Speech signal processing (additional questions)

- 1. What is speech activity detection (SAD)?
 - a. What is the main purpose?
 - b. Describe a time domain method to detect speech activity (give the key steps).
- 2. What are voiced and unvoiced sounds? Give an example. How can we differentiate between voiced and unvoiced sounds through time domain processing?
- 3. What is autocorrelation? How can it be used to "automatically" estimate pitch frequency (describe the key steps)?
- 4. We know that the speech signal is produced by excitation of the vocal tract system by the vibration of the vocal cords.
 - a. What are formants? To which component of the speech production process are they related to?
 - b. What is pitch frequency? To which component of the speech production process it relates to?
 - c. In the short-term spectrum of the speech signal (resulting after Fourier transform), how does the formant information and the pitch frequency information manifest? Illustrate it through a figure for the case where the pitch period is *T* seconds.
- 5. What is linear prediction?
 - a. Why is linear prediction modeling well suited for speech signal processing?
 - b. What do the linear prediction coefficients model? How are they estimated (cost function)?
 - c. What does the residual signal or the linear prediction error signal model? How is the residual signal obtained?
 - d. How can we heuristically select the order of linear prediction? Suppose we want to model at least 4 formants. What is the "minimal" linear prediction order needed to achieve that?
 - e. How can we estimate the formant frequencies using linear prediction?
 - f. How can we estimate pitch frequency using linear prediction?
 - g. How can linear prediction analysis be applied to classify
 - i. different phonemes?
 - ii. voiced and unvoiced speech sounds?
 - iii. speaker gender (male and female classification)?
- 6. Linear prediction modeling is also known as analysis-synthesis modeling.
 - a. During analysis, what is given (or known) and what is estimated?
 - b. During synthesis, what is given (or known) and what is estimated or synthesized?
 - c. How is linear prediction analysis and synthesis applied in telephony to transmit speech signal at a reduced bit rate?
- 7. How can we deconvolve or separate excitation source and vocal tract system information through
 - a. time domain processing only?
 - b. frequency domain processing?