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Outline

> Scalable non-convex optimization with emphasis on deep learning
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Recall: The general setting...

Definition (Optimization formulation)

The deep-learning training problem is given by

n
1
* s — . .
XpL Garg’r(rg;ré f(x):= - E L(hx(a;),b:)

i=1

where X denotes the constraints on the parameters.

o A single hidden layer neural network with params x := [X1, Xo, p1, 2]
activation weight bias bias
m=5 +
hx(a) = X (o X1 + [ H1 + [ 12

hidden layer = learned features
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Towards training with neural networks

o What do we have at hand?
1. The optimization objective f(x) from multi-layer, multi-class, convolutions, transformers, etc.

2. First-order gradient via backpropagation V f(x)
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Towards training with neural networks

o What do we have at hand?
1. The optimization objective f(x) from multi-layer, multi-class, convolutions, transformers, etc.

2. First-order gradient via backpropagation V f(x)

o Barriers to training of neural networks:
1. Curse-of-dimensionality
2. Non-convexity

3. lll-conditioning

Figure: A non-convex function. (a) and (c) are plateaus, (b) and (d) are global minima, (f) and (h) are local minima, (e) and
(g) are local maxima. [25]
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Towards training with neural networks

o What do we have at hand?
1. The optimization objective f(x) from multi-layer, multi-class, convolutions, transformers, etc.

2. First-order gradient via backpropagation V f(x)

o Barriers to training of neural networks:

1. Curse-of-dimensionality — first-order methods, see lectures 4-5
2. Non-convexity — stochasticity + momentum, this lecture
3. lll-conditioning — adaptive gradient methods, this lecture

Figure: A non-convex function. (a) and (c) are plateaus, (b) and (d) are global minima, (f) and (h) are local minima, (e) and
(g) are local maxima. [25]
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Stochastic Gradient Descent (SGD) and some key variants

Vanilla (Minibatch) SGD

Input: Stochastic gradient oracle g, initial point x, step size a,

1. For k =0,1,...
obtain the (minibatch) stochastic gradient g*
update x*t1 « xF — 4, gk
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Stochastic Gradient Descent (SGD) and some key variants

Vanilla (Minibatch) SGD

Input: Stochastic gradient oracle g, initial point x, step size a,

1. For k =0,1,...
obtain the (minibatch) stochastic gradient g*
update x*t1 « xF — 4, gk

Perturbed Stochastic Gradient Descent [21]

Input: Stochastic gradient oracle g, initial point xU, step size ay,

1.For k=0,1,...:
sample noise £ uniformly from unit sphere
update x*+1 « xF — oy (gF +¢)
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Stochastic Gradient Descent (SGD) and some key variants

Vanilla (Minibatch) SGD

Input: Stochastic gradient oracle g, initial point x, step size a,

1. For k =0,1,...
obtain the (minibatch) stochastic gradient g*
update x*t1 « xF — 4, gk

Perturbed Stochastic Gradient Descent [21]

Input: Stochastic gradient oracle g, initial point xU, step size ay,

1.For k=0,1,...:
sample noise £ uniformly from unit sphere
update x*+1 « xF — oy (gF +¢)

*Stochastic Gradient Langevin Dynamics [50]

Input: Stochastic gradient oracle g, initial point x9, step size ay,

1. For k=0,1,...
sample noise ¢ standard Gaussian
update x**+1 « x! — gk + /2a5¢
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Basic questions:

1. Does SGD converge with probability 17
2. Does SGD avoid non-minimum points with probability 1?7
3. How fast does SGD converge to local minimizers?

4. Can SGD converge to global minimizers?
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Critical points

Recall (Classification of critical points)
Let f:R% — R be twice differentiable and let % be a critical point. Let {)\i}‘i’lzl be the eigenvalues of the
hessian V2 f(%), then

> X\; >0 for all ¢ = X is a local minimum

> X\; <0 for all = x is a local maximum

> X\; >0, A\j <0 for some ¢,5 and \; # 0 for all i = X is a saddle point

> Other cases = inconclusive

Figure: Minmax saddle (X; # O for all ) Figure: Monkey saddle (A; = O for some %)
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The strict saddle property

Definition (Strict saddle)

A twice differentiable function f : R* — R is («, B, €, 8)-strict saddle if for any point x at least one of the
following is true

L [[Vfx)] > e
2. Amin (V2£(x)) < —B.

3. There is a local minimum x* such that || x — x* || < 6 and the function f restricted to a 26 neighborhood
of x* is o strongly convex.

(Informal)

For any point whose gradient is small, it is either close to a local minimum, or is a saddle point (or local
maximum) with a significant negative eigenvalue.
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Q1: Does SGD converge?

o SGD converges to the critical points of f as k — oo.
1. GD converges from any intialization with constant step-size and full gradients
2. With probability 1, (P)SGD does not converge with constant step-size ~y [5, 44]
3. With probability 1, SGD converges with vanishing step-size if x¥ is bounded with probability 1 [39, 5]

Boundedness is not required (Theorem 1 of [41])
1+q/2

Assume Lipschitzness, sublevel regularity, E||g||? < ¢ and Zk Vi < 0o (g >2). Then, x* converges with
probability 1.
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Q2: Does SGD avoid saddle points?

o SGD avoids strict saddles (Amin(V2f(x*)) < 0)
1. GD avoids strict saddles from almost all initializations [33]
2. With probability 1 — ¢, PSGD with constant ~ escapes strict saddles after (log(l/c)/'yz) iterations [22]

> However, SGD does not converge with constant -y

> We cannot take ( = 0

SGD avoids traps almost surely (Theorem 3 of [41])
Assume bounded uniformly exciting noise and v, = O (k%) for k € (0,1]. Then, SGD avoids strict saddles
from any initial condition with probability 1.

Remark

However, there are LIONS™ hidden in the tall grass: converging to sharp minima or even local maxima and
other undesirable behaviours are unfortunately possible [59]...
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Q3: How fast does SGD converge to local minimizers?

o SGD remains close to Hurwicz minimizers (i.e., X* : Amin(VZ2f(x*)) > 0)

1. SGD with constant  can obtain objective value e-close to a Hurwicz minimizer in O(1/e2)-iterations
[22, 23]

> However, SGD does not converge with constant ~y

> Need averaging which is problematic in non-convex optimization

Using a vanishing step-size helps! (Theorem 4 of [41])
Using v, = O (%) SGD enjoys a O (%) convergence rate in objective value.
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Using 1/k step-size decrease helps in practice

o ResNet training at different cool-down cut-offs
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cutoff=95 - cutoff=95
0.9 —— constant 841 —— constant
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Q4: Can SGD converge to global minimizers?

N
wn

=—a true labels
[eRe)

2.0 random labels |
] »—= shuffled pixels
2154 random pixels |
w .
o A few phenomena about neural networks [56]: 2 gaussian
. 5 1.0
> Deep neural networks can fit random labels 2
©
> First-order methods can find global minimizers 05
0.0
0 5 10 15 20 25

thousand steps

Figure: DNN Training curves on CIFAR10, from [56]
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Q4: Can SGD converge to global minimizers?
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©
> First-order methods can find global minimizers 05
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thousand steps

Figure: DNN Training curves on CIFAR10, from [56]

o Overparametrization can explain these mysteries!

Overparametrization

Number of parameters > number of training data.
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GD finds global minimizers of overparametrized networks

_ activation weight bias bias
m=5 1
hx(a) := Xo o X1 +pr| | |2

hidden layer = learned features

Theorem (Linear convergence of Gradient Descent [16])
> f(a;X1,X2): I-hidden-layer network with width m,hidden layer weights X1, output layer weights Xo and
RelLu activation.
> m = Q(g—.;j) where n =number of samples.
> X9 is initialized with a normal distribution, X9 ~ Unif—1, 1]™.
> Stepsize n = O(n~2).
With probability at least 1 — 6, for the empirical risk R,, we have

R (Bt, Wi, bt) < (1 —0)*Rn(Bo, Wo, bo) (1)
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Optimization landscape of overparametrized neural networks

Figure: Intuitive comparison, loss landscape with few parameters (left) vs overparametrized regime (right). From [37], originally
skip connections vs. no skip connections
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Overparametrization is an active area of research

Reference Number of parameters Depth d Result
[27, 28, 24] Q(n) 1,2 Existence of zero error
[54, 26, 42] Q(n) Any d Existence of zero error
[38] Q(poly(n)) 1 (S)GD global convergence
[16] Q(nb) 1 (S)GD global convergence
[46] Q(n?) 1 (S)GD global convergence
[2, 60] Q(poly(n, d)) Any d (S)GD global convergence
[15] Q(n820(d)) Any d (S)GD global convergence
[61] Q(n3d'2) Any d  (S)GD global convergence
[29] Q(n) (Training last layer) Any d (S)GD global convergence
[45] Q(n%) (Training all layers) 1 (S)GD global convergence
[8] Q(n) (Training all layers) Any d (S)GD global convergence

Table: Summary of results on overparametrization. Minimum number of parameters required as a function of data size n and
depth d. The result is classified either as Existence i.e., there exists a neural network achieving zero error on the data, or (S)GD
global convergence i.e., (S)GD converges to zero training error, a much stronger condition.
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Overparametrization is an active area of research

Reference Result
[58] DNNs can achieve Bayes-optimal test error when going to zero-training loss under lazy training
[53] Overparameterized network properties (depth, width, and initialization) affect privacy
[52] Convergence of a single neuron using gradient flow is Q(73)
[9] Privacy in overparametrized regime
[12] Inducing sparsity in the overparametrized regime
[32] Overparametrization as a tool for non-smooth dynamics in physics and chemistry
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Stochastic adaptive first-order methods

Adaptive methods
Stochastic adaptive methods converge without knowing the smoothness constant.

They do so by making use of the information from stochastic gradients and their norms.
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Variable metric stochastic gradient descent algorithm

Variable metric stochastic gradient descent algorithm

1. Choose x? € R as a starting point and Hy > 0.

2. For k=0,1,---, perform:
a* = -H_'g",
xk+1 = xF 4 apdF,

where oy, € (0, 1] is a given step size.
3. Update Hy 1 > O if necessary.
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Variable metric stochastic gradient descent algorithm

Variable metric stochastic gradient descent algorithm

1. Choose x? € R as a starting point and Hy > 0.

2. For k=0,1,---, perform:
dv = -H gl
xk+1 = xF 4 apdF,

where oy, € (0, 1] is a given step size.
3. Update Hy 1 > O if necessary.

Common choices of the variable metric Hy,

> Hy := A1 — stochastic gradient descent method.
> H,; := Dy (a positive diagonal matrix) = stochastic adaptive gradient methods.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 41



Adaptive gradient methods

Intuition

Adaptive gradient methods adapt locally by setting H;. as a function of past stochastic gradient information.
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Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting H;. as a function of past stochastic gradient information.

o Roughly speaking, Hj, = function(g', g2, --- ,g*)

o Some well-known examples:

AdaGrad [17]

k T
Hy = />, gkek

H = /BHi_1 + (1 — B)diag(gF)?

RmsProp [47]

ADAM [31]
H), = BH;_1 + (1 — B)diag(g")?

H;, = /H/(1 - BF)
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AdaGrad - Adaptive gradient method with H;, = \;1

o If Hy = M\,I, it becomes stochastic gradient descent method with adaptive step-size S&

Ak
How step-size adapts?

If the stochastic gradient ||g¥|| is large/small — AdaGrad adjusts step-size ay,/Ag, smaller/larger

Adaptive gradient descent (AdaGrad with H;, = \.I) [34]

1. Set QU =0.

2. For k=0,1,..., iterate
Qk — Qk:—l + Hgk:”Q
Hy = \/QFI
XFH1 = xk — o H gk
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AdaGrad - Adaptive gradient method with H;, = \;1

o If Hy = M\,I, it becomes stochastic gradient descent method with adaptive step-size S&

Ak
How step-size adapts?

If the stochastic gradient ||g¥|| is large/small — AdaGrad adjusts step-size ay,/Ag, smaller/larger

Adaptive gradient descent (AdaGrad with H;, = \.I) [34]

1. Set QU =0.

2. For k=0,1,..., iterate
Qk — Qk:—l + Hgk:”Q
Hy = \/QFI
XFH1 = xk — o H gk

Adaptation through first-order information

> When Hy = A\ I, AdaGrad estimates local geometry through stochastic gradient norms.

> Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.
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AdaGrad - Adaptive gradient method with H;, = Dy

Adaptation strategy with a positive diagonal matrix Dy,

Adaptive step-size + coordinate-wise extension = adaptive step-size for each coordinate

Local quadratic upper bound

Qr, (x.x")

qs oxitl = argngn {f(x"') +(VF(x"),x = xF) + %Hx - kai}

X . . 1 k2
IVf@) = Vi < Lly—=z| 22 F(x) < F(5) + VI (e = x5) + 5l =M,

L is a global worst-case constant applies only locally
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AdaGrad - Adaptive gradient method with H;, = Dy

o Suppose Hj, is diagonal,
Ak,1 0

Hj = s
0 Ak.d

o For each coordinate 7, we have different step-size ;YT’” is the step-size.
Ji

Adaptive gradient descent(AdaGrad with H; = Dy)

1. Set Q0 =0.
2. For k=0,1,..., iterate
Qk — Qk:—l + diz\g(gk")Q

H, =./QF
XL = xk o H gk
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AdaGrad - Adaptive gradient method with H;, = Dy

o Suppose Hj, is diagonal,

o For each coordinate 7, we have different step-size .

Ak,1 0
Hj = s
0 Ak.d

ap

- is the step-size.

Adaptive gradient descent(AdaGrad with H; = Dy)

1. Set Q0 =0.

2. For k=0,1,..., iterate
Qk — Qk:—l + diz\g(gk")Q
H, =.QF
xFH1 = xk — o H gk

Adaptation across each coordinate

> When H; = Dy, we adapt across each coordinate individually.

> Essentially, we have a finer treatment of the function we want to optimize.
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RMSProp - Adaptive gradient method with H; = D;,

What could be improved over AdaGrad?
1. Stochastic gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.
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RMSProp - Adaptive gradient method with H; = D;,

What could be improved over AdaGrad?

1. Stochastic gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.

AdaGrad with H, = D,

1. Set Qo =0.
2. For k=0,1,..., iterate
Qk — kafl + di‘dg(gk')g

H, =.QF
XL = xk o H gk
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USSR akH’:lgk
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RMSProp - Adaptive gradient method with H; = D;,

What could be improved over AdaGrad?

1. Stochastic gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.

AdaGrad with H, = D,

1. Set Qo =0.
2. For k=0,1,..., iterate
QF  =QF !+ diag(gh)?

H, =.QF
XL = xk o H gk

o RMSProp uses weighted averaging with constant g

o Recent gradients have greater importance

ILHEEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

RMSProp
1. Set Qo =0.
2. For k=0,1,..., iterate
QF =p5QF !+ (1 - B)diag(gk)?
H,  =./Qf
USSR akH’:lgk
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AcceleGrad - Adaptive gradient 4+ Accelerated gradient [35]

Motivation behind AcceleGrad

Is it possible to achieve acceleration when f is L-smooth, without knowing the Lipschitz constant?

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : xU € K, diameter D, weights {ay }xen, learning
rate {ny tren

1. Set y9 =20 =x0
2. For k=0,1,..., iterate

Tk = 1/Oé]€

xFtL = 2k + (1 — 73,)y", define g, := V f(x**1)
2Pt =Tl (2% — apmegr)

yEl = xFtl ey

Output : ¥° x Zi:ol oyttt

where Ik (y) = arg mingex (x — y,x —y) (projection onto K).

*Remark: o This is essentially the MD + GD scheme [3], with an adaptive step size!
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AcceleGrad - Properties and convergence

Learning rate and weight computation

Assume that function f has uniformly bounded gradient norms ||g¥||? < G2, i.e., f is G-Lipschitz continuous.
AcceleGrad uses the following weights and learning rate:

k1 2D

aE = 4 Nk = =
VRS ST

o Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

Convergence rate of AcceleGrad

Assume that f is convex and L-smooth. Let K be a convex set with bounded diameter D, and assume x* € K.
Define y* = (Zi:ol aiyiJrl)/(Zf;Ol a;). Then,

2
F5) - <0 (DG—&-LDklog(LD/G))

If f is only convex and G-Lipschitz, then

£5*) - £ < 0 (6D \log/ VE)
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ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM
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ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM

Input. Step size «, exponential decay rates 31, 82 € [0,1)

1. Set mgp,vg =0

2. For k=0,1,..., iterate
gL = VI
my; = fimg_1 + (1 — B1)8k < 1lst order estimate
Vi = fBavi_1 + (1 — B2)g;? + 2nd order estimate
m; =mg/(1— 6{“) < Bias correction
Vi =vi/(1 — B¥) + Bias correction

H, = \/‘A’il\‘F6

xktl = xF — amy./Hy

Output : x*

(Every vector operation is an element-wise operation)
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Non-convergence of ADAM and a new method: AmsGrad

o It has been shown that ADAM may not converge for some objective functions [55].

o An ADAM alternative is proposed that is proved to be convergent [43].

AmsGrad

Input. Step size {vx}ren, exponential decay rates {1 1 }rew, B2 € [0,1)

1. Set mg =0,vop=0and vo >0

2. For k=1,2,..., iterate
8k = G(kae)
my =1 ymyu_1 + (1 — By )8k < lst order estimate
Vi = favi_1+ (1 — Bg)g}f < 2nd order estimate
Vi = max{Vi_1,Vg} and Vi = diag(Vg)
H, =/

xk+l = HXka (x*

— Yeg./Hy)

Output : x*

where H%(y) = argminxex ((x —y), A(x —y)) (weighted projection onto K).

(Every vector operation is an element-wise operation)
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AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [49])
Assume f is non-convex and L-smooth, such that |V f(x)||? < G? and f* = infx f(x) > co. Also consider

bounded variance for unbiased gradient estimates, i.e., E [||G(x,0) = Vf(x)H2|x} < o2. Then with probability
1-6,

i v f(x" 2:@(
ie{lrilirli—l}“ FEOI

)
§3/2\/k
o Note: As 1 — § — 1, the rate deteriorates by a factor of §5—3/2,
Theorem (AmsGrad convergence rate 1: stochastic, non-convex [11])

Let g, = G(x*,0). Assume ||gi|| < G. Consider a non-increasing sequence (1, and 81, < 1 € [0,1). Set
ve = 1/Vk. Then,

i log k
° E 7 2 — z '
comin B [I9r6P] =0 (<52)
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AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [49])
Assume f is non-convex and L-smooth, such that |V f(x)||? < G? and f* = infx f(x) > co. Also consider

bounded variance for unbiased gradient estimates, i.e., E [||G(x,0) — Vf(x)H2|x} < 2. Then with probability
1-96,

i v i2=@(
ie{ffl.l,r;i_l}u FEII

)
§3/2 \/E
o Note: As 1 — § — 1, the rate deteriorates by a factor of §-3/2,
Theorem (AmsGrad convergence rate 2: stochastic, non-convex [57, 10])

Consider f : RP — R to be non-convex and L-smooth. Assume ||G(x%,0)|lcc < Goo and set v = 1/ /pT. Also
define xout = x*, for k = 1,...,T with probability Vi / 23;1 ~i. Then,

B [IVf(xaun)l?] = O ( ’?) .
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Adam variants without large batch sizes

Guarantees of Adam-variants [1]
By using one subgradient each iteration, with the same setup as before, AMSGrad converges for minyc v f(x)

E[|G(tom) [ < O \/E ; ()

/2
’;\ (x — P)I;Ik (x— AHI;lVf(x))), where Xt is chosen uniformly at

on the gradient mapping G (x) =
random from the iterates.
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A comparison of adaptive algorithms

GD/SGD Accelerated GD/SGD AdaGrad AcceleGrad/UniXgrad Adam/AMSGrad

i 1)1 1)1 1_)2 _1_)3.4 1L )5
Convex, stochastic (@} ( \/E) (@} ( \/E) (@} ( v O ( \/E) (@} ( \/E)
PR 1)1 1 1 1)3 1 )34 1\)\6

Convex, deterministic, L-smooth O (E) O (kT) @] (F) O (kT) (@] (F)

i - 1)1 1\t . ? 1 )8
Nonconvex, stochastic, L-smooth (@} ( \/E) (@} ( \/E) (@} ( \/E) O ( \/E)
Nonconvex, deterministic, L-smooth O (%)1 O (% 1 (@] (%)7 ? (@] (%)6

L Lan, First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020

2 Duchi, Hazan, Singer, Adaptive subgradient methods for online learning and stochastic optimization, JMLR, 2011

3 Levy, Yurtsever, Cevher, Online adaptive methods, universality and acceleration, NeurlPS 2018

4 Kavis, Levy, Bach, Cevher, UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization, NeurlPS, 2019

5 Reddi, Kale, Kumar, On the convergence of adam and beyond, ICLR, 2018.
Alacaoglu, Malitsky, Mertikopoulos, Cevher, A new regret analysis for Adam-type algorithms, ICML 2020.

6 Barakat, Bianchi, Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size for Nonconvex Optimization, ACML, 2020
7 Ward, Xu, Bottou, AdaGrad stepsizes: Sharp convergence over nonconvex landscapes, ICML 2019.

8 Alacaoglu, Malitsky, Cevher, Convergence of adaptive algorithms for weakly convex constrained optimization, NeurlPS, 2021
Chen, Zhou, Tang, Yang, Cao, Gu, Closing the generalization gap of adaptive gradient methods in training deep neural networks, 1JCAI 2020
Chen, Liu, Sun, Hong, On the convergence of a class of adam-type algorithms for non-convex optimization, ICLR 2018
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Example: ADAM vs. AcceleGrad

Train Loss vs Epochs Test Loss vs Epochs
—— accelegrad 1.61 —— accelegrad
1.4
—— adam —— adam
1.4
1.2 4
1.0 .21
0 0.8 0 1.0
2 2
S S
0.6 1 0.8
0.4 4 0.6
0.2 4
0.4
0.0 T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
epochs epochs
Figure: Resnet classifier optimization (train loss) Figure: Resnet classifier optimization (test loss)
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Example: Least squares with synthetic data
Setting:

> f(z) = || Az —b]?

> AeR™49 A~ N(p,o%I)

> n = 1000, d = 1000

Objective gap vs iterations 100 Step size vs. iterations
108 4
— SGD
107 4 10-14 —— AdaGrad
—— RMSProp
1064 — Adam
102 —— AmsGrad /——
=109 &
=
| 21073 4
< 10 § g
ES — SGD &
10® 4 — AdaGrad 107
11— RMSProp
0%y — Adam 1074
101 4 — AmsGrad
T T T T T T 10°° T T T T T T
10° 10! 102 10° 104 10° 100 10! 102 10° 104 10°
iterations iterations

Figure: Comparison of convergence rate and stepsize evolution. Mini-batch stochastic gradients with a batch size of 20
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Performance of optimization algorithms (nonconvex)

1

o Assuming only L-smoothness, SGD, Adagrad, RmsProp, ADAM & AmsGrad and Accelegrad has NG

-rate
o Additional assumptions help improve this rate

Polyak-Lojasiewicz (PL)?

(Strong) growth condition (SGC)0
Averaged L-smoothness [18]
Interpolation (IP) [40]

vy v.vYy

9J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. “From error bounds to the complexity of first-order descent methods for convex
functions.”

10y, Cevher and B. C. Vu. “On the linear convergence of the stochastic gradient method with constant step-size.”
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Performance of optimization algorithms (nonconvex)

1

W—rate

o Assuming only L-smoothness, SGD, Adagrad, RmsProp, ADAM & AmsGrad and Accelegrad has
o Additional assumptions help improve this rate

Polyak-Lojasiewicz (PL)?

(Strong) growth condition (SGC)0
Averaged L-smoothness [18]
Interpolation (IP) [40]

vy v.vYy

o A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
L-smooth Basically all first order methods Sublinear (1/ V'k) One stochastic gradient
Averaged L-smooth STORM [13] & STORM+ [36] Sublinear (1/k2/3) Two stochastic gradients
L-smooth + SGC SGD Sublinear (1/k)[48] One stochastic gradient
L-smooth 4 SGC + PL SGD Linear (pk) [48] One stochastic gradient
X) = 1 i i (X . .
f( )fi ar: ﬁ,smifolthfz( ) (mini-batch) SGD Linear (Pk) 4] m stoc};;stlec liradlents
f is L-smooth + IP 4+ PL

9J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. “From error bounds to the complexity of first-order descent methods for convex
functions.”

10y, Cevher and B. C. Vu. “On the linear convergence of the stochastic gradient method with constant step-size.”
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Implicit regularization of adaptive methods may overfit
Training Function

L]
: Testing Function

I

th Minimum Sharp Minimum

Figure: Sharp Minima vs Flat Minima [30]

o Intuition suggests flat minima has better generalization property than sharp minima

o Empirically, adaptive methods finds sharper minima than ones found by SGD

o The relationship between sharpness of minima and their generalization is open [14, 19]
Slide 36/ 41
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e-stability: a first approach to sharpness aware optimization

i 5
s Tt )

Figure: Smoothing effect of e-stable loss characterization [7]

e-stability [7]

[7] defines an e-stable point x} (e > 0) for zero-th order global function maximization as follows:
X, € argmax min f(x+0)
x  6:|8]|<e
Remarks: o Consider finding the (global) maximum of a function.
o We want to avoid sharp maxima and identify a flat, stable (local) optimum.
o This formulation favors broad peaks, rather than sharp maxima with lesser regard to its value.
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Explicit regularization through e-stability

Figure: Loss lanscape of ResNet and ResNet with an approximation of SAM formulation [20].

Sharpness-aware minimization (SAM) [20]
[20] reuses the e-stable point x* for firsth order function minimization as follows:

min max f(x + €).
x |lell<p
Remarks: o [20] argues that this objective approximates the function miny f(x + 7V f(x)).
o There is interest in understanding their heuristic algorithm.
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Example: Generalization performance

o Adaptive learning methods may converge fast but generalize worse

6.0 6.0
5.8 o
o
256 x>8 Adam (Default): 5.47£0.02
354 =
27 256 ‘Adam: 5.35+0.01
852 o
250 €54 RMSProp: 5.28:0.00
Sas 8
o ]
Fas g 5.2 HB: 5.13+0.01
44 o AdaGra0:5:242002 o TR
20 0 60 80 100 20 70 60 80 100
Epoch Epoch

Figure: Performance of different optimizers in training and development set of a language modeling problem. The training and
test perplexity are the exponential values of training and test losses.[51]
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Neural Network Architectures

o Deeper and more complicated models correlates with better performance

o No universal optimizers other than slow and steady SGD

o A long way to go (makes it exciting)...

I

»
(-

m} i ,lq',w’vx»‘
n‘

) AN" 1
.\,j‘:wrw‘f‘w

“h' | W .
*«

g

?

iy

s E2 T £ £ E o

Figure: Performance of popular architectures on test set in CIFAR10 (left) and CIFAR100 (right). !

1 Credit to: https://github.com/bearpaw/pytorch-classification
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Wrap up!

o Deep learning recitation on Friday!
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*Perturbed SGD escapes saddle points

Theorem (Convergence of PSGD [21])
Suppose that f has the following properties

> fis an (a,, ¢, d)-strict saddle,

> f is B-smooth.

> jts Hessian is p-Lipschitz. i.e. || V2f(x) — V2f(y)| < pllx—y]|-
Then there exists a threshold amax such that by choosing

> & < amax/ max{1,log(1/C)}

> T = O(a~2log(1/)).

the algorithm Perturbed SGD outputs with probability at least 1 — ¢ a point xp that is O( 1/ alog(1l/a())
close to some local minimum x*.
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*Convergence of SGD in non-convex problems with small step-size

Assumptions
1. Function f is lower bounded: 3f* s.t. Vx € X, f(x) > f*
2. Function f has Lipschitz continuous gradient:
IVf(x1) = Vf(x2)ll2 < Lijx1 — x2l2 (3)

3. The stochastic gradient gx is unbiased and has bounded variance:

E(g) =g, E(|g—gl3) <o’ (4)

Theorem (Convergence of SGD in non-convex problems [6])

For SGD with assumptions above, N iterations and stepsize v¢ = ﬁ' we have
. N-1 1
E|— Z gz ~0 (—), 5
< > lig'l3 — (5)

t=0

where the convergence is captured by the gradient norm.
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*Convergence of SGD

Proof
Take the assumption 2 and algorithmic update policy x!*! = x* — yg?

b
F(xeq1) — flxe) < (41 —xe) 78" + Eth+1 —x||2

2 (6)
" YL
= —7(8") 8" + - 1g"l3
Take the expectation and use the assumption 3
V2L
E[f(xe+1) = f(xe)] = —ellg’3 + t (g3 + o) (7)
- _ 1
Set the learning rate y; = Vv
ElfGeern) = F0)) =~ g1 + 7 (1 + ) :
< gl + s ?
= oLvN'~ T 2LN
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*Convergence of SGD

Proof (Cont'd).

Sum the inequality of N steps together and use assumption 1

f(x0) = f* > f(x0) — E[f(xn)]

N-1
=B | ) (F6xe) = Fxer1)
t=0 9
1 N-1
> B _ L)
2L N
t=0
Rearrange the inequality, we have the following
1 1
- t12 _px 2
¥ D gl | < =L Gxo) = £ + %) (10)
t=0

. . . N-1 . T
The right hand side vanishes as N — oo, so E [% . ||gt||g] vanishes also. This indicates the model
converges to a critical point. m]
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