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tongue

trachea

vocal cords

pharynx

nasal cavity

oral cavity

epiglottis

velum

excitation: vibration of vocal
cords
system: vocal tract (oral cavity)
[sometimes nasal cavity]
response: speech

With in a short-term analysis
window of 20-40 ms

Linear time invariant

Vocal tract system

v(n)

e(n) s(n)

s(n) = e(n) ∗ v(n)

, ∗ denotes convolution
frequency domain processing
based source-system
decomposition: cepstrum
time domain
processing-based
source-system
decomposition: linear
prediction
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(a) Windowed speech signal
model
s(n) = e(n) ∗ v(n)

(b) Apply DFT or FFT
S(ω) = E (ω) · V (ω)

(c) Logarithm of DFT or FFT
log |S(ω)| =
log |E (ω)|+ log |V (ω)|

(d) inverse DFT or FFT leads
to cepstrum domain
cs(n) = ce(n) + cv (n)
ce(n) - cepstrum of
excitation (source)
cv (n) - cepstrum of spectral
envelop (system)
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(a) Voiced segment in speech
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(b) Autocorrelation function
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(a) Voiced segment in speech
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(b) Autocorrelation function

R(0)=1
R(1)=0.889

R(2)=0.619

R(3)=0.325
R(4)=0.126

R(5)=0.057
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R(7)=0.017
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Each sample with in the
analysis window is modeled
as a linear weighted sum of
past p samples
ŝ(n) =

∑p
k=1 ak · s(n − k)

Error or residual signal
e(n) = s(n)− ŝ(n)

Estimate {ak}pk=1 by
minimizing the mean square
error
{ak}pk=1 models the
spectral envelop (system)
and e(n) mainly models
excitation (source)
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signal model s(n) = ŝ(n) + e(n)

s(n) =

p∑
k=1

ak · s(n − k) + e(n)

s(n)−
p∑

k=1

ak · s(n − k) = e(n)

Applying Z-transform
S(z)−∑p

k=1 ak · z−kS(z) = E (z)
All-pole transfer function
S(z)
E(z) = 1

(1−
∑p

k=1 ak ·z−k )
= V (z)

Linear time invariant

Vocal tract system

v(n)

e(n) s(n)

s(n) = e(n) ∗ v(n)
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Thumb rule for choosing linear
prediction order p:
2×# of formants to model+2
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Source-system decomposition

Speech coding with linear prediction

Feature extraction



LP-based speech coding (1) 10/20

For each analysis window
Transmitter side: perform linear prediction (LP) analysis

Estimate {ak}pk=1
From the residual estimate, (a) whether signal is voiced or
unvoiced (v/uv), (b) Fundamental frequency or pitch period
T0 and (c) gain σ

Transmit {ak}pk=1, v/uv, T0 and σ
Receiver side: Given {ak}pk=1, v/uv, T0 and σ, synthesize
speech signal of window shift length

A(z) = 1−∑p
k=1 ak · z−k



LP-based speech coding (2) 11/20

Bit rate with µ-law or A-law in telephony
64000 bits/second = 8 bits/sample× 8000 samples/second
Bit rate with linear prediction coding

Window size: 30 ms
Window shift: 10 ms (i.e. 100 frames/second)
Linear prediction order: 10
Example bits per frame: 10× 8 bits for {ak}pk=1 + 8 bits for
T0 + 8 bits for σ + 1 bit for v/uv = 97 bits/frame
Example bit rate:
97 bits/frame× 100 frames/second = 9700 bits/second

G.729 standard bit rate is 8000 bits/second
LP-based speech coding is used in cell phones for speech
transmission

https://en.wikipedia.org/wiki/G.729
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Source-system decomposition

Speech coding with linear prediction

Feature extraction
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(a) Windowed speech signal
model
s(n) = e(n) ∗ v(n)

(b) Apply DFT or FFT
S(ω) = E (ω) · V (ω)

(c) Logarithm of DFT or FFT
log |S(ω)| =
log |E (ω)|+ log |V (ω)|

(d) inverse DFT or FFT leads
to cepstrum domain
cs(n) = ce(n) + cv (n)
ce(n) - cepstrum of
excitation (source)
cv (n) - cepstrum of spectral
envelop (system)
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12 CHAPTER 2. SPEECH RECOGNITION: AN OVERVIEW
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Figure 2.4. Comparison of different feature extraction techniques. The figure is motivated from a similar comparative
block schematic Figure 22.4 in (Gold and Morgan, 1999).

ASR are derived from the spectrogram by processing it along both frequency and time as discussed

in the following subsections.

Processing along Frequency

In this section, we discuss the processing along frequency for different feature extraction techniques

LPCC: Linear prediction cepstral coefficients, MFCC: Mel frequency cepstral
coefficients, PLPCC: Perceptual linear prediction cepstral coefficients

ckm = −ak +
1
N

k−1∑
i=1

(k − i) · ai · ck−i

http://www1.icsi.berkeley.edu/Speech/docs/HTKBook/node59.html
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-6dB tilt in the spectrum due to combination of glottal
exication source (-12dB) and lip radiation (+6dB)
High pass filter to lift high frequency components (liftering)

s(n) = s(n)− α · s(n − 1)
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Mel scale (based on pitch perception)

Bark scale (based on loudness perception)
Finally, the values of the first (0 Bark) and the last (Nyquist 
frequency) samples (which are not well defined) are made 
equal to the values of their nearest neighbors. Thus 
_• [fl(•o) ] begins and ends with two equal-valued samples. 

D. Intensity-loudness power law 
The last operation prior to the all-pole modeling is the 

cubic-root amplitude compression 
(D(•'•) • .'•(•'•)0.33. (8) 

This operation is an approximation to the power law of hear- 
ing (Stevens, 1957) and simulates the nonlinear relation be- 
tween the intensity of sound and its perceived loudness. To- 
gether with the psychophysical equal-loudness preemphasis, 
this operation also reduces the spectral-amplitude variation 
of the critical-band spectrum so that the following all-pole 
modeling can be done by a relatively low model order. 

z 1.0 
o 

LU 

..I 

U.I 

m 0.0 
I 129 

FREQUENCY [ FFT SPECTRAL POINT ] 

FIG. 2. The 16 weighting functions w• (o)) used for computing 16 samples of 
the auditory spectrum qb(f•) from the power spectrum P(w) of 20-ms 
frames from speech sampled at 10 kHz. 

E. Autoregressive modeling 
In the final operation of PLP analysis, (P (fl) is approxi- 

mated by the spectrum of an all-pole model using the auto- 
correlation method of all-pole spectral modeling. 4 Details of 
the spectral all-pole modeling are suffÉciently well described 
elsewhere (Makhoul, 1975), and we give here only a brief 
overview of its principle: The inverse DFT (IDFT) is ap- 
plied to (I)(fl) to yield the autocorrelation function dual to 
•(11). (Typically, a 34-point IDFT is used.) The IDFT is 
the better choice here than the inverse FFT, since only a few 
autocorrelation values are needed. The first M + I autocor- 
relation values are used to solve the Yule-Walker equations 
for the autoregressive coefficients of the M th-order all-pole 
model. The autoregressive coefficients could be further 
transformed into some other set of parameters of interest, 
such as cepstral coefficients of the all-pole model. 

F. Practical considerations 

In practice, the convolution and the preemphasis are 
carried out for each sample of E ( 11 k ) in the P(a• ) domain by 
one weighted spectral summation per spectral sample 
-- ( 12 i ). Thus the spectral sample -- [ 12 (a h ) ] is then given as 

E[fl(w,)] = •, wi(oa)P(o)). (9) 
The limits in the summation and the weighting functions wi 
are computed from Eqs. (4), (6), and (10) using the inverse 
of (3), which is given by 

o) = 1200•r sinh ( fl/6 ). (10) 

The weighting functions w• (a•) are precomputed for the giv- 
en sampling frequency and current size of the FFT. For illus- 
tration, the wi(oa) for a 10-kHz sampling frequency are 
shown in Fig. 2. Some basic properties of the weighting can 
be seen in the figure. The width of w• (o)), i.e., the spectral 
integration interval, increases with frequency as given by Eq. 
(3). The w• (w) are fiat on the top with exponentially shaped 
skirts, with low-frequency slopes typically less steep than the 
high-frequency slopes, as given by Eq. (4) inverted in fre- 

quency by convolution and transformed from the II into the 
o) domain. The amplitude of the weighting increases with 
frequency as given by Eq. (7). 

As shown later in Sec. VI, the computational require- 
ments of PLP analysis are comparable to the requirements of 
conventional LP analysis. Computationally, the most expen- 
sive operation is the FFT spectral calculation, followed in 
cost by the critical-band spectral integration and the cubic- 
root compression. The cost of the autoregressive modeling is 
negligible due to the low number of spectral samples of the 
auditory spectrum to be approximated. A table lookup could 
be used to compute the root in the intensity-loudness conver- 
sion to save on the computational cost. 

The FORTRAN 77 code of the subroutine that computes 
the PLP model of one frame of speech (written with empha- 
sis on simplicity rather than on efficiency) is given in the 
Appendix. 

G. Discussion 

The underlying principle of PLP analysis is to approxi- 
mate the auditory spectrum of speech by an all-pole model. 
In this section, we have described one computationally rea- 
sonably efficient way of obtaining the estimate of the audi- 
tory spectrum: convolving the FFT spectrum with the criti- 
cal-band function, multiplying it by a fixed equal-loudness 
curve, and compressing its amplitude by a cubic-root func- 
tion. The engineering approximations to psychophysical 
laws were our personal choices, often directed in the first 
place by computational efficiency. We consequently ignored 
a number of known phenomena, e.g., the dependency of the 
critical-band shape or the equal-loudness curve on sound 
intensity. However, our experience suggests that, with re- 
spect to our current applications of PLP in speech research, 
their inclusion would not make a significant difference. Our 
view is supported by Mason and Gu (1988) who have ex- 
perimentally observed that the particular way of obtaining 
the auditory spectrum is not too critical and does not affect 
the fundamental properties of PLP analysis. Thus, depend- 
ing on the available hardware and software tools or on the 

1740 d. Acoust. Soc. Am., Vol. 87, No. 4, April 1990 Hynek Hermansky: Perceptual linear predictive analysis 1740 

https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Bark_scale
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∆cm =

∑K
k=1 k · (cm+k − cm−k)

2 ·∑K
k=1 k

2
(1)
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power spectrum of the critical band masking curve from Fletcher (Fletcher, 1995)) equally

spaced on the Bark frequency scale are applied. In PLP, pre-emphasis is performed in the

frequency domain using a scaling function, which is based on the equal-loudness curve. The

output of the filter bank is compressed using cubic root function, which is motivated by the

power law relationship between the intensity and amplitude. The cepstral coefficients are

estimated from the modified auditory spectrum by following the same steps as in LPCC.

• Multi-resolution relative spectra features (MRASTA):

In MRASTA feature extraction, the log-energies in the Bark critical bands are used as fea-

tures, but the important aspect is the processing of the trajectories in time. This is discussed

in the following section.

Processing along Time

It is well known that important characteristics of speech sounds are also present in its dynam-

ics (Furui, 1986a). The simplest and the most common way to capture these dynamics is to append

the static cepstral features (LPCC, MFCC or PLPCC) with its first order time derivatives (delta cep-

strum) and the second order time derivative (delta-delta cepstrum) (Furui, 1986b). The first order

derivative is an estimate of the local slope, and is typically computed by applying an FIR filter with

impulse response function given in Figure 2.5 (a) on the static features. The delta-delta features

are computed using the impulse response function shown in Figure 2.5 (b).
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Figure 2.5. (a) A typical impulse response for computing delta features in hidden Markov model toolkit (HTK) (Young
et al., 2000). (b) Impulse response function for computing the delta-delta features.

Multi-resolution relative spectra feature (MRASTA) extraction technique is an extension to delta

Delta (first order derivative) Delta-Delta (second order derivative)

Savitzky-Golay filtering and temporal derivatives computation

https://c.mql5.com/forextsd/forum/147/sgfilter.pdf
http://dx.doi.org/10.1109/LSP.2013.2244593
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Cepstral features
Speech recognition: C1 − C12 + ∆ + ∆∆
Speaker recognition: C1 − C20 + ∆ + ∆∆
Speech synthesis using HMMs: C1 − C39 + ∆ + ∆∆

Typically, in static features, e.g. C1 − C12, mean estimated
over the utterance is removed to handle channel variation.
log filter bank energies +∆ + ∆∆

Energy: log energy (in the short-term analysis window) or C0
+∆ + ∆∆

Fundamental frequency: log F0 (typically) +∆ + ∆∆

∆ denotes first order temporal derivative
∆∆ denotes second order temporal derivative
Feature sequence X = {x1, · · · xm, · · · xM}
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