected neural network:

h((a) = a,
activation weight input features
4 4
W= o Xl VI (L-Layer NN)

hx(@) = (@) = ~0 (Xph= (@), x:= [X1,Xa, -, Xy].
o

> Parameters: X; € R™XP, X € RIX™ X; € R™X™ for [ =2,3,--- ,L — 1 (weights).
> Initialization: X1 ~ N (0, 82), X1 ~ N(0,82), X; ~ N(0,2) for | =2,3,--- ,L — 1 (weights).
> Activation function ReLU: o(-) = max(-,0) : R — R.

> Without loss of generality, we will avoid the bias variables in the sequel.
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Robustness in deep learning: lazy-training

Definition (Lazy-training (Linear) regime [56])
Define an L-layer fully-connected ReLU NN via (L-Layer NN). Let x(¢) := [X1(¢), X2(%), ..., X (¢)] represent
the weights of network at training time t. As m — oo, if the following condition holds

X1 (t) — X1(0)ll5

sup —0, VielL].
te[0,+00) (12X (0) [l

then the NN training dynamics falls into the lazy-training regime.

Remarks: o [19] identify the lazy training behavior for m — co.
o In the lazy training, NN parameters stay close to initialization during the training.
o The gradient flow of the NN effectively follows the linearization of the NN in lazy training.
o We also refer to the regime with this behavior as the linear regime.
o Lazy training has been extensively studied both empirically and theoretically [44, 53, 5].

o See further the Neural Tangent Kernel Supplementary Lecture.
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Robustness in deep learning: visualization for lazy training regime

- lazy training regime T -—o

, X1 () =X (0) ||
SUPLe(0,4+00) ||Xz(0>HF — 0

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 20, 57].
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Robustness in deep learning: initialization in deep ReLU NNs

o Initialization: X1 ~ N (0,8%), X1 ~ N(0,82), X; ~ N(0,82%) for 1 =2,3,--- , L — 1 (weights).

Table: Some commonly used initializations in neural networks. Phase Diagram
, [7] Lincar regime
Initialization name | B2 | 82 | B2 | « Condensed regime
JRACHY) — Critical regime
LeCun [52] ‘ 1 ‘ L ‘ L ‘ e Examples:
p , 00 ® Xavicr, Mcan ficld
He [35] ‘ 2 ‘ 2 ‘ 2 ‘ 1 V=0 "' iy Two A NTK
P m m e - Eatel. (2020)
NTK [2] ‘ % ‘ % ‘ 1 ‘ 1 |~ ¥ LeCun, He
: 2 1 2 _ loghibr/a
Xavier [32] ‘ iy ‘ - ‘ ) ‘ 1 7= Jim OO A = g
. 41
Mean-field [62] | 1 | 1 | 1 | m
B Figure: Phase diagram of two-layer ReLU NNs at
Eetal.[26] | 1 | 1 | B2 |1 infinite-width limit in [56].
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Robustness in deep learning: main results (Lazy-training regime)

Theorem: perturbation stability < Func(m, L, 8)

Assumption

Initialization

Our bound for 2 (f,€)/e

Trend of width m, 1]

Trend of depth L &

lzll2 =1

Lecun initialization

He initialization

NTK initialization

(\/@e*m/m i \/%)(g)rﬁz

L";m e—m/L3 +1

7N
7N
7N

e
e

[ The larger perturbation stability means worse average robustness.

o Takeaway messages: the good (width), the bad (depth), the ugly (initialization)
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Robustness in deep learning: main results (Lazy-training regime)

Theorem: perturbation stability < Func(m, L, 8)

Assumption

Initialization

Our bound for 2 (f,€)/e

Trend of width m, 1]

Trend of depth L &

lzll2 =1

Lecun initialization

He initialization

NTK initialization

(\/@e*m/m i \/%)(g)rﬁz

L";m e—m/L3 +1

7N
7N
7N

e
e

[ The larger perturbation stability means worse average robustness.

o Takeaway messages: the good (width), the bad (depth), the ugly (initialization)

> width helps robustness in the over-parameterized regime
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Robustness in deep learning: main results (Lazy-training regime)

Theorem: perturbation stability < Func(m, L, 8)

Assumption

Initialization

Our bound for 2 (f,€)/e

Trend of width m, 1]

Trend of depth L &

lzll2 =1

Lecun initialization

He initialization

NTK initialization

(\/@e*m/r} i \/%)(g)rﬁz

L";m e—m/L3 +1

7N
7N
7N

e
e

[ The larger perturbation stability means worse average robustness.

o Takeaway messages: the good (width), the bad (depth), the ugly (initialization)

> width helps robustness in the over-parameterized regime

> depth helps robustness in Lecun initialization but hurts robustness in He/NTK initialization
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Robustness in deep learning: width and depth & other trade-offs

Table: Comparison of the orders of the bound of three related works under NTK initialization. (The original result of [81] can

be reduced to vVmL as the m > L'? condition is required).

Metrics | [83] | [81] | [41]

3L—5

P (h,e€)/e ‘ VIB3me— /L 41 ‘ L2m'/3 \/logm + vmL ‘ 272 /m

Remarks: o Consider the over-parameterized regime under NTK initialization [83].
o The width is good but depth is bad for average robustness
o Lipschitz constant directly correlates with the generalization ability of neural network classifiers [7].
o But depth plays a more significant role than width in the expressive power of neural networks [78].

o The experimental results and the results of non-Lazy training are in the appendix.
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The good, the bad and the ugly in deep learning

good bad ugly
neural networks performance analysis over-parameterization
generalization benign overfitting  catastrophic overfitting model complexity
robustness width depth initialization
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p—transfer: Zero-shot hyperparameter transfer with P

o Zero-shot hyperparameter transfer: can we leverage parameters tuned on smaller models for larger ones?
o Standard parameterizations (using He/LeCun initialization) do not allow for efficient hyperparameter transfer.
o Design principles of maximal update parameterization (uP):

> Scale the initialization variance and the learning rate in a specific manner

> Ensure effective updates (i.e., AX;h(!=1(a) ~ ©(1)) hold at any layer [ and each time step.

Remark: o With this uP-recipe, we can transfer the hyperparameters across different scales.
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Implementation of yP: abc-parameterizations

o Initialize the weights of each layer as X; = m~“ "W/, where W/ is the actual trainable parameter.
o Initialize each entry of W such that [W,],; ~ N(0,m=2br).
o Set the SGD learning rate to nm™¢, where 1 is a width-independent constant.

o The Maximal Update Parametrization, for an L-hidden-layer MLP, is defined by the following:

—% forl =1, 1
ap =<0 for2 <I<L, bl:§ Vi, ¢=0
1 forl=L+1,
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p—transfer: transferability and empirical results

Standard Practice

o o N
o u o
7/

muP

o
8 Width
o 5.5 128
£ 50 256
© 512
F45 —— 1024
— 2048
4.0
— 4096 4
3.5 —— 8192 optimum shifts

-20 -18 -16 -14 -12 -10 =20

log,LearningRate

optimum stable ==

-16 -14 -12 -10

log,LearningRate

Figure: Loss of Transformers trained with Adam against learning rate for different network widths [82].

Remarks: o Under uP, the optimal learning rate remains largely unchanged when scaling network width.

o This is not the case with standard parameterizations (i.e., He or LeCun).

o Theoretical foundations for p—transfer relate to the edge of stability [65].

o puP can be extended to more complex network architectures and algorithms,
such as state-space models (SSM) [77] and sharpness-aware minimization (SAM) [34].
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Wrap up!

o Homework 2 continues on Friday!
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*Theoretical guarantees for score-matching

A sample complexity bound for score-matching [84]

Suppose we train a DNN with SGD to estimate the score. For any € € (0,1) and § € (0, 1), with probability at
least 1 — 26 — 2L exp(—2(m)) over the randomness of initialization and noise, it holds that

1

T

1 1 T — log(t Ne(,8) 1

e / |V 0g po.satla) — (e )t  — (AT 10BC0D Yo B 1y 2,
—to Jy, ne T —to n

where the Nc(%,S) is the covering number [63] of the function space S.

Remarks: o By choosing £? = % we can obtain the best bound, which becomes O(i)

n

o When tg = 0, neither the setting nor the result are meaningful.

) c2 (LS S .
o When T > tg = 1, the bound simplifies to HTnd log %, which independent of time steps 7.
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*Robustness in deep learning: lazy training experiment for FCN

1.0 0.5
*+ L=2 S =2
—+ L=4 —+ L=4
0.8 = 0.4 N L=6
> L=8 + T L=a
o6 —4— L=10 0.3 s -4 L=10
=
2
Soa 0
n
0.1
0.2
0.0
2% 25 26 37 28 29 10 i iz 13 on
0.0 2555 36 57 28 39 210 i L1z o5 i Width
Width
(a) He initialization (b) LeCun initialization

Figure: Relationship between the perturbation stability and depth of FCN under different depths of L = 2,4, 6,8 and 10 in [83].
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*Robustness in deep learning: lazy training

experiment for CNN

12 | %0 L=
55
10 50
2 as
% 8 40
8 35
o 30
4 25
20

P R R G CHN CRE U F 15 D 1

Width Width
(a) L =4 (b)L=6

] 2 - L=10
400 2500
350 2250
z 2000
3 1750
g 250 1500
200 1250
1000
150 750

D I e U CRE CRE S P N S R R CHN | R 13

Width Width
(L =8 (d) L = 10

Figure: Relationship between the perturbation stability and width of CNN under He initialization for different depths of

L = 4,6,8 and 10. More experimental results on ResNet can be found in [83].

ILHELI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 3/ 33

EPFL



*Robustness in deep learning: Visualization for non-lazy training regime

- mean field regime T -—o

. X1 () =%, 0) || g =
SUPLE(0,+00) IESICAIR

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 20, 57].
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*Robustness in deep learning: Visualization for non-lazy training regime

~
o ee--m T TTT _n_oxz—_la;;J };aiiniil_xg; r_eéi;rlg _o e
B Tl
X1 () =X (D) || g .
SUPte[0,+00) IECIS - .

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 20, 57].
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*Robustness in deep learning: main results (Non-lazy training regime)

A sufficient condition for DNNs
For large enough m and m > p, w.h.p, DNNs fall into non-lazy training regime if o > (m3/2 Zle Bi)L.

Remarks: oL:QYo‘:Lﬂl:IBQ:BNn&C with ¢ > 1.5
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*Robustness in deep learning: main results (Non-lazy training regime)

A sufficient condition for DNNs
For large enough m and m > p, w.h.p, DNNs fall into non-lazy training regime if o > (m3/2 Zle Bi)L.

Remarks: oL:QYa:Lﬂl:ﬂQ:BNn%C with ¢ > 1.5

Theorem (non-lazy training regime for two-layer NNs)

Under this setting with m >> n? and standard assumptions, then

. " = n
perturbation stability < O(W) , whp.

Remarks: o Width helps robustness in the over-parameterized regime in both lazy/non-lazy training regime
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*Robustness in deep learning: non-lazy training experiment

S IXa() — X0 (0) I
S IX(0)]]

lazy training ratio k :=

0.

8 4 Lazy training
0.6 —4~ Non lazy training
6 0.5
x 4 0.4
0.3 ' -
2 —— L=2, Non-lazy o2 Pt
c 0.11 4 |

0 10 20 30 40 50 00l gy e 3 3 n n 3E 3h W
Epochs Width
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*Robust Reinforcement Learning

o Discounted return:

Z = i’yt_le

t=1

o State and state-action value functions:

VH(s) := EsZ | S =s;u, M
Q¥ (s,a) := EsZ | S1=s,A1 =a;pu, M

o Recall the standard performance objective: J(u) = E sVH(s)

E_ E_sQ¥(s,u(s))

o An action robust formulation:

max E smax Q" (s,u(s)+v
2 SNDVGNQ( n(s) +v)

o See [47] for further details and results.
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*Standard Reinforcement Learning

o Discounted return:

t=1
o State and state-action value functions:
VH(s) := E[Z ]| S1 = s;u, M]
Q“(Sva) = E[lelzstIZa;Usz]
o Performance objective:
maxJ(p) = E_[V¥(s)] = E_[Q"(s,u(s))]
© s~D s~D
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*Deterministic Policy Gradient

o Deterministic policy parametrization:
{ne : 0 € ©}

o The off-policy performance objective:

réieaé( J(O) = J(ug) = SLED [Q"0 (s, o (s))]

o The off-policy gradient:

VoJ(0)

Q

Es~wp I:VG,U'G (S)VGQHS (57 a) ‘a:,u,g(s):l

D Va@? (. a)Vano )

Q

> biased gradient estimate

> function approximation Q? for critic
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*An optimization interpretation

o Objective (non-concave): maxgce J(0) := E Zzl IRy ;Lg,M:|
o Exploitation: Progress in the gradient direction
Or41 «— 6+ T]tVQ/JTGt)
o Exploration: Add stochasticity while collecting the episodes
> noise injection in the action space [73, 55]
a = g(s) + N(0,0°T)
> noise injection in the parameter space [66]

6=0+N(0,0%0)
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*Robust Reinforcement Learning

o Discounted return:

Z = i’yt_lRt

t=1

o State and state-action value functions:

VH(s) := E[Z ]| S1 = s;u, M]
QM(S7G) = E[Z I S1 =35,/ :G;HaM]
o Recall the standard performance objective: J(u) := E [VH(s)] = E [Q"(s,u(s))]
s~D s~D

o An action robust formulation:

E M
max B [316%62 (s, u(s) + V)}

o See [47] for further details and results.
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