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Outline

▶ This class
▶ Adversarial Machine Learning (minmax)

▶ Adversarial Training
▶ Generative Adversarial Networks (GANs)

▶ Next class
▶ Difficulty of minmax
▶ Diffusion models
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Adversarial machine learning

min
x∈X

max
y∈Y

Φ(x, y)

◦ A seemingly simple optimization formulation

◦ Critical in machine learning with many applications

▶ Adversarial examples and training
▶ Generative adversarial networks
▶ ⋆Robust reinforcement learning (more on this next week)
▶ . . .
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From empirical risk minimization...

Definition (Empirical Risk Minimization (ERM))
Let hx : Rp → R be a model with parameters x and let {(ai, bi)}n

i=1 be
samples with bi ∈ {−1, 1} and ai ∈ Rp. The ERM problem reads

min
x

{
Rn(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where L(hx(ai), bi) is the loss on the sample (ai, bi).

Some frequently used loss functions
▶ L(hx(ai), bi) = log(1 + exp(−bihx(ai))) Logistic loss.
▶ L(hx(ai), bi) = (bi − hx(ai))2 Squared error.
▶ L(hx(ai), bi) = max(0, 1 − bihx(ai)) Hinge loss.
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...Into adversarial examples

Definition (Adversarial examples [28])
Let hx⋆ : Rp → R be a model trained through empirical risk minimization, with optimal parameters x⋆. Let
(a, b) be a sample with b ∈ {−1, 1} and a ∈ Rp. An adversarial example is a perturbation δ ∈ Rp designed to
lead the trained model hx⋆ to misclassify a given input a. Given an ϵ > 0, it is constructed by solving

δ ∈ arg max
δ:∥δ∥≤ϵ

L(hx⋆ (a + δ), b)

Example norms frequently used in adversarial attacks
▶ The most commonly used norm is the ℓ∞-norm [12, 21].
▶ The use of ℓ1-norm leads to sparse attacks.

Figure: (Left) An ℓ∞-attack: The alteration is hard to perceive. (Right) An ℓ1-attack: The alteration in this case is obvious.
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Adversarial examples and proximal gradient descent

◦ Target problem:
max

δ:∥δ∥∞≤ϵ
L(hx⋆ (a + δ), b)

◦ We can do better than FGSM via proximal gradient methods for composite minimization:

max
δ∈Rp

L(hx⋆ (a + δ), b)︸                   ︷︷                   ︸
f(δ)

+ δN (δ)︸  ︷︷  ︸
g(δ)

,

where δN (δ) is the indicator function of the ball N := {δ : ∥δ∥∞ ≤ ϵ}.

Recall: Proximal operator of indicator functions
For the indicator functions of simple sets, e.g., g(δ) := δN (δ), the prox-operator is the projection operator

proxλg(δ) := πN (δ),

where πN (δ) denotes the projection of δ onto N . When N = {δ : ∥δ∥∞ ≤ λ}, πN (δ) = clip(δ, [−λ, λ]).
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Adversarial examples and proximal gradient descent (cont’d)
◦ Target non-convex problem:

max
δ∈Rp

L(hx⋆ (a + δ), b)︸                   ︷︷                   ︸
f(δ)

+ δN (δ)︸  ︷︷  ︸
g(δ)

,

where δN (δ) is the indicator function of the ball N := {y : ∥y∥∞ ≤ ϵ}.

Proximal gradient ascent (PGA)
1. Choose δ0 ∈ dom f(δ) + g(δ) as initialization.
2. For k = 0, 1, · · · , generate a sequence {δk}k≥0 as:

δk+1 := proxαkg

(
δk + αk∇f(δk)

)
.

Remarks: ◦ PGA results in more powerful adversarial “attacks” than FGSM [16].

◦ The PGA is incorrectly referred to as projected gradient descent in this literature.

◦ Practitioners prefer to use several steps of FGSM instead of PGA [17, 18, 21]:

δk+1 = πX
(

δk + αk sign
(

∇f(δk)
))

.

◦ See the appendix for a through study of the FSGM.
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Challenge: Adversarial examples are inevitable

Figure: Understanding the robustness of a classifier in high-dimensional spaces. Shafahi et al. 2019.
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Hardness results have never been a barrier for ML researchers

Definition (Empirical Risk Minimization (ERM))
Let hx : Rp → R be a model with parameters x and let {(ai, bi)}n

i=1 be
samples with bi ∈ {−1, 1} and ai ∈ Rp. The ERM problem reads

min
x

{
Rn(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where L(hx(ai), bi) is the loss on the sample (ai, bi).

Objectives
▶ minx

{
1
n

∑n

i=1

[
maxδ:∥δ∥∞≤ϵ L (hx (ai+δ) , bi)

]}
Adversarial training [14].

▶ minx
{

1
n

∑n

i=1

[
maxδ:∥δ∥2≤ϵ L(hx+δ (ai), bi)

]}
ϵ-stability training [4],

Sharpness-aware minimization [10].
▶ minx maxbc∈[C]

1
nc

∑nc

i=1

[
maxδ:∥δ∥≤ϵ L (hx (ai+δ) , bc)

]
Class fairness [25].

Remark: ◦ We focus on adversarial training during the lecture. See supplementary material for more.
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Towards adversarial training

Adversarial Training [14]
Let hx : Rn → R be a model with parameters x and let {(ai, bi)}n

i=1, with the data ai ∈ Rp and the labels bi.
The problem of adversarial training is the following adversarial optimization problem

min
x

1
n

n∑
i=1

[
max

δ:∥δ∥∞≤ϵ
L(hx (ai + δ), bi)

]
≈ min

x
E(a,b)∼P

[
max

δ:∥δ∥∞≤ϵ
L(hx (ai + δ), bi)

]
.

Note the similarity with the template minx∈X maxy∈Y Φ(x, y).
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Beyond robustness: Adversarial training for better interpretability

◦ Retinopathy classification problem: Given a retinal image (left), predict whether there is a disease.

◦ Zeiss: How can we interpret the prediction of a model hx(a)?

◦ Solution: Look at ∇xhx(a), called the saliency map [9]. Minimax adversarial training seems to help!

Table: Left: Ground truth image, Middle: Saliency map, Right: Saliency map with adversarial training.
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Solving the outer problem

Adversarial Training [14]
Let hx : Rp → R be a model with parameters x and let {(ai, bi)}n

i=1, with ai ∈ Rp and bi be the corresponding
labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max

δ:∥δ∥∞≤ϵ
L(hx (ai + δ), bi)

]
︸                                         ︷︷                                         ︸

=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Question
How can we compute the gradient

∇xfi(x) := ∇x

(
max

δ:∥δ∥∞≤ϵ
L(hx (ai + δ), bi)

)
?

◦ Challenge: It involves differentiating with respect to a maximization.

◦ A solution: We can use Danskin’s theorem under some conditions.
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Danskin’s Theorem (1966): How do we compute the gradient?

Theorem ([5])
Let S be compact set, Φ : Rp × S be continuous such that Φ(·, y) is differentiable for all y ∈ S, and ∇xΦ(x, y)
be continuous on Rp × S. Define

f(x) B max
y∈S

Φ(x, y), S⋆(x) B arg max
y∈S

Φ(x, y).

Let d ∈ Rp, and ∥d∥2 = 1. The directional derivative Ddf(x̄) of f in the direction d at x̄ is given by

Ddf(x̄) = max
y∈S⋆(x̄)

⟨d, ∇xΦ(x̄, y)⟩.

An immediate consequence
If δ⋆ ∈ arg maxδ:∥δ∥≤ϵ L(hx (ai + δ), bi) is unique, then we have

∇xfi(x) = ∇xL(hx (ai + δ⋆), bi) .
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A practical implementation of adversarial training: Stochastic subgradient descent

Stochastic Adversarial Training [21]
Input: learning rate αk, iterations T , batch size K.
1. initialize neural network parameters x0

2. For k = 0, 1, ..., T :
i. initialize update vector gk := 0
ii. select a mini-batch of data B ⊂ {1, . . . , n} with |B| = K
iii. For i ∈ B:

a. Find an attack δ⋆ by (approximately) solving
δ⋆ ∈ arg maxδ:∥δ∥∞≤ϵ L(hxk (ai + δ), bi)

b. Store update
gk := gk + ∇xL(hxk (ai + δ⋆), bi)

iv. Update parameters
xk+1 := xk − αk

K
gk

Remarks: ◦ Expensive!

◦ Inner problem iii.a cannot be solved to optimality (non-convex).

◦ Practitioners use FGSM or PGA or PGA-ℓ∞ to approximate the true δ⋆.

◦ Update in step iii.b is motivated by Corollary A.2 in [21]
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Optimized perturbations are typically not unique!
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Figure: (left) Pairwise ℓ2-distances between “optimized” perturbations with different initializations are bounded away from zero.
(right) The losses of multiple perturbations on the same sample concentrate around a value much larger than the clean loss.
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Theoretical foundations

?

unique δ⋆ non-unique δ⋆

∇xΦ(x, δ⋆) ∇xf(x) descent direction [21]

level sets

xk
rf(xk)

pk
xk + D(f, xk)
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A counterexample

f(x) B max
δ∈[−1,1]

xδ = |x| .

◦ We have S B [−1, 1] and Φ(x, δ) = xδ.

◦ At x = 0, we have S⋆(0) = [−1, 1].

◦ We can choose δ = 1 ∈ S⋆(0): Φ(x, 1) = x.

▶ −∇xΦ(0, 1) = −1 , 0.

▶ Is −1 a descent direction at x = 0?
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Descent directions in the non-convex case

General Danskin’s Theorem
Assume Y is compact and Φ(x, y) differentiable in x but not necessarily convex in x. Define
Y⋆(x) := arg maxy∈Y Φ(x, y) as the set of maximizers. Then f(x) := maxy∈Y Φ(x, y) is directionally
differentiable and its directional derivative is given by

Df(x, d) = max
y⋆∈Y⋆(x)

⟨d, ∇xΦ(x, y⋆)⟩ (1)

Corollary A.2 in [21] (proven wrong!)
Let y⋆

0 be a maximizer of maxy∈Y Φ(x, y). Then as long as ∇xΦ(x, y⋆
0) is non-zero, −∇xΦ(x, y⋆

0) is a
descent direction for f(x).

Remarks: ◦ The notion of directional derivative is one-sided:

Df(x, d) B lim
t→0+

f(x + td) − f(x)
t

(2)

◦ Only when Y⋆(x) = {y⋆} is a singleton, −∇xΦ(x, y⋆) is necessarily a descent direction f .
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Directional derivatives, not descent directions
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Figure: (Left and Middle) Synthetic adversarial training example. (Right) Resnet18 on CIFAR10 - Robust accuracy comparison
between PGD and DDi.

Solving the inner problem does not yield a descent direction
Danskin’s Theorem involves all the maximizers when computing the directional derivative along a direction d. A
single maximizer is not sufficient.

Remarks: ◦ A recent approach (DDi) computes many maximizers to find a descent direction [19].

◦ In practice however, the lack of descent does not seem to matter.
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Danskin’s theorem

Danskin’s theorem (Bertsekas variant)
Let Φ(x, y) : Rp × Y → R, where Y ⊂ Rm is a compact set and define f(x) := maxy∈Y Φ(x, y). Suppose that
Φ(x, y) is convex for each y in the compact set Y; the interior of the domain of f is nonempty; and Φ(x, y) is
continuous.

Define Y⋆(x) := arg maxy∈Y Φ(x, y) as the set of maximizers and y⋆ ∈ Y⋆ as an element of this set. We have
1. f(x) is a convex function.
2. If Y⋆(x) is a singleton, then the function f(x) = maxy∈Y Φ(x, y) is differentiable at x:

∇xf(x) = ∇x

(
max
y∈Y

ϕ(x, y)
)

= ∇xΦ(x, y⋆).

3. If Y⋆(x) contains more than one element, then the subdifferential ∂xf(x) of f is given by

∂xf(x) = conv {∂xΦ(x, y⋆) : y⋆ ∈ Y⋆(x)} .

Remarks: ◦ The adversarial problem is not convex in x in general.

◦ (Sub)Gradients of f are calculated as ∇xf(x) = ∇xΦ(x, y⋆).
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Out of the frying pan into the fire
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Original Formulation of Adversarial Training (I)

minx E

 max
δ:∥δ∥≤ϵ

L(hx (a + δ), b)


which loss L?
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Original Formulation of Adversarial Training (II)

minx E

 max
δ:∥δ∥≤ϵ

L01(hx (a + δ), b)


minx E

 max
δ:∥δ∥≤ϵ

LCE(hx (a + δ), b)

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Original Formulation of Adversarial Training (II)

minx E

 max
δ:∥δ∥≤ϵ

L01(hx (a + δ), b)


minx E

 max
δ:∥δ∥≤ϵ

LCE(hx (a + δ), b)


Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 45



Surrogate-based optimization for Risk Minimization

E [L01(hx⋆ (a + δ), b)] ≤ minx E [LCE (hx(a + δ), b)]
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Adversary maximizes an upper bound (I)

L01 (hx(a + δ⋆), b) ≤ max
δ:∥δ∥≤ϵ

LCE (hx(a + δ), b)
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Adversary maximizes an upper bound (II)

δLB
⋆ δUB

⋆

𝐿(δUB
⋆ )

𝐿(δLB
⋆ )

𝐿
𝐿LB 𝐿UB

δ(0)
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Why maximizing cross-entropy leads to weak adversaries

+

+

=

=

🐶 🐱 🐸 🤡

(.49, .51,    0,    0)

(.26, .24,  .25,  .25)
🐶

🐶
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Adversary’s problem can be “solved” without using surrogates

Theorem (Reformulation of the Adversary’s problem)

δ⋆ ∈ arg max
δ:∥δ∥≤ϵ

max
j,b

hx(a + δ)j − hx(a + δ)b ⇒

δ⋆ ∈ arg max
δ:∥δ∥≤ϵ

L01 (hx(a + δ), b)
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Bilevel Optimization (BETA)

◦ Best targeted attack (BETA) optimization formulation [27]:

minx
1
n

n∑
i=1

LCE
(
hx(ai + δ⋆

i,j⋆), bi

)

such that δ⋆
i,j ∈ arg max

δ: ∥δ∥≤ϵ
hx(ai + δ)j − hx(ai + δ)bi

j⋆ ∈ arg max
j∈[K]−{bi}

hx(ai + δi,j⋆)j − hx(ai + δi,j⋆)bi
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Practical Consequences of the Bilevel Formulation

Figure: Learning curves of PGD10-AT (Left) and BETA10-AT

(Right). Robust accuracy estimated with PGD20
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Practical Consequences of the Bilevel Formulation

Table: Adversarial performance on CIFAR-10.

Training
algorithm

Test accuracy

Clean FGSM PGD10 PGD40 BETA10 APGD

Best Last Best Last Best Last Best Last Best Last Best Last

FGSM 81.96 75.43 94.26 94.22 42.64 1.49 42.66 1.62 40.30 0.04 41.56 0.00
PGD10 83.71 83.21 51.98 47.39 46.74 39.90 45.91 39.45 43.64 40.21 44.36 42.62

TRADES10 81.64 81.42 52.40 51.31 47.85 42.31 47.76 42.92 44.31 40.97 43.34 41.33
MART10 78.80 77.20 53.84 53.73 49.08 41.12 48.41 41.55 44.81 41.22 45.00 42.90

BETA-AT5 87.02 86.67 51.22 51.10 44.02 43.22 43.94 42.56 42.62 42.61 41.44 41.02
BETA-AT10 85.37 85.30 51.42 51.11 45.67 45.39 45.22 45.00 44.54 44.36 44.32 44.12
BETA-AT20 82.11 81.72 54.01 53.99 49.96 48.67 49.20 48.70 46.91 45.90 45.27 45.25
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Adversarial machine learning: Introduction to Generative Adversarial Networks (GANs)

◦ Recall the parametric density estimation setting

(source: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)

ai = [ ...images...]
bi = [ ...probability... ]

◦ Goal: Games, denoising, image recovery...

◦ Generator Pa

▶ Nature
◦ Supervisor PB|a
▶ Frequency data

◦ Learning Machine hx(ai)
▶ Data scientist: Mathematics of Data
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A way to model complex distributions: The push-forward measure
◦ Traditionally, we use analytical distributions: Restricts what we could model in real applications.
◦ Now, we use more expressive probability measures via push-forward measures with neural networks

Definition
◦ Let ω ∼ pΩ be a random variable.
◦ hx(·) : Rp → Rm a function parameterized by parameters x.

The pushforward measure of pΩ under hx, denoted by hx#pΩ is the distribution of hx(ω).

Example: Chi-square distribution
Let ω ∼ pΩ := N (0, 1) be the normal distribution. Let hx : R→ R, hx(ω) = wx. Let us fix x = 2. Then,
hx#pΩ is the chi-square distribution with one degree of freedom.

Explanation: Change of variables.
Assume that h : Rn → Rn is monotonic. Given the random variable ω ∼ pΩ with probability density function
pΩ(ω), the density pY (y) of y = hx(ω) reads

pY (y) = pΩ(h−1
x (y))det

(
Jyh−1

x (y)
)

where det denotes the determinant operation.
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Towards an optimization problem

Problem (Ideal parametric density estimator)
Given a true distribution µ♮, we can solve the following optimization problem,

min
x

W1(µ♮, hx#pΩ), (3)

where the measurable function hx is parameterized by x and ω ∼ pΩ is “simple” e.g., Gaussian.

Remarks: ◦ See the appendix for the details of the Wasserstein distance W .

◦ Issues:

▶ We only have access to empirical samples µ̂n of µ♮.

▶ W1 is non-smooth, it cannot be computed exactly.

Figure: Schematic of a generative model, hx#ω [11, 15].
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Learning without concentration

◦ We can minimize W1 (µ̂n, hx#pΩ) with respect to x.

◦ Figure: Empirical distribution (blue), µ̂n =
∑n

i=1 δi

A plug-in empirical estimator
Using the triangle inequality for Wasserstein distances we can upper bound in the follow way,

W1(µ♮, hx#pΩ) ≤ W1(µ♮, µ̂n) + W1(µ̂n, hx#pΩ), (4)

where µ̂n is the empirical estimator of µ♮ obtained from n independent samples from µ♮.

Theorem (Slow convergence of empirical measures in 1-Wasserstein [30, 6])
Let µ♮ be a measure defined on Rp and let µ̂n be its empirical measure. Then the µ̂n converges, in the worst
case, at the following rate,

W1(µ♮, µ̂n) ≳ n−1/p. (5)

Remarks: ◦ Using an empirical estimator in high-dimensions is terrible in the worst case.
◦ However, it does not directly say that W1

(
µ♮, hx#pΩ

)
will be large.

◦ So we can still proceed and hope our parameterization interpolates harmlessly.
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Duality of 1-Wasserstein
◦ Instead of computing W1, we can obtain lower bounds using duality.

Theorem (Kantorovich-Rubinstein duality)

W1(µ, ν) = sup
d

{⟨d, µ⟩ − ⟨d, ν⟩ : d is 1-Lipschitz} (6)

Remark: ◦ d is the “dual” variable. In the literature, it is commonly referred to as the “discriminator.”

Inner product is an expectation

⟨d, µ⟩ =
∫

ddµ =
∫

d(a)dµ(a) = Ea∼µ [d(a)] . (7)

Kantorovich-Rubinstein duality applied to our objective

W1 (µ̂n, hx#ω) = sup
{

Ea∼µ̂n [d(a)] − Ea∼hx#ω [d(a)] : d is 1-Lipschitz
}

(8)
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Integral Probability Metrics

We can define a more general class of (semi)metrics in the space of probability distributions

Definition (Integral Probability Metric)
Let F be a class of functions from Rp to R. For two probability measures µ and ν, the IPM associated to F is
defined as:

F(µ, ν) B sup
f∈F

⟨f, µ⟩ − ⟨f, ν⟩ = sup
f∈F

Ea∼µ[f(a)] − Ea∼ν [f(a)] (9)

Remarks: ◦ The 1-Wasserstein distance corresponds to F B {f : Rp → R, f is 1 − Lipschitz}

◦ The class cannot be described with finite parameters.
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Neural network distances inspired by the 1-Wasserstein distance

◦ We use neural networks to parametrize a class of functions.

◦ Constraining the Lipschitz constant of Neural Networks is NP-Hard [29].

◦ We can constrain upper bounds on the Lipschitz constant [20].

Lemma
Let hX1,X2 (a) B XT

2 σ(X1a) be a one-hidden-layer neural network. Then its Lipschitz constant LX1,X2 with
respect to the ℓ2-norm is bounded as:

LX1,X2 ≤ ∥X1∥2∥X2∥2 (10)

Neural Network Distance
Let

F B {hX1,X2 (a) = XT
2 σ(X1a) : ∥X2∥2 ≤ 1, ∥X1∥2 ≤ 1}. (11)

The IPM corresponding to F is referred to as a Neural Network Distance.

Remark: ◦ Different network architectures/constraints lead to different Neural Network distance notions.
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Wasserstein GANs formulation

◦ Ingredients:

▶ fixed noise distribution pΩ (e.g., normal)
▶ target distribution µ̂n (natural images)
▶ X parameter class inducing a class of functions (generators)
▶ Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [3]
Define a parameterized function dy(a), where y ∈ Y such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN optimization problem is given by

min
x∈X

(
max
y∈Y

Ea∼µ̂n [dy(a)] − Eω∼pΩ [dy(hx(ω))]
)

. (12)
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The theory-practice gap: Enforcing 1-Lipschitz of the discriminator

Weight clipping [3]
The “dual” or the “discriminator” dy weights y are constrained by
an ℓ∞-ball with radius c > 0, denoted as B, at every iteration with

πB(y) = clip(y, [−c, c]). (13)

This trick is used to pseudo-enforce the constraint.

Remark: ◦ "Weight clipping is a clearly terrible way to
enforce a Lipschitz constraint" – original authors.

Gradient penalty [13]
Recall that 1-Lipschitz is equivalent to ∥∇ady(a)∥∗ ≤ 1. This can be enforced directly through

Ea∼µ̂n [dy(a)] − Eω∼Ω [dy(hx(ω))] + λEa∼ν

[
(∥∇ady(a)∥∗ − 1)2]

. (14)

Remarks: ◦ In practice the distribution ν mimicks uniform (linearly interpolated) sampling as follows:
a ∼ Uniform(ai, hx(ωi)).
◦ Spectral normalization: Divide each weight matrix by their spectral norm [22].
◦ Learnable spline activations: both a 1-Lipschitz and more expressive architecture [24].
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Practical implementation of GANs

Stochastic training of Wasserstein GANs
Input: primal and “dual” learning rates γt and αm, primal iterations T ,
“dual” network dy, generator network hx, noise distribution pΩ, real
distribution µ̂n, primal and dual batch sizes B, K, “dual” iterations M .
1. initialize x0

2. For t = 0, 1, ..., T − 1:
For m = 0, 1, ..., M − 1:

initialize y0,
draw noise sample ω1, . . . , ωK ∼ pΩ
draw real samples r1, . . . , rK ∼ µ̂n

“dual” pseudo-loss L(y) := K−1
∑K

i=1 dy(ri) − dy(hxt (ωi))
♯update “dual” parameters ym+1 = ym + γm∇yL(ym)
♯enforce 1-Lipschitz constraint on dym+1

end-For
draw noise sample ω1, . . . , ωB ∼ pΩ
generator pseudo-loss L(x) := −B−1

∑B

i=1 dyM (hx(ωi))
update generator parameters xt+1 = xt − αt∇xL(xt)

end-For

♯: Ideally, should be performed jointly.
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Some historical background for a Turing award

Vanilla GAN [11]

min
x∈X

max
y∈Y

Ea∼µ̂n [log dy(a)] + Eω∼pΩ [log (1 − dy(hx(ω)))] (15)

▶ Binary cross-entropy modeling.
▶ dy(a) : Y → [0, 1] represents the probability that a came from the real data distribution µ♮.

Observation: ◦ Minimizes Jensen-Shannon divergence:

JSD(µ̂n∥hx#pΩ) =
1
2

D(µ̂n∥hx#pΩ) +
1
2

D(hx#pΩ∥µ̂n).
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Take home messages

◦ Even the simplified view of robust & adversarial ML is challenging

◦ min-max-type has spurious attractors with no equivalent concept in min-type

◦ Other successful attempts1 consider “mixed Nash” concepts2

◦ Existing theory and methods for adversarial training is wrong! ... SAM too...3

1Y-P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,‘’ International Conference on Machine Learning, 2019.
2K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,‘’ NeurIPS, 2020.
3W. Xie, F. Latorre, K. Antonakopoulos, T. Pethick, and V. Cevher “Improving SAM requires rethinking its optimization formulation,‘’ ICLR, 2024.
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Wrap up!

◦ Continuing on Homework 2!
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A robustness example: Linear prediction

Linear model
Consider a linear model hx⋆ (a) = ⟨x⋆, a⟩ with weights x⋆ ∈ Rp, for some input a.

An adversarial perturbation
We aim at finding the perturbation δ ∈ Rp subject to ∥δ∥∞ ≤ ϵ that produces the largest change on hx⋆ (a):

max
δ:∥δ∥∞≤ϵ

hx⋆ (a + δ) = max
δ:∥δ∥∞≤ϵ

⟨x⋆, a + δ⟩

= ⟨x⋆, a⟩ + max
δ:∥δ∥∞≤ϵ

⟨x⋆, δ⟩ ▷ As a does not influence the optimization.

= ⟨x⋆, a⟩ + max
δ:∥δ∥∞≤1

⟨x⋆, ϵδ⟩ ▷ By the change of variables δ := δ/ϵ

= ⟨x⋆, a⟩ + ϵ∥x⋆∥1 ▷ Definition of the dual norm ∥x∥1 := max
δ:∥δ∥∞≤1

⟨x, δ⟩

Taking δ⋆ = sign(x⋆) achieves this maximum: ⟨x, ϵ sign(x⋆)⟩ = ϵ
∑n

i=1 sign(x⋆
i )x⋆

i = ϵ
∑n

i=1 |x⋆
i | = ϵ∥x⋆∥1.

Remarks: ◦ For the linear model, we have ∇ahx⋆ (a) = x⋆.

◦ The gradient sign of hx⋆ with respect to the input a achieves the worst perturbation.

◦ Sparse models are robust in linear prediction.
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Adversarial examples in neural networks

◦ Target problem:
max

δ:∥δ∥∞≤ϵ
L(hx⋆ (a + δ), b)

◦ Historically, researchers first tried to find approximate solutions that empirically perform well [12, 21].

Fast Gradient Sign Method (FGSM) [12]
Let hx⋆ : Rp → R be a model trained through empirical risk minimization on the loss L, with optimal
parameters x⋆. Let (a, b) be a sample with b ∈ {−1, 1} and a ∈ Rp. The Fast Gradient Sign Method computes
the adversarial example

δ = ϵ sign (∇aL(hx⋆ (a), b)) = ϵ sign (∇ahx⋆ (a)∇hL(hx⋆ (a), b))

Remarks: ◦ The FGSM obtains adversarial examples by using sign of the gradient of the loss.

◦ Such an approach can be viewed as a linearization of the objective L around the data a.

◦ For single output hx(a), ∇hL(hx⋆ (a), b) is a scalar,

▶ sign (∇ahx⋆ (a)) pattern is important
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Results of FGSM on MNIST

Figure: MNIST images with the predicted digit. Figure: MNIST images perturbed by a FGSM attack.

Taken from https://adversarial-ml-tutorial.org/adversarial_examples/
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A proposed link between FGSM and PGA

◦ Recall

▶ A single step of PGA reads δk+1
PGA := πN

(
δk + α∇f(δ)

)
▶ The FGSM attack is defined as δFGSM := ϵ sign (∇aL(hx⋆ (a), b))

▶ When N = {δ : ∥δ∥∞ ≤ λ}, πN (δ) = clip(δ, [−λ, λ])

FGSM as one step of PGA
Let δ0 = 0 and α > 0 such that (α |∇f(0)|)i > ϵ for i = 1, . . . , n. Then, one step of PGA yields

δ1
PGA = πN

(
δ0 + α∇δ∇f(δ0)

)
= clip (α∇f(0), [−ϵ, ϵ]) ▷ δ0 = 0
= ϵ sign (∇f(0)) ▷ All values are outside of the interval [−ϵ, ϵ]
= ϵ sign (∇aL(hx⋆ (a), b)) = δFGSM ▷ ∇f(0) = ∇aL(hx⋆ (a), b)
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Multiple steps of FGSM: A connection to majorization-minimization in Lecture 4

Minimization-majorization for concave functions
Let f be a concave function which is smooth in the ℓ∞-norm with constant L∞. Our target non-convex
problem is given by

max
δ

f(δ) + δN (δ)

where δN (δ) is the indicator function of the ball N := {δ : ∥δ∥∞ ≤ ϵ}. Smoothness in ℓ∞-norm implies

f(δ) + δN (δ) ≥ f(ζ) + ⟨∇δf(ζ), δ − ζ⟩ −
L∞

2
∥δ − ζ∥2

∞ + δX (δ)︸                                                                       ︷︷                                                                       ︸
δ⋆←arg maxδ

.

Maximizing the RHS with respect to δ leads to the following (non trivial) solution [7]:

δ⋆ = clip (ζ − t⋆sign(∇f(ζ)), [−ϵ, ϵ])

where t⋆ = arg maxt:∥δ−ζ∥∞≤t maxζ:∥ζ∥∞≤ϵ⟨∇f(ζ), δ − ζ⟩ can be found by linear search.

Remarks: ◦ Setting ζ = δk and δ⋆ = δk+1 with a fixed step size α = t⋆, we obtain the update in [17, 18, 21]
δk+1 = clip

(
δk − t⋆sign(∇f(δk)), [−ϵ, ϵ]

)
.

◦ This proof holds for concave and smooth functions, and need further quantification for our setting.
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A notion of distance between distributions

Figure: The Earth Mover’s distance

Minimum cost transportation problem (Monge’s problem)
Find a transport map T : Rd → Rd such that T (X) ∼ Y , minimizing the cost

cost(T ) := EX∥ Y − T (X) ∥. (16)
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The Wasserstein distance

Definition
Let µ and ν be two probability measures on Rd. Their set of
couplings is defined as

Γ(µ, ν) := {π prob. measure on Rd × Rd with marginals µ, ν}
(17)

Definition (q-Wasserstein distance (Primal))

Wq(µ, ν) :=
(

inf
π∈Γ(µ,ν)

E(a,a′)∼πd(a, a′)q

)1/q

(18)

where q = 1, 2 and d is a distance.

Figure: Two one-dimensional distributions plotted
on the x and y axes, and one possible joint
distribution that defines a transport plan between
them (https://en.wikipedia.org/wiki/
Wasserstein_metric).
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Properties of the Wasserstein distance

◦ For any q ≥ 1, the q-Wasserstein distance is a distance:
▶ Wq(µ, ν) = 0 if and only if µ, ν have the same density almost everywhere (identity).
▶ Wq(µ, ν) = Wq(ν, µ) (symmetry).
▶ Wq(µ, ρ) ≤ Wq(µ, ν) + Wq(ν, ρ) (triangle inequality).

Problem (Wasserstein Projection)
Given a target probability measure µ on Rd we are interested in solving the following optimization problem:

min
ν∈∆

Wq(µ, ν), (19)

where ∆ is a set of probability measures on Rd, and q is often selected as 1 or 2.
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General diagram of GANs
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Figure: Generator/dual variable/dataset relation in GANs
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⋆Sharpness-aware minimization (SAM) [10]

◦ Intuition: Flat minima usually generalizes better than sharp minima.

Figure: ResNet trained via SAM converges to a flatter minima (Right) compared with the one trained via SGD (Middle), and
thus leads to considerable error rate reduction (Left) [10].
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⋆Sharpness-aware minimization (SAM) [10]
◦ Efficient approximation to the objective minx

{
1
n

∑n

i=1

[
maxδ:∥δ∥2≤ϵ L(hx+δ (ai), bi)

]}
:

▶ Let’s first consider the the inner maximization problem. By first-order Taylor expansion, we have:

δ⋆ = arg max
δ:∥δ∥2≤ϵ

L (hx+δ (ai) , bi) ≈ arg max
δ:∥δ∥2≤ϵ

[
L (hx (ai) , bi) + δ⊤∇xL (hx (ai) , bi)

]
= arg max

δ:∥δ∥2≤ϵ

δ⊤∇xL (hx (ai) , bi) = ϵ
∇xL (hx (ai) , bi)

∥∇xL (hx (ai) , bi) ∥2
.

▶ Plugging δ⋆ back the original objective and take the derivative:

∇x

{
1
n

n∑
i=1

[
max

δ:∥δ∥2≤ϵ
L(hx+δ (ai), bi)

]}
=

1
n

n∑
i=1

[∇xL(hx+δ⋆ (ai), bi)]

=
1
n

n∑
i=1

[
(1 +

dδ⋆

dw
)∇xL(hx (ai), bi) |x+δ⋆

]
≈

1
n

n∑
i=1

[
∇xL(hx (ai), bi) |x+δ⋆

]
,

where in the last equation the second-order term is dropped for accelerating the computation.
▶ Thus, the parameters are updated by: xk+1 = xk − γk

1
n

∑n

i=1

[
∇xk L(hxk (ai), bi) |xk+δ⋆k

]
, where γk

is a step-size.
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SAM’s update rule

SAM
The SAM update rule is given by:

x̃k = xk + ϵ
∇L(xk)

∥∇L(xk)∥
[Perturb weights]

xk+1 = xk − γk∇L(x̃k) [Update step]

where γk is the step-size, and L(x) = 1
n

∑n

i=1 L (hx (ai) , bi).

Remarks: ◦ SAM requires two gradient computations per update, which are sequentially dependent.

◦ The computational time of SAM is doubled compared with base optimizers (e.g. SGD).

Question: ◦ Can we run it as fast as base optimizers?

Yes! Parallelize two gradient computations.
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SAM Parallelized (SAMPa) [31]

SAMPa-λ
An auxiliary sequence y is introduced for parallel computation. The SAMPa update rule is given by:

x̃k = xk + ϵ
∇L(yk)

∥∇L(yk)∥
[Perturb weights]

yk+1 = xk − γk∇L(yk) [Auxiliary sequence]

xk+1 = xk − (1 − λ)γk∇L(x̃k) − λγk∇L(yk+1) [Update step]

where λ ∈ [0, 1]. Note that ∇L(x̃k) and ∇L(yk+1) are computed in parallel, incorporating optimistic gradient
descent as follows:

yt+1 = xt − ηt∇f(yt), xt+1 = xt − ηt∇f(yt+1)

Table: Resnet-56 with Efficient SAM variants on CIFAR-10. The best result is in bold and the second best is underlined.

SAM SAMPa-0.2 LookSAM AE-SAM SAF MESA ESAM

Accuracy 94.26 94.62 91.42 94.46 93.89 94.23 94.21
Time/Epoch (s) 18.81 10.94 16.28 13.47 10.09 15.43 15.97
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Fast gradient sign method (FGSM) [12]

Projected gradient descent (PGD) attack: A misnomer
Let η(0) = 0, the PGD update rule is given by:

η̂(t) = η(t−1) + α · sign
(

∇ηL
(

hx
(

a + η(t−1)
)

, b
))

[Gradient step]

η(t) = max
{

min
{

η̂(t), ϵ
}

, −ϵ
}

, [Projection step]

where α is the step-size and the procedure is ran for T steps. If T = 1 and α = ϵ we recover the FGSM:

ηFGSM = ϵ · sign (∇ηL (hx (a) , b))

Problems:
▶ In Adversarial Training: ×T overhead in training time.
▶ If T = 1, we can observe Catastrophic Overfitting (CO)

Example:
▶ PreActResNet18 on CIFAR10 at ϵ = 8/255.
▶ Outcome: 100% robust to FGSM attacks and 0% robust to

PGD-20 attacks.
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Fast gradient sign method (FGSM) [12]

Projected gradient descent (PGD) attack: A misnomer
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(

∇ηL
(

hx
(

a + η(t−1)
)

, b
))

[Gradient step]
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min
{

η̂(t), ϵ
}

, −ϵ
}

, [Projection step]
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More on CO
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Test PGD-20 acc.

Why?
The single step solution ηFGSM only makes sense if our loss is locally linear, i.e.:

L (hxk (a + η), b) ≈ L (hxk (a), b) + η⊤∇aL (hxk (a), b) , ∀η : ||η||∞ ≤ ϵ . [1st order Taylor expansion]

Observation: This property is lost during AT with FGSM and CO appears [2].
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The ELLE way [Abad Rocamora, Liu, Chrysos, Olmos and Cevher, ICLR 2024]

AT PGD-10
FGSM

LLR
CURE

GradAlign
ELLE

ELLE-A
0.0

0.2

0.4

Ti
m

e
(h

)

(a) Training time comparison

ϵ 8 16

Method AutoAttack Clean AutoAttack Clean

LLR 42.18 ± (0.20) 75.02 ± (0.09) 16.92 ± (0.20) 42.81 ± (9.62)
CURE 43.60 ± (0.17) 77.74 ± (0.11) 18.25 ± (0.45) 52.49 ± (0.04)
GradAlign 44.66 ± (0.21) 80.50 ± (0.07) 17.46 ± (1.71) 44.35 ± (15.32)

ELLE 42.78 ± (0.95) 80.13 ± (0.32) 18.28 ± (0.17) 59.73 ± (0.16)
ELLE-A 44.32 ± (0.04) 79.81 ± (0.10) 18.03 ± (0.15) 59.21 ± (1.23)

AT PGD-10 46.95 ± (0.11) 79.11 ± (0.08) 24.77 ± (0.26) 59.64 ± (0.46)

(b) PreActResNet18 in CIFAR10

Algorithmic approaches: ◦ Local linearization (LLR) [26]

◦ Curvature regularization (CURE) [23]

◦ Gradient alignment (GradAlign) [2]

◦ Efficient local linearity regularization (ELLE) [1]
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Overcoming CO with local linearity regularization [2, 1]

Why?
The single step solution ηFGSM only makes sense if our loss is locally linear, i.e.:

L (hxk (a + η), b) ≈ L (hxk (a), b) + η⊤∇aL (hxk (a), b) , ∀η : ||η||∞ ≤ ϵ . [1st order Taylor expansion]

Observation: This property is lost during AT with FGSM and CO appears [2].

◦ We can measure the how locally linear a model is with the gradient missalignment.

Gradient Missalignment [2]
Let the point ã be sampled uniformly such that ||a − ã||∞ ≤ ϵ and the gradients g = ∇aL (hxk (a), b) and
g̃ = ∇ãL (hxk (ã), b). The gradient missalignment is defined as:

Grad.Miss.(xk, a) = 1 −
g⊤g̃

||g||2||g̃||2
, (20)

with a locally linear model at a having Grad.Miss.(xk, a) = 0.
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Overcoming CO with local linearity regularization [2, 1]

◦ Observation: We can regularize the Gradient Missalignment during training to avoid CO, i.e., GradAlign [2]:

min
x

1
n

n∑
i=1

L (hx (ai + ηFGSM) , bi) + λ · Grad.Miss.(x, ai) .

◦ Remark: differentiating ∇xGrad.Miss.(x, ai) is an expensive operation due to Double Backpropagation [8].
◦ Question: Can we do better?.

Yes!

ELLE [1]
Let the point ã be sampled uniformly such that ||a − ã||∞ ≤ ϵ and â = α · a + (1 − α) · ã with α sampled
uniformly from [0, 1]. The ELLE regularization term is defined as:

ELLE(xk, a) = (L (hxk (â), b) − α · L (hxk (a), b) − (1 − α) · L (hxk (ã), b))2 , (21)

with a locally linear model at a having ELLE(xk, a) = 0.

◦ Advantage: Regularizing ELLE does not involve Double Backpropagation and can as well overcome CO [1].
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Is the training “fair”?
◦ Another grand challenge in ML: Fairness & bias

◦ A concrete example: Adversarial training may sacrifice subset of classes in favor of consensus
▶ CIFAR10: 51% average robust accuracy while the worst class is 23.5%
▶ CIFAR100: the worst class has zero accuracy while the best has 76%
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Figure: Clean accuracy and robust accuracy on CIFAR10 after clean training and adversarial training respectively.
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Key challenges in ML demand much more than ERM

◦ Protect the weak: Class-focused online learning for adversarial training [25]

min
x

max
bc∈[C]

1
nc

nc∑
i=1

[
max

δ:∥δ∥≤ϵ
L(hx (ai + δ), bc)

]
◦ Great potential via the minimax formulation: the average does not suffer much or can even improve!
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