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Last Week: Concatenative Synthesis 4/37

Zen, Tokuda & Black, 2009

http://ayesha.lti.cs.cmu.edu/mlsp/courses/fall2012/lectures/spss_specom.pdf


Last Week: Concatenative Synthesis 5/37

Target cost: Find best match to the target unit, in terms of
Phonetic context
F0, stress, phrase position, duration
Acoustic distance

Join cost: Find a unit that can combine well with neighboring
units and has

Matching formants, energy, F0

These can be seen as emission
(target cost) and transition (join
cost) probabilities of HMMs.
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Statistical Parametric TTS 7/37

Uses HMMs, like ASR, but to generate speech.
Needs less training data, no need to store the unit database.
Easy to adapt the speech.
No artefacts from unit joints.
Buzzy speech quality.
Interactive online demo

http://www.cstr.ed.ac.uk/projects/festival/morevoices.html
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TTS: Basic Steps 9/37

Text
Linguistic

representation
Acoustic

representation
Speech
signal

Extract Predict Generate

Linguistic representation: Context-dependent states (with a lot
of context!), representing phonemes
Acoustic representation: Spectral (system) and excitation
(source) features



Linguistic representation 10/37

Context for modelling HMM states includes:
Current, preceding, following phonemes
Position of current phoneme in syllable
Numbers of phonemes in current, preceding, following syllables
Stress and accent of current, preceding, following syllables
Number of syllables to previous, next stressed syllable
Position of current word in phrase
Number of words to next content word
. . .

HTS linguistic feature specification

https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/F0parametrisation/hts_lab_format.pdf


Acoustic representation 11/37

Predicted parameters:
Spectrum: MFCCs + ∆ + ∆∆

Excitation: log F0 + ∆ + ∆∆

Possibly further vocoder parameters
HMM state durations

Prediction models:
Regression trees with Gaussian probability distributions
Neural networks
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Zen, Tokuda & Black, 2009

http://ayesha.lti.cs.cmu.edu/mlsp/courses/fall2012/lectures/spss_specom.pdf
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HTS slides

http://hts.sp.nitech.ac.jp/?Download


Recall: Temporal derivatives 14/37

∆cm =

∑K
k=1 k · (cm+k − cm−k)

2 ·∑K
k=1 k

2
(1)

14 CHAPTER 2. SPEECH RECOGNITION: AN OVERVIEW

power spectrum of the critical band masking curve from Fletcher (Fletcher, 1995)) equally

spaced on the Bark frequency scale are applied. In PLP, pre-emphasis is performed in the

frequency domain using a scaling function, which is based on the equal-loudness curve. The

output of the filter bank is compressed using cubic root function, which is motivated by the

power law relationship between the intensity and amplitude. The cepstral coefficients are

estimated from the modified auditory spectrum by following the same steps as in LPCC.

• Multi-resolution relative spectra features (MRASTA):

In MRASTA feature extraction, the log-energies in the Bark critical bands are used as fea-

tures, but the important aspect is the processing of the trajectories in time. This is discussed

in the following section.

Processing along Time

It is well known that important characteristics of speech sounds are also present in its dynam-

ics (Furui, 1986a). The simplest and the most common way to capture these dynamics is to append

the static cepstral features (LPCC, MFCC or PLPCC) with its first order time derivatives (delta cep-

strum) and the second order time derivative (delta-delta cepstrum) (Furui, 1986b). The first order

derivative is an estimate of the local slope, and is typically computed by applying an FIR filter with

impulse response function given in Figure 2.5 (a) on the static features. The delta-delta features

are computed using the impulse response function shown in Figure 2.5 (b).
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Figure 2.5. (a) A typical impulse response for computing delta features in hidden Markov model toolkit (HTK) (Young
et al., 2000). (b) Impulse response function for computing the delta-delta features.

Multi-resolution relative spectra feature (MRASTA) extraction technique is an extension to delta

Delta (first order derivative) Delta-Delta (second order derivative)

Savitzky-Golay filtering and temporal derivatives computation

https://c.mql5.com/forextsd/forum/147/sgfilter.pdf
http://dx.doi.org/10.1109/LSP.2013.2244593


With Dynamic Features 15/37

Dynamic features help to generate smooth trajectories.
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HTS slides

See formulation of HMM as trajectory model

http://hts.sp.nitech.ac.jp/?Download
http://www.sp.nitech.ac.jp/~zen/publications/tokuda-beyondHMM.pdf


Duration Modeling 16/37

Normal HMMs model duration through the transition
probabilities of self-loops

Duration probabilities decay exponentially, which is inaccurate
Usually sufficient for ASR, but TTS needs explicit model

Hidden semi-Markov models (HSMM)
Replace self-transitions with explicit Gaussian duration model

Shun-Zheng Yu,Hidden semi-Markov models, Artificial Intelligence,
Vol. 174, 2010, pp 215–243.

https://core.ac.uk/download/pdf/82437256.pdf


Vocoding: recall LP-based speech coding 17/37



Vocoding: applied to HMM-based TTS 18/37

Waveform generation using source-filter model given cepstral
feature and F0 information estimates

e(n)

u(n)

v(n)t(n)

H(z)

Hu(z)

Hv(z)
Pulse train
generator

White noise
Unvoiced
excitation

Voiced
excitation

Mixed
excitation

Synthesized
speech

w(n)

Sentence
HMM

Hv(z), Hu(z)

ct-2 ct-1 ct ct+1 ct+2

pt-2 pt-1 pt pt+1 pt+2

Mel-cepstral
coefficients

log F0
values

Filters

Figure 10: ML-based excitation scheme proposed by Maia et al. for HMM-
based speech synthesis: filters Hv(z) and Hu(z) are associated with each
state.
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Figure 11: Waveforms from top to bottom: natural speech and its residual,
speech and excitation synthesized with simple periodic pulse-train or white-
noise excitation, speech and excitation synthesized with STRAIGHT vocoding
method, and speech and excitation synthesized with ML excitation method.

2008), STRAIGHT (Zen et al., 2007c), the glottal-flow-
derivative model (Cabral et al., 2007, 2008), or the glottal wave-
form (Raitio et al., 2008) have been integrated. The most com-
mon feature in most of these methods is the fact that they are
based on the implementation of an excitation model through
the utilization of some special parameters modeled by HMMs;
they do not directly minimize the distortion between artificial
excitation and speech residuals.
Maia et al. have recently proposed a trainable technique of

excitation modeling for HMM-based speech synthesis (Maia
et al., 2007). Figure 10 has a block diagram of this. In this

technique, mixed excitation is produced by inputting periodic
pulse trains and white noise into two state-dependent filters.
These specific states can be built using bottom-up (Maia et al.,
2008) or top-down (Maia et al., 2009) clustering method. The
filters are derived to maximize the likelihood of residual se-
quences over corresponding states through an iterative process.
Apart from determining the filter, the amplitudes and posi-
tions of the periodic pulse trains have also been optimized in
the sense of residual likelihood maximization during referred
closed-loop training. As a result, this technique directly mini-
mizes the weighted distortion (Itakura-Saito distance (Itakura,
1975)) between the generated excitation and speech residual.
This technique is very similar to the closed-loop training for
unit-concatenation synthesis (Akamine and Kagoshima, 1998).
Both of them are based on the idea of a code excitation lin-
ear prediction (CELP) vocoder. However, there is an essential
difference between these two techniques. Maia et al.’s tech-
nique targets residual modeling but Akamine and Kagoshima’s
technique targets a one-pitch waveform. Furthermore, Maia et
al.’s technique includes both voiced and unvoiced components
for the waveform-generation part. Figure 11 shows a transi-
tional segment of natural speech and three types of synthesized
speech obtained by natural spectra and F0 with the simple pe-
riodic pulse-train or white-noise excitation, the STRAIGHT’s
excitation, and Maia et al.’s ML excitation modeling methods.
The residual signal derived through inverse filtering of a natural
speech signal and the corresponding excitation signals and syn-
thesized speech are also shown. We can see that the method of
ML excitation modeling produces excitation and speech wave-
forms that are closer to the natural ones.

Spectral representation of speech
Several groups have recently applied LSP-type parameters in-
stead of cepstral parameters to HMM-based speech synthesis
(Nakatani et al., 2006; Ling et al., 2006; Zen et al., 2006b; Qian
et al., 2006). As is well known, LSP-type parameters have good
quantization and interpolation properties and have successfully
been applied to speech coding. These characteristics seem to
be valuable in statistical parametric synthesis because statisti-
cal modeling is closely related to quantization and synthesis
is closely related to interpolation. Marume et al. compared
LSPs, log area ratios (LARs), and cepstral parameters in HMM-
based speech synthesis and reported that LSP-type parameters
achieved the best subjective scores for these spectral parame-
ters (Marume et al., 2006). Kim et al. also reported that 18-
th order LSPs achieved almost the same quality as 24-th order
mel-cepstral coefficients (Kim et al., 2006a).
Although LSP-type parameters have various advantages over

cepstral ones, they also have drawbacks. It is well known that
as long as the LSP coefficients are within 0 – π and in ascend-
ing order the resulting synthesis filter will be stable. How-
ever, it is difficult to guarantee whether LSPs generated from
HMMs will satisfy these properties because state-output distri-
butions are usually Gaussian distributions with diagonal covari-
ance matrices. This problem becomes more prominent when
we transform model parameters (Qin et al., 2006). Although
the use of a full covariance model or its approximations (Zen

10

source: Zen, Tokuda & Black, 2009

http://ayesha.lti.cs.cmu.edu/mlsp/courses/fall2012/lectures/spss_specom.pdf


STRAIGHT Vocoder 19/37

Speech Transformation and Representation by Adaptive
Interpolation of weiGHTed spectrogram

Waveform

Fixed-point analysis

F0 adaptive spectral

smoothing in the

time-frequency region

Synthetic waveform

F0 extraction

Analysis

F0

Smoothed

spectrum

Aperiodic

factors

Mixed excitation with

phase manipulation

Synthesis

HTS slides

http://hts.sp.nitech.ac.jp/?Download


STRAIGHT excitation generation 20/37

Pulse excitation Weighting Phase manipulation

F0

Noise excitation

Aperiodicity

Weighting

Mixed excitation
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Speaker Adaptation 21/37

and emotions. Although the combination of unit-selection and
voice-conversion (VC) techniques (Stylianou et al., 1998) can
alleviate this problem, high-quality voice conversion is still
problematic. Furthermore, converting prosodic features is also
difficult. However, we can easily change voice characteristics,
speaking styles, and emotions in statistical parametric synthe-
sis by transforming its model parameters. There have been four
major techniques to accomplish this, i.e., adaptation, interpola-
tion, eigenvoice, and multiple regression.
Adaptation (mimicking voices)
Techniques of adaptation were originally developed in speech
recognition to adjust general acoustic models to a specific
speaker or environment to improve the recognition accuracy
(Leggetter and Woodland, 1995; Gauvain and Lee, 1994).
These techniques have also been applied to HMM-based speech
synthesis to obtain speaker-specific synthesis systems with a
small amount of speech data (Masuko et al., 1997; Tamura
et al., 2001). Two major techniques in adaptation are maxi-
mum a posteriori (MAP) estimation (Gauvain and Lee, 1994)
and maximum likelihood linear regression (MLLR) (Leggetter
and Woodland, 1995).
MAP estimation involves the use of prior knowledge about

the distributions of model parameters. Hence, if we know what
the parameters of the model are likely to be (before observing
any adaptation data) using prior knowledge, we might well be
able to make good use of the limited amount of adaptation data.
The MAP estimate of an HMM, λ, is defined as the mode of
the posterior distribution of λ, i.e.,

λ̂ = arg max
λ

{p(λ | O,W)} (20)

= arg max
λ

{p(O, λ | W)} (21)

= arg max
λ

{p(O | W, λ) · p(λ)} , (22)

where p(λ) is the prior distribution of λ. A major drawback
of MAP estimation is that every Gaussian distribution is indi-
vidually updated. If the adaptation data are sparse, then many
of the model parameters will not be updated. This causes the
speaker characteristics of synthesized speech to often switch
between general and target speakers within an utterance. Vari-
ous attempts have been made to overcome this, such as vector
field smoothing (VFS) (Takahashi and Sagayama, 1995) and
structured MAP estimation (Shinoda and Lee, 2001).
Adaptation can also be accomplished by using MLLR and

Fig. 6 gives an overview of this. In MLLR, a set of linear trans-
forms is used to map an existing model set into a new adapted
model set such that the likelihood for adaptation data is maxi-
mized. The state-output distributions8 of the adapted model set
are obtained as

bj (ot) = N (ot ; µ̂j , Σ̂j), (23)
µ̂j = Ar(j)µj + br(j), (24)

Σ̂j = H⊤
r(j)ΣjHr(j), (25)

8The state-duration distributions can also be adapted in the same manner
(Yamagishi and Kobayashi, 2007).

Transformed Model

General Model 

Linear Transforms

Regression Class

Figure 6: Overview of linear-transformation-based adaptation technique.

where µ̂j and Σ̂j correspond to the linearly transformed mean
vector and covariance matrix of the j-th state-output distribu-
tion, andAr(j),Hr(j), and br(j) correspond to the mean linear-
transformation matrix, the covariance linear-transformation
matrix, and the mean bias vector for the r(j)-th regression
class. The state-output distributions are usually clustered by a
regression-class tree, and transformation matrices and bias vec-
tors are shared among state-output distributions clustered into
the same regression class (Gales, 1996). By changing the size
of the regression-class tree according to the amount of adap-
tation data, we can control the complexity and generalization
abilities of adaptation. There are two main variants of MLLR.
If the same transforms are trained for A and H , this is called
constrained MLLR (or feature-space MLLR); otherwise, it is
called unconstrained MLLR (Gales, 1998). For cases where
adaptation data are limited, MLLR is currently a more effective
form of adaptation than MAP estimation. Furthermore, MLLR
offers adaptive training (Anastasakos et al., 1996; Gales, 1998),
which can be used to estimate “canonical” models for train-
ing general models. For each training speaker, a set of MLLR
transforms is estimated, and then the canonical model is esti-
mated given all these speaker transforms. Yamagishi applied
this MLLR-based adaptive training and adaptation techniques
to HMM-based speech synthesis (Yamagishi, 2006). This ap-
proach is called average voice-based speech synthesis (AVSS).
It could be used to synthesize high-quality speech with the
speaker’s voice characteristics by only using a few minutes of
the target speaker’s speech data (Yamagishi et al., 2008b). Fur-
thermore, even if hours of the target speaker’s speech data were
used, AVSS could still synthesize speech that had equal or bet-
ter quality than speaker-dependent systems (Yamagishi et al.,
2008c). Estimating linear-transformation matrices based on the
MAP criterion (Yamagishi et al., 2009) and combining MAP
estimation and MLLR have also been proposed (Ogata et al.,
2006).
The use of the adaptation technique to create new voices

makes statistical parametric speech synthesis more attractive.
Usually, supervised adaptation is undertaken in speech synthe-
sis, i.e., correct context-dependent labels that are transcribed
manually or annotated automatically from texts and audio files
are used for adaptation. As described in Section 3.1, pho-
netic, prosodic and linguistic contexts are used in speech syn-

6

source: Zen, Tokuda & Black, 2009

Using adaptation techniques such as, maximum likelihood linear
regression (MLLR) (applied to model parameters), constrained
MLLR (applied to features).

http://ayesha.lti.cs.cmu.edu/mlsp/courses/fall2012/lectures/spss_specom.pdf
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Zen, Tokuda & Black, 2009

http://ayesha.lti.cs.cmu.edu/mlsp/courses/fall2012/lectures/spss_specom.pdf


Summary: HMMs for ASR vs. TTS 23/37

ASR TTS

Acoustic features About 13 spectral pa-
rameters + ∆ + ∆∆

40–60 spectral pa-
rameters + ∆ + ∆∆
+ source features

Frame shift 10 ms 5 ms
Modeling unit Triphone Quinphone with full

linguistic context
States per model 3 5
State emission dis-
tribution

GMM Single Gaussian

Duration model HMM self-loops Explicit model
(HSMM)

Parameter estima-
tion

Baum-Welch (EM) Baum-Welch (EM)

Decoding Viterbi search Not usually required
Generation Not required Maximum likelihood

Dines et al., 2010 and King, 2011

http://publications.idiap.ch/downloads/papers/2010/Dines_JSTSP_2010.pdf
https://www.research.ed.ac.uk/portal/files/8400597/An_introduction_to_statistical_parametric_speech_synthesis.pdf
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Hybrid TTS 25/37

Statistically driven unit selection synthesis:
Like SPSS, but replace the vocoder with unit concatenation
Like unit selection, but select units based on predicted acoustic
parameters

Qian, Soong & Yan, 2012

https://ieeexplore.ieee.org/abstract/document/6317143
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End-to-end TTS 27/37

Aims to replace hand-crafted TTS components with neural
networks, in particular:

NLP pre-processing pipeline
Text normalization (difficult!)
Lexicons and grapheme-to-phoneme (G2P) conversion

Vocoding

Text
Linguistic

representation
Acoustic

representation
Speech
signal

Extract Predict Generate



WaveNet (Neural Vocoder) 28/37

Directly predicts speech samples (x [1] . . . x [n] . . . x [N − 1])
given acoustic and linguistic features f

N−1∏
n=1

p(x [n]|x [n − 1], . . . x [0], f )

Dilated convolutions allow covering long ranges
Initially very slow, but now used for real-time, cloud-based
TTS. Still requires non-negligible computing resources.
Very natural speech compared to traditional SPSS (Samples)
Can train one model for multiple speakers

van den Oord et al., 2016

https://www.deepmind.com/blog/article/wavenet-generative-model-raw-audio
https://research.google/pubs/pub45774/


WaveNet MOS Scores 29/37

van den Oord et al., 2016

https://www.deepmind.com/blog/article/wavenet-generative-model-raw-audio


Tacotron 30/37

Generate spectrograms directly from text (character
embeddings)

No need for HMM alignments to train
No need for G2P conversion
Assumes text normalized input (“16” is “sixteen”)

Spectrogram inversion with Griffin-Lim algorithm (Tacotron 2
uses WaveNet)

Wang et al., 2017

https://www.isca-speech.org/archive/Interspeech_2017/abstracts/1452.html


TTS Training Data Requirements 31/37

Typical amounts of data required for training:
Architecture Training data

Diphone synthesis 1 instance per diphone (total of
1000)

Unit selection 5–40 hours (Taylor, 2009), diffi-
cult to adapt to new speakers (can
use voice conversion)

Statistical parametric synthesis 5+ hours for initial system, but
can easily adapt to new speakers

WaveNet 25+ hours, but can combine mul-
tiple speakers and can adapt to
new speakers with <10 minutes
(Chen et al., 2019)

https://dl.acm.org/citation.cfm?id=1592988
https://arxiv.org/abs/1809.10460
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Evaluating Synthetic Speech 33/37

Subjective vs. objective evaluation
Naturalness vs. intelligibility
Other evaluation measures?



Subjective vs. Objective Evaluation 34/37

Subjective
Tests with human listeners
Expensive and time-consuming, but very flexible
Not easy to reproduce

Objective
Automatic evaluation through computers

E.g. with ASR systems or by measuring distances to human
reference samples

Cheap and fast, but more difficult to interpret
Reproducible



Naturalness vs. Intelligibility 35/37

Naturalness
Material: Target domain text or phonetically balanced
sentences
Metrics: Mean opinion scores (MOS)
{Excellent,Good,Fair,Poor,Bad}, A/B preference tests

Intelligibility
Material: Semantically unpredictable sentences
The dog fights under the red beach.
The deaf dress sees the bear.
When does the gold take the beige fear?
The wheat attempts the time trembling.
The real glass opens the corner.
Turn the date or the hand.

Metric: Word error rate
Can be made more challenging by adding noise



Blizzard Challenge 36/37

Yearly challenge task to build TTS systems on a shared dataset
Thorough, centrally organized listening tests
http://www.festvox.org/blizzard/

http://www.festvox.org/blizzard/
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