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Outline

» This class
> Adversarial Machine Learning (minmax)

> Adversarial Training
> Generative Adversarial Networks (GANs)

> Next class

> Difficulty of minmax
> Diffusion models
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Adversarial machine learning

min max ®(x,y)
XEX yEY

o A seemingly simple optimization formulation
o Critical in machine learning with many applications

> Adversarial examples and training
> Generative adversarial networks

> *Robust reinforcement learning (more on this next week)
> .
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From empirical risk minimization...

Definition (Empirical Risk Minimization (ERM))

Let hx : RP — R be a model with parameters x and let {(a;,b;)}7; be
samples with b; € {—1,1} and a; € RP The ERM problem reads

min g X:L(hx a;),b;) p,

x

where L(hx(a;),b;) is the loss on the sample (a;,b;).

Some frequently used loss functions
> L(hx(ai), bi) = log(1 + exp(—bihx(a;)))
> L(hx(a),b;) = (bi — hx(a;))? Squared error.
> L(hx(a;),b;) = max(0,1 — b;hx(a;)) Hinge loss.

Logistic loss.
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...Into adversarial examples

Definition (Adversarial examples [28])

Let hxx : RP — R be a model trained through empirical risk minimization, with optimal parameters x*. Let
(a,b) be a sample with b € {—1,1} and a € RP. An adversarial example is a perturbation € RP designed to
lead the trained model hyx* to misclassify a given input a. Given an € > 0, it is constructed by solving

d € argmax L(hx+(a+4),b)
5:]|8||<e

Example norms frequently used in adversarial attacks

> The most commonly used norm is the £oo-norm [12, 21].

> The use of £1-norm leads to sparse attacks.

Figure: (Left) An £..-attack: The alteration is hard to perceive. (Right) An ¢;-attack: The alteration in this case is obvious.
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Adversarial examples and proximal gradient descent

o Target problem:
L(hyx+(a+46),b
e, e (200, 0)
o We can do better than FGSM via proximal gradient methods for composite minimization:
max L(hx+ (a4 9),b) + dnr(9),
SERP N N
f(9) 9(9)
where §57(8) is the indicator function of the ball A := {§ : ||0]|cc < €}.

Recall: Proximal operator of indicator functions

For the indicator functions of simple sets, e.g., g(d) := dxr(d), the prox-operator is the projection operator
Proxy (8) i= mar(6),

where mar(8) denotes the projection of § onto N'. When N = {8 : ||6]|cc < A}, mar(8) = clip(d, [=, A]).
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Adversarial examples and proximal gradient descent (cont’d)
o Target non-convex problem:
max L(hx+ (a + 8),b) + o (9),
SERP~ o N
f(®) 9(8)
where d57(8) is the indicator function of the ball N := {y : ||y||co < €}.

Proximal gradient ascent (PGA)
1. Choose 8° € dom f(8) + g(d) as initialization.
2. Fork=0,1,---, generate a sequence {5k}k20 as:

sk t1 8% + ap VF(6")) .

= Proxg, g (

Remarks: o PGA results in more powerful adversarial “attacks” than FGSM [16].
o The PGA is incorrectly referred to as projected gradient descent in this literature.
o Practitioners prefer to use several steps of FGSM instead of PGA [17, 18, 21]:
ol =1y (Jk + oy sign (Vf(&k))) .

o See the appendix for a through study of the FSGM.
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Challenge: Adversarial examples are inevitable
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Figure: Understanding the robustness of a classifier in high-dimensional spaces. Shafahi et al. 2019.
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Hardness results have never been a barrier for ML researchers

Definition (Empirical Risk Minimization (ERM))

Let hx : RP — R be a model with parameters x and let {(a;,b;)}7; be
samples with b; € {—1,1} and a; € RP. The ERM problem reads

n
1
min Ry (x) ::fE L(hx(a;),b;) o,
x n
=il

where L(hx(a;),b;) is the loss on the sample (as,b;).

Objectives
> miny {% Z:.L:l [max&”(wmge L (hx (a;+9), bz)] } Adversarial training [14].
> miny {% Z;;l [maxl;:”(;‘bge L(hx+s (a;), bl)] } e-stability training [4],
Sharpness-aware minimization [10].
> ming maxyee[c) n—lc 27:01 [max&wge L (hx (a;+9), bc)] Class fairness [25].
Remark: o We focus on adversarial training during the lecture. See supplementary material for more.
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Towards adversarial training

Adversarial Training [14]

Let hx : R™ — R be a model with parameters x and let {(a;,b;)}* ;, with the data a; € RP and the labels b;.
The problem of adversarial training is the following adversarial optimization problem

max L(hx (a; + 0),b;)
x N 5:[|8]lcc<e 8:[|8]]o0 <e

1 n
min — Z [ max L(hx (a; + 9), bl):| ~ minE, 3)~p [

Note the similarity with the template minye x maxycy ®(x,y).
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Beyond robustness: Adversarial training for better interpretability

o Retinopathy classification problem: Given a retinal image (left), predict whether there is a disease.
o Zeiss: How can we interpret the prediction of a model hx(a)?

o Solution: Look at Vxhx(a), called the saliency map [9]. Minimax adversarial training seems to help!

Table: Left: Ground truth image, Middle: Saliency map, Right: Saliency map with adversarial training.
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Solving the outer problem

Adversarial Training [14]

Let hx : RP? — R be a model with parameters x and let {(a;, b;)}} ;, with a; € RP and b; be the corresponding
labels. The adversarial training optimization problem is given by

n

NERS 1
T Y Z Filx) = n Z [54?}6};{& Lihx (25 +8): )
=1

=1

=:fi(x)

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.
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Solving the outer problem

Adversarial Training [14]

Let hx : RP? — R be a model with parameters x and let {(a;, b;)}} ;, with a; € RP and b; be the corresponding
labels. The adversarial training optimization problem is given by

n

min { Zl fix) =~ Z [aﬁf« L(hx (a; + 6), bl)]

=1

=:fi(x)

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Question

How can we compute the gradient

5:|8l oo <€

Vx fi(x) := Vx ( max L(hx (a; + 9), bz)) ?

o Challenge: It involves differentiating with respect to a maximization.

o A solution: We can use Danskin's theorem under some conditions.
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Danskin’s Theorem (1966): How do we compute the gradient?

Theorem ([5])
Let S be compact set, ® : RP x S be continuous such that ®(-,y) is differentiable for all y € S, and Vx®(x,y)
be continuous on RP x S. Define

f(x) = max ®(x,y), S*(x) = argmax P(x,y).
yES yES

Let d € R?, and ||d||2 = 1. The directional derivative Dq f(X) of f in the direction d at X is given by

Dqaf(x) = max (d,Vx®(X,y)).
YES* (%)

An immediate consequence

If 0% € arg maxs, |5 <e L(hx (a; + 8),b;) is unique, then we have

Vi fi (%) = VxL(hx (a; + 8*),b;).
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A practical implementation of adversarial training: Stochastic subgradient descent

Stochastic Adversarial Training [21]
Input: learning rate «y, iterations 7', batch size K.
1. initialize neural network parameters x?
2. For k=0,1,...,T:
i. initialize update vector g* := 0
ii. select a mini-batch of data B C {1,...,n} with |B| = K
iii. For i € B:
a. Find an attack 6* by (approximately) solving
6 € arg max&nguwse L(hxk (ai + 6), bl)
b. Store update
g" = g" + VxL(hyk (a; +6%),b;)
iv. Update parameters

k+1 .__ Lk Ak Lk
xM=xb - Ske

Remarks: o Expensive!

o Inner problem iii.a cannot be solved to optimality (non-convex).
o Practitioners use FGSM or PGA or PGA-{~, to approximate the true §*.
o Update in step iii.b is motivated by Corollary A.2 in [21]
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Optimized perturbations are typically not unique!

T
1
3.0~ 1000 -1
1
1
2.5+ 1
800~ |
1
z20r z 1
Z g 600my
g 5L g 1
ALs =} -
400 -1
1.0 - !
1
200+
0.5~ == Clean loss
W Adversarial loss
i i | | |
%o 4 0.6 0" 056 058 0.60 0.62 0.64
[l6 = "l|2 Loss

Figure: (left) Pairwise £2-distances between “optimized” perturbations with different initializations are bounded away from zero.
(right) The losses of multiple perturbations on the same sample concentrate around a value much larger than the clean loss.
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Theoretical foundations

unique 0* non-unique §*

Vx®(x,0%)  Vxf(x) descent direction [21]

Published as a paper at ICLR 2018

TOWARDS DEEP LEARNING MODELS RESISTANT TO
ADVERSARIAL ATTACKS

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu*
Department of Electrical Engineering and Computer Science
Institute of Technol
Cambridge, MA 02139, USA
{madry, amakelov, ludwigs, tsipras,avladu}@mit.edu
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A counterexample

f(x) = max x40 = |x]|.
6e[—1,1]

4 =1l o We have § :=[—1,1] and ®(x,d) = x4.

’ o At x = 0, we have §*(0) = [—1, 1].

2

o We can choose § =1 € §*(0): ®(x,1) = x.
1
-3 -2 -1 0o 1 2 3
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A counterexample

f(x) = max x40 = |x]|.
6e[—1,1]
4 =1l o We have § :=[—1,1] and ®(x,d) = x4.
’ o At x = 0, we have §*(0) = [—1, 1].
2
o We can choose § =1 € §*(0): ®(x,1) = x.
! > —Vy®(0,1) = —1#0.
> |s —1 a descent direction at x = 07
-3 -2 -1 0o 1 2 3
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Descent directions in the non-convex case

General Danskin's Theorem

Assume ) is compact and ®(x,y) differentiable in x but not necessarily convex in x. Define
Y*(x) := argmaxycy ®(x,y) as the set of maximizers. Then f(x) := maxycy ®(x,y) is directionally
differentiable and its directional derivative is given by

PRCAIS e o eeCoy ) @)

Corollary A.2 in [21] (proven wrong!)
Let y§ be a maximizer of maxycy ®(x,y). Then as long as Vx®(x,y) is non-zero, —Vx®(x,y§) is a
descent direction for f(x).

Remarks: o The notion of directional derivative is one-sided:

Df(x,d):= lim
fxd) = lim ;

o Only when Y*(x) = {y*} is a singleton, —Vx®(x,y*) is necessarily a descent direction f.
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Directional derivatives, not descent directions
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Figure: (Left and Middle) Synthetic adversarial training example. (Right) Resnet18 on CIFAR10 - Robust accuracy comparison
between PGD and DDi.

Solving the inner problem does not yield a descent direction

Danskin’s Theorem involves all the maximizers when computing the directional derivative along a direction d. A
single maximizer is not sufficient.

Remarks: o A recent approach (DDi) computes many maximizers to find a descent direction [19].

o In practice however, the lack of descent does not seem to matter.
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Danskin’s theorem

Danskin's theorem (Bertsekas variant)

Let ®(x,y) : R? x ¥ — R, where ) C R™ is a compact set and define f(x) := maxycy ®(x,y). Suppose that
d(x,y) is convex for each y in the compact set V; the interior of the domain of f is nonempty; and ®(x,y) is

continuous.
Define Y*(x) := argmaxycy ®(X,y) as the set of maximizers and y* € Y* as an element of this set. We have

1. f(x) is a convex function.
2. If Y*(x) is a singleton, then the function f(x) = maxycy ®(x,y) is differentiable at x:

Vxf(x) = Vx (maxd)(x,y)) = Vx®(x,y").
yey

3. If Y*(x) contains more than one element, then the subdifferential O« f(x) of f is given by
Ox f(x) = conv{0xP(x,y*) : y* € V*(x)}.
Remarks: o The adversarial problem is not convex in x in general.

o (Sub)Gradients of f are calculated as Vx f(x) = Vx®(x,y*).
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Out of the frying pan into the fire
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Original Formulation of Adversarial Training (I)
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Original Formulation of Adversarial Training (I)

which loss L7
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Original Formulation of Adversarial Training (1)

min E ST Loi(hx (a4 0),b)
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Original Formulation of Adversarial Training (I1)

min E ST Loi(hx (a4 9), b)]
min E ST Lce(hy (a+6), b)}

IHEETIl  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 45 EPFL



Surrogate-based optimization for Risk Minimization

Comparison of Loss Functions

~— 0-1Loss

= Hinge Loss

7 Log Loss

= Squared Hinge Loss
Modified Huber Loss

L(hx(a), b)
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Surrogate-based optimization for Risk Minimization

. Comparison of Loss Functions

s (-1 LOSS

= Hinge Loss
7 Log Loss

== Squared Hinge Loss
6

Modified Huber Loss

L(hx(a), b)

E [L()l(hx* (a + (S), b)] < mxinE [LCE (hx(a + 5), b)]
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Adversary maximizes an upper bound (1)

Lo (hx(a +6).0) < max Leg (hx(a +8).)
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Adversary maximizes an upper bound (1)

8% Sy O

N L

// T \ L((SEB)
L

Vg

LLB
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Why maximizing cross-entropy leads to weak adversaries

2

4
¢

a
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(49, 51, 0, 0)
LCE(hx (a—|— 5A),@) =1.18

(.26, .24, .25, .25)

LCE(hx (a + 53), Q\) =1.38
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Adversary’s problem can be “solved” without using surrogates

Theorem (Reformulation of the Adversary's problem)

0" € argmaxmax hy(a+9); — hx(a+9), =

&:]|6]|<e  J#D
0" € argmax Ly (hx(a + 9),b)
d:[|0[|<e
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Bilevel Optimization (BETA)

o Best targeted attack (BETA) optimization formulation [27]:

mm Z Lcg ( (@i + 67 +), bi)

ni=1

such that 87 ; € argmax hy(a; + 5)1' -

Z?
/ d: ||| <e

S arg max h x(ai +0; j+);
JE[K]—{b;}
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Practical Consequences of the Bilevel Formulation

Figure: Learning curves of PGD'C-AT (Left) and BETAC-AT

e==== Train Robust o= Train Clean

e Test Robust e Test Clean
T
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g
g 50
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Epoch
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Practical Consequences of the Bilevel Formulation

Figure: Learning curves of PGD-AT (Left) and BETA'Y-AT (Right). Robust accuracy estimated with PGD2°
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Practical Consequences of the Bilevel Formulation

Figure: Learning curves of PGD-AT (Left) and BETA'Y-AT (Right). Robust accuracy estimated with PGD2°
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No Robust Overfitting occurs!
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Practical Consequences of the Bilevel Formulation

Table: Adversarial performance on CIFAR-10.

Training Test accuracy

algorithm Clean FGSM PGD10 PGD40 BETALC APGD
Best Last Best Last Best Last Best Last Best Last Best Last
FGSM 81.96 75.43 94.26 94.22 4264 149 4266 162 4030 0.04 4156  0.00
PGD10 83.71 83.21 51.98 47.39 46.74 3990 4591 3945 43.64 4021 4436 42.62
TRADES'®  81.64 81.42 5240 51.31 47.85 4231 47.76 4292 4431 4097 4334 4133
MART10 78.80 77.20 53.84 53.73 49.08 41.12 4841 4155 4481 4122 4500 42.90
BETA-ATS  87.02 86.67 51.22 51.10 44.02 4322 43.94 4256 4262 4261 41.44 41.02
BETA-AT!0 8537 8530 51.42 51.11 4567 4539 4522 4500 4454 4436 4432 4412
BETA-AT20 8211 81.72 5401 53.99 49.96 48.67 49.20 48.70 46.91 4590 4527 4525
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Adversarial machine learning: Introduction to Generative Adversarial Networks (GANs)

o Recall the parametric density estimation setting

(source: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)

a; = [ ...images...]
b; = [ ...probability... ]

o Goal: Games, denoising, image recovery...

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch
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o Generator Py
> Nature
o Supervisor P g|a
> Frequency data
o Learning Machine hx(a;)

> Data scientist: Mathematics of Data
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A way to model complex distributions: The push-forward measure

o Traditionally, we use analytical distributions: Restricts what we could model in real applications.
o Now, we use more expressive probability measures via push-forward measures with neural networks

Definition

o Let w ~ pg be a random variable.
o hx(+) : RP — R™ a function parameterized by parameters x.

The pushforward measure of pg, under hx, denoted by hx#pq, is the distribution of hx(w).

Example: Chi-square distribution

Let w ~ pg := N(0,1) be the normal distribution. Let hy : R — R, hy(w) = w®. Let us fix z = 2. Then,
hz#pq is the chi-square distribution with one degree of freedom.

Explanation: Change of variables.

Assume that h : R — R"™ is monotonic. Given the random variable w ~ pg with probability density function
po(w), the density py (y) of y = hx(w) reads

Py (¥) = Pa(hx ' (¥))det (Jyhi ' (¥))
where det denotes the determinant operation.
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Towards an optimization problem

Problem (ldeal parametric density estimator)

Given a true distribution jif, we can solve the following optimization problem,
min Wy (1, hx#pg), (3)
X
where the measurable function hx is parameterized by x and w ~ pq, is “simple” e.g., Gaussian.

Remarks: o See the appendix for the details of the Wasserstein distance W.

o Issues:

> We only have access to empirical samples ji,, of pf.

> W7 is non-smooth, it cannot be computed exactly.

output

Figure: Schematic of a generative model, hx#w [11, 15].
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Learning without concentration

o We can minimize Wi (fin, hx#pq) with respect to x.
o Figure: Empirical distribution (blue), i, = Z:‘L:1 05
A plug-in empirical estimator

Using the triangle inequality for Wasserstein distances we can upper bound in the follow way,

Wi (1f, hx#tpg) < Wi (4, fin) + Wi (fin, hx#pg), (4)

where [i,, is the empirical estimator of pf obtained from n independent samples from 1.

Theorem (Slow convergence of empirical measures in 1-Wasserstein [30, 6])

Let puf be a measure defined on RP and let fi,, be its empirical measure. Then the ji,, converges, in the worst
case, at the following rate,
Wi (4, fin) 2 0=/, (5)

Remarks: o Using an empirical estimator in high-dimensions is terrible in the worst case.
o However, it does not directly say that W; (,uh7 hx#pﬂ) will be large.

o So we can still proceed and hope our parameterization interpolates harmlessly.
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Duality of 1-Wasserstein

o Instead of computing W1, we can obtain lower bounds using duality.

Theorem (Kantorovich-Rubinstein duality)

Wi(u,v) = sttlip{<d7 w)y — (d,v) : d is 1-Lipschitz} (6)

Remark: o d is the “dual” variable. In the literature, it is commonly referred to as the “discriminator.”

Inner product is an expectation

(d,pu) = / ddp = / d(a)du(a) = Ea~y [d(a)] . (7)

Kantorovich-Rubinstein duality applied to our objective

Wi (fin, hx#w) = sup {anﬂn [d(a)] — EBarhy#wld(a)] :dis 1—Lipschitz} (8)
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Integral Probability Metrics

We can define a more general class of (semi)metrics in the space of probability distributions

Definition (Integral Probability Metric)

Let F be a class of functions from RP to R. For two probability measures p and v, the IPM associated to F is

defined as:
F(p,v) = sup(f, p) — (f,v) = sup Ea~p[f(a)] — Ea~vv[f(a)] (9)
feF fex
Remarks: o The 1-Wasserstein distance corresponds to F := {f : RP — R, f is 1 — Lipschitz}

o The class cannot be described with finite parameters.
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Neural network distances inspired by the 1-Wasserstein distance

o We use neural networks to parametrize a class of functions.
o Constraining the Lipschitz constant of Neural Networks is NP-Hard [29].

o We can constrain upper bounds on the Lipschitz constant [20].

Lemma

Let hx, x,(a) = XX o(X1a) be a one-hidden-layer neural network. Then its Lipschitz constant Lx, x, with
respect to the ¢3-norm is bounded as:
Lxy,x, < [ Xaf2[Xz]l2 (10)

Neural Network Distance

Let
F = {hx, x,(a) = X3 o(X1a) : [Xall2 < 1,[| X2 < 1} (11)

The IPM corresponding to F is referred to as a Neural Network Distance.

Remark: o Different network architectures/constraints lead to different Neural Network distance notions.
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Wasserstein GANs formulation

o Ingredients:

> fixed noise distribution pg (e.g., normal)

> target distribution fi,, (natural images)

> X parameter class inducing a class of functions (generators)

> Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [3]

Define a parameterized function dy(a), where y € ) such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN optimization problem is given by

min (m;c Earp, [dy(a)] — Bunp, [dy<hx<w>>1> A (12)
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The theory-practice gap: Enforcing 1-Lipschitz of the discriminator

Weight clipping [3]

::\ [—— Weight clipping (c = 0.001)
. . . ” . . 10— ght chipping (¢ =
The “dual” or the “discriminator” dy weights y are constrained by 7 Weight clipping (c = 0.01)
B o q . . &0 —— Weight clipping (¢ = 0.1)
an £oo-ball with radius ¢ > 0, denoted as B, at every iteration with S — Gradiont penalty
07
g
. B
m5(y) = clip(y, [—¢, ). (13) g AN
g0 e Y
This trick is used to pseudo-enforce the constraint. ) S~
(;;5 2 ~~
Remark: o "Weight clipping is a clearly terrible way to 13 10 7 1 i

enforce a Lipschitz constraint” — original authors. Discriminator layer

Gradient penalty [13]

Recall that 1-Lipschitz is equivalent to ||[Vady(a)||« < 1. This can be enforced directly through
Banpiy [dy(a)] = Bung [dy (hx(@))] + ABa~y [([Vady (a)l« — 1)%]. (14)

Remarks: o In practice the distribution v mimicks uniform (linearly interpolated) sampling as follows:
a ~ Uniform(a;, hx(w;)).
o Spectral normalization: Divide each weight matrix by their spectral norm [22].
o Learnable spline activations: both a 1-Lipschitz and more expressive architecture [24].
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Practical implementation of GANs

Stochastic training of Wasserstein GANs

Input: primal and “dual” learning rates v and ay,, primal iterations T,
“dual” network dy, generator network hyx, noise distribution pq, real
distribution fi,,, primal and dual batch sizes B, K, “dual” iterations M.

1. initialize x°
2.Fort=0,1,..,.T —1:
Form=0,1,... M — 1:

initialize y°,

draw noise sample w1,...,wK ~ pg

draw real samples 71, .. rK ~ fin,

u " -1 .
dual” pseudo-loss L(y Zli dy (r;) — dy (hyt (wi))

fupdate “dual” parameters ym+1 =y +vmVyL(y™)
#enforce 1-Lipschitz constraint on dym-+1
end-For
draw noise sample w1,...,wpB ~ pg
generator pseudo-loss L(x) := —B~! Z dy,ar (hx (w5))
update generator parameters x'*t1 = x? — atvx (x?)
end-For

#: Ideally, should be performed jointly.
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Some historical background for a Turing award

Vanilla GAN [11]

min max Ea~p, [logdy(a)] + Ewn~pg [log (1 — dy (hx(w)))] (15)
xXEX y€E

> Binary cross-entropy modeling.

> dy(a): Y — [0,1] represents the probability that a came from the real data distribution uf.

Observation: o Minimizes Jensen-Shannon divergence:

. 1 1 R
ISD(fin||hx#pg) = 5D(unllhx#pn) + 5D(hx#pnllun)~
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Take home messages

o Even the simplified view of robust & adversarial ML is challenging
o min-max-type has spurious attractors with no equivalent concept in min-type
o Other successful attempts! consider “mixed Nash” concepts?

HalfCheetah-v2

1000 1 Rmsprop
— sGlD
800 1 — ExtraAgam
600
200
200
0
-200
-400
05 075 10 15 20

Relative mass.

o Existing theory and methods for adversarial training is wrong! ... SAM too...3

1Y—P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,"" International Conference on Machine Learning, 2019.
2I'<. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,"" NeurlPS, 2020.
3W Xie, F. Latorre, K. Antonakopoulos, T. Pethick, and V. Cevher “Improving SAM requires rethinking its optimization formulation,” ICLR, 2024
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Wrap up!

o Continuing on Homework 2!
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A robustness example: Linear prediction

Linear model

Consider a linear model hy+ (a) = (x*,a) with weights x* € RP, for some input a.

An adversarial perturbation

We aim at finding the perturbation € RP subject to ||d]|oc < € that produces the largest change on hy+ (a):

max hyxx(a+d8)= max (x*,a+4d)
8:]18]l oo <e 5:[|8]l o <e
= (x*,a) + Hrrhax (x*,8) > As a does not influence the optimization.
6:|6]| 0o <€
= (x*,a) + N HI;TI X <x*,66) > By the change of variables § := §/e
= (x*,a) + €||x* |1 > Definition of the dual norm ||x|[[1 := s Hrgﬁax (x,0)
5 o<1

Taking 6* = sign(x*) achieves this maximum: (x, e sign(x*)) = ez L sign(z})z; = 62171 |z7| = ellx*||1-
Remarks: o For the linear model, we have Vahxx(a) = x*.

o The gradient sign of hx» with respect to the input a achieves the worst perturbation.

o Sparse models are robust in linear prediction.
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Adversarial examples in neural networks

o Target problem:
max L(hx+(a+ d),b)
8:[|8]|cc <€
o Historically, researchers first tried to find approximate solutions that empirically perform well [12, 21].

Fast Gradient Sign Method (FGSM) [12]

Let hx : RP — R be a model trained through empirical risk minimization on the loss L, with optimal
parameters x*. Let (a,b) be a sample with b € {—1,1} and a € RP. The Fast Gradient Sign Method computes
the adversarial example

& = e sign (VaL(hx(a),b)) = € sign (Vahx»(a)Vy L(hx (a), b))

Remarks: o The FGSM obtains adversarial examples by using sign of the gradient of the loss.
o Such an approach can be viewed as a linearization of the objective L around the data a.

o For single output hx(a), Vj, L(hxx(a),b) is a scalar,

> sign (Vahx+ (a)) pattern is important
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Results of FGSM on MNIST

Pred: 7 Pred: 2 Pred: 1 Pred: 0 Pred: 4 Pred: 1 Pred: 3 Pred: 3 Pred: 7 Pred: 0 Pred: 9 Pred: 7
Pred: 4 Pred: 9 Pred: 6 Pred: 9 Pred: 0 Pred: 6 Pred: 8 Pred: 2 Pred: 6 Pred: 4 Pred: 2 Pred: 8
49 & ¢ 2 0 b 9 a & 2 0 b
Pred: 9 Pred: 0 Pred: 1 Pred: 5 Pred: 9 Pred: 7 Pred: 4 Pred: 9 Pred: 3 Pred: 3 Pred: 4 Pred: 3

Figure: MNIST images with the predicted digit. Figure: MNIST images perturbed by a FGSM attack.

Taken from https://adversarial-ml-tutorial.org/adversarial_examples/
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A proposed link between FGSM and PGA

o Recall
> A single step of PGA reads JISé'Al = TN (Jk + an(J))
> The FGSM attack is defined as dggsm := € sign (VaL(hx+(a),b))
> When N = {8 : ||8]lcc <A}, mar(8) = clip(d, [, A])

FGSM as one step of PGA
Let 6° = 0 and o > 0 such that (a |V £(0)|); > e for i = 1,...,n. Then, one step of PGA yields
Shea = ar (8% + aVsVF(5%))
= clip (aV f(0), [—¢,€]) >6°=0

= e sign (V f(0)) > All values are outside of the interval [—¢, €]
= e sign (VaL(hx«(a),b)) = dresm >V f(0) = VaL(hx=x(a),b)
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A proposed link between FGSM and PGA

THEATRICALITY AND DECEPTION...

o Recall POWERFULAGENTS T0 THE

> A single step of PGA reads JISé'Al = TN (51“ + an(é))
> The FGSM attack is defined as dggsm := € sign (VaL(hx+(a),b))
> When N = {8 : ||8]lcc <A}, mar(8) = clip(d, [, A])

BUT WE ARE INITIATED,
AREN'T WED

FGSM as one step of PGA
Let 6° = 0 and o > 0 such that (a |V £(0)|); > e for i = 1,...,n. Then, one step of PGA yields

Shoa = (8° + aVsV £(5%))
= clip (aV f(0), [—¢,€]) >6°=0
= e sign (V f(0)) > All values are outside of the interval [—¢, €]
= e sign (VaL(hx«(a),b)) = dresm >V f(0) = VaL(hx=x(a),b)
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Multiple steps of FGSM: A connection to majorization-minimization in Lecture 4

Minimization-majorization for concave functions

Let f be a concave function which is smooth in the £oo-norm with constant L,. Our target non-convex
problem is given by

m?xf(ts) + dar(6)
where dx7(8) is the indicator function of the ball A/ := {4 : ||6]|cc < €}. Smoothness in £oo-norm implies

F(8) +8x(8) 2 £(0) + (V3 (€),8 = &) = 226 = CI% +6x(6) .

0* <—arg maxg

Maximizing the RHS with respect to § leads to the following (non trivial) solution [7]:
0% = clip (¢ — t*sign(V f(€)), [—¢, €])
where t* = argmaxy, |5_¢| .. <t MAX¢: | ¢[loo < {VF(C), 6 — €) can be found by linear search.
Remarks: o Setting ¢ = 8% and 6* = 6% with a fixed step size a = ¢*, we obtain the update in [17, 18, 21]

o+ +L = clip (5’“ — t*sign(V £(6%)), [—¢, e]) .

o This proof holds for concave and smooth functions, and need further quantification for our setting.
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A notion of distance between distributions

—

X Y

Figure: The Earth Mover's distance

Minimum cost transportation problem (Monge's problem)

Find a transport map T : R¢ — R? such that T'(X) ~ Y, minimizing the cost

cost(T) := Ex||Y —T(X)|. (16)
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The Wasserstein distance

Definition .
Let i and v be two probability measures on R%. Their set of .
couplings is defined as
T'(u,v) := {r prob. measure on R? x R¢ with marginals ju, v} . ‘
(17) '

Definition (g-Wasserstein distance (Primal))

-6

-8 -6 -4 -2 0 2 4 6 8

1/q
F— i g
Wa(p,v) := <r€11~r(1£,1,) E(a’a,)N”d(a’a ) ) (18) Figure: Two one-dimensional distributions plotted
on the z and y axes, and one possible joint
distribution that defines a transport plan between
them (https://en.wikipedia.org/wiki/
Wasserstein_metric).

where ¢ = 1,2 and d is a distance.
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Properties of the Wasserstein distance

o For any ¢ > 1, the g-Wasserstein distance is a distance:
> Wq(p,v) = 0 if and only if u, v have the same density almost everywhere (identity).
> Wyl v) = Wy (v, 1) (symmetry).
> Wqln, p) < Wolp,v) + We(v, p) (triangle inequality).

Problem (Wasserstein Projection)

Given a target probability measure p on R% we are interested in solving the following optimization problem:

min W‘I(/"vlj)? (19)
vEA

where A is a set of probability measures on R%, and q is often selected as 1 or 2.
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General diagram of GANs

—— sample
Dataset E

Dual variable

Generator sample

Noise vector

Figure: Generator/dual variable/dataset relation in GANs
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*Sharpness-aware minimization (SAM) [10]

o Intuition: Flat minima usually generalizes better than sharp minima.

Cifar10 1 ® o0¢
Cifar100 A oY) °
Imagenet - "

Finetuning -

SVHN |
F-MNIST

Noisy Cifar A

0 20 40
Error reduction (%)

Figure: ResNet trained via SAM converges to a flatter minima (Right) compared with the one trained via SGD (Middle), and
thus leads to considerable error rate reduction (Left) [10].
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*Sharpness-aware minimization (SAM) [10]
o Efficient approximation to the objective minx {% Z?:l [nuaxl;:”(;H,zS6 L(hx+s (ai), bz)] }:

> Let's first consider the the inner maximization problem. By first-order Taylor expansion, we have:

6* = argmax L (hx4s (a;),b;) = argmax [L (hx (a7) ,b5) + 8 T VL (hx (a3) b,)]
5:|8]]2<e 5:|8]]2<e

xL (hx (a;),b;
= arg max 8T VxL (hx (a3),b;) =€ VxL (hx (i) , bi) )
S:lldll2<e (VL (hx (ai) , bi) |2

> Plugging 8* back the original objective and take the derivative:

n

1 1 —
Vi ;; s Llhcss <ai),bi>} = ;;[vxL(hxw (a;), b:)]
- Z |: VxL(hx (ai), bi) |x+5*:| ~ %Z [VXL(hx (a:), bi) |x+6*] )
=1

where in the last equation the second-order term is dropped for accelerating the computation.

> Thus, the parameters are updated by: xF+1 = x* %, Z [ hyr (a3),b;) ‘xk+6*k] , where vy,
is a step-size.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 28



SAM'’s update rule

SAM
The SAM update rule is given by:

_VL(x") &)
IVL(x®)]|
xFH = xk _ VIR [Update step]

% =xF e [Perturb weights]

where ~y, is the step-size, and L(x) = + Zz_ (hx (a3) ,b;).

Remarks: o SAM requires two gradient computations per update, which are sequentially dependent.

o The computational time of SAM is doubled compared with base optimizers (e.g. SGD).

Question: o Can we run it as fast as base optimizers?

Yes! Parallelize two gradient computations.
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SAM Parallelized (SAMPa) [31]

SAMPa-\
An auxiliary sequence y is introduced for parallel computation. The SAMPa update rule is given by:
L k
%k =xF 4 ¢ v (yk) [Perturb weights]
IVL(y*)ll
yEtl = xk — 'kaL(yk) [Auxiliary sequence]
XL = xF (1 = Ny VL(E®) — M VL(y* ) [Update step]

where A € [0, 1]. Note that VL()E’“) and VL(ykJrl) are computed in parallel, incorporating optimistic gradient
descent as follows:
Yer1 =z —mVI(ye), @it =z — eV (Y1)

Table: Resnet-56 with Efficient SAM variants on CIFAR-10. The best result is in bold and the second best is underlined.

SAM SAMPa-0.2 LookSAM AE-SAM SAF MESA ESAM

Accuracy 94.26 94.62 91.42 94.46 93.89 94.23 94.21
Time/Epoch (s) 18.81 10.94 16.28 13.47 10.09 15.43 15.97
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Fast gradient sign method (FGSM) [12]

Projected gradient descent (PGD) attack: A misnomer
Let n(®) = 0, the PGD update rule is given by:
A® = =1 4 o - sign (VnL (hx (a + n(tfl)) 7b)) [Gradient step]
n(t) = max {min {'f](t), e} , 75} , [Projection step]
where « is the step-size and the procedure is ran for T steps. If T'= 1 and o = € we recover the FGSM:

Nrcsm = € - sign (Vi L (hx (a) , b))

Problems:
> In Adversarial Training: X7 overhead in training time.

> If T'=1, we can observe Catastrophic Overfitting (CO)
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Fast gradient sign method (FGSM) [12]
Projected gradient descent (PGD) attack: A misnomer

Let n(®) = 0, the PGD update rule is given by:

7" = =1 4 a-sign (VL (hx (a+n""") b))

7 = max {min {’f](t), 6} ) *6} )

[Gradient step]

[Projection step]

where « is the step-size and the procedure is ran for T steps. If T'= 1 and o = € we recover the FGSM:

Nrcsm = € - sign (Vi L (hx (a) , b))

Problems:
> In Adversarial Training: X7 overhead in training time.

> If T'=1, we can observe Catastrophic Overfitting (CO)

Example:
> PreActResNet18 on CIFAR10 at € = 8/255.

> Qutcome: 100% robust to FGSM attacks and 0% robust to

PGD-20 attacks.
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More on CO

. Uglatastrophic Overfitting in FGSM training

Train FGSM acc
—— Test PGD-20 acc
0.00
0 10 20 30
epoch

Why?

The single step solution 1gcsy only makes sense if our loss is locally linear, i.e.:
L(he(a+mn),b) = L(hk(a),b) + 0 VaL (hyr(a),b), Vn:||nllec <e. [Lst order Taylor expansion]

Observation: This property is lost during AT with FGSM and CO appears [2].
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The ELLE way [Abad Rocamora, Liu, Chrysos, Olmos and Cevher, ICLR 2024]

€ | 16
ﬁ Method | AutoAttack Clean | AutoAttack Clean
LLR 4218+ (0.20)  75.02+ (0.09) | 16.92+ (0.20)  42.81 + (9.62)
B & i CURE 43.60+ (0.17) 7774+ (0.11) | 1825+ (0.45)  52.49 = (0.04)
] GradAlign | 44.66 & (0.21) 80.50 £ (0.07) | 17.46 4 (1.71)  44.35 & (15.32)
ELLE 1278+ (0.95)  80.13+ (0.32) | 18.28 + (0.17)  59.73 = (0.16)
ELLE-A 4432+ (0.04)  79.81+(0.10) | 18.03+ (0.15)  59.21 + (1.23)
0.0,
ATPGD10 LLR  GradAlgn ELLE-A AT PGD-10 | 46.95+ (0.11) 79114 (0.08) | 24.77 £ (0.26)  59.64 % (0.46)
FGSM CURE ELLE

(a) Training time comparison

Algorithmic approaches:

o Local linearization (LLR) [26]

(b) PreActResNet18 in CIFAR10

o Curvature regularization (CURE) [23]

o Gradient alignment (GradAlign) [2]

o Efficient local linearity regularization (ELLE) [1]
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Overcoming CO with local linearity regularization [2, 1]

Why?

The single step solution 1ggsy only makes sense if our loss is locally linear, i.e.:
L (hye(a+m),b) = L (hyk(a),b) + 0 VaL (hyr(a),b) , Vn:||nllcc <e. [Lst order Taylor expansion]

Observation: This property is lost during AT with FGSM and CO appears [2].
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Overcoming CO with local linearity regularization [2, 1]

Why?

The single step solution 1ggsy only makes sense if our loss is locally linear, i.e.:
L (hye(a+m),b) = L (hyk(a),b) + 0 VaL (hyr(a),b) , Vn:||nllcc <e. [Lst order Taylor expansion]

Observation: This property is lost during AT with FGSM and CO appears [2].

o We can measure the how locally linear a model is with the gradient missalignment.

Gradient Missalignment [2]
Let the point & be sampled uniformly such that ||a — a|[cc < € and the gradients g = VaL (hyx (a),b) and
g = VaL (hyx(a),b). The gradient missalignment is defined as:

g'g

Grad.Miss.(x*¥,a) =1 - —==_ |
llell21l&ll2

(20)

with a locally linear model at a having Grad.Miss.(x*,a) = 0.
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Overcoming CO with local linearity regularization [2, 1]

o Observation: We can regularize the Gradient Missalignment during training to avoid CO, i.e., GradAlign [2]:

n
1
min — E L (hx (ai + Nggsm) 5 bi) + A - Grad.Miss.(x, a;) .
x N

1=1

o Remark: differentiating VxGrad.Miss.(x, a;) is an expensive operation due to Double Backpropagation [8].
o Question: Can we do better?.
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Overcoming CO with local linearity regularization [2, 1]

o Observation: We can regularize the Gradient Missalignment during training to avoid CO, i.e., GradAlign [2]:

n
1
min — E L (hx (ai + Nggsm) 5 bi) + A - Grad.Miss.(x, a;) .
x N

1=1

o Remark: differentiating VxGrad.Miss.(x, a;) is an expensive operation due to Double Backpropagation [8].
o Question: Can we do better?.

ELLE [1]
Let the point & be sampled uniformly such that ||a — a||cc < €and & =a-a+ (1 — a) - & with a sampled
uniformly from [0, 1]. The ELLE regularization term is defined as:

ELLE(x", a) = (L (h,x(8),b) — - L (hk(a),b) — (1 — a) - L (h (&),0))* (21)
with a locally linear model at a having ELLE(x,a) = 0.

o Advantage: Regularizing ELLE does not involve Double Backpropagation and can as well overcome CO [1].
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Is the training “fair”?

o Another grand challenge in ML: Fairness & bias

o A concrete example: Adversarial training may sacrifice subset of classes in favor of consensus
> CIFAR10: 51% average robust accuracy while the worst class is 23.5%
> CIFAR100: the worst class has zero accuracy while the best has 76%

Clean training Adversarial training
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Figure: Clean accuracy and robust accuracy on CIFAR10 after clean training and adversarial training respectively.
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Key challenges in ML demand much more than ERM

o Protect the weak: Class-focused online learning for adversarial training [25]

Ne
1
min max — max L(hx (a; + 9),b°)
x beg[C] Ne 4 1 8:]|6]|<e
i=

o Great potential via the minimax formulation: the average does not suffer much or can even improve!
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