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Biometric Person Recognition (1) 4/37

Biometric characteristics can be categorized as
Physiological only: face, fingerprint, iris, hand geometry,
palmprint, DNA
Behavioral only: handwriting, signature, typing rhythm, gait
Both: voice

A few applications:
Access control
Forensics
Surveillance

How precise these characteristics are? 1

1Fingerprint FP ∼ 0.1%, FN ∼ 7%



Biometric Person Recognition (2) 5/37

Biometric person recognition can be seen as a pattern recognition
problem
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Types of person recognition tasks 6/37

Person identification: identify a person from a finite set of
persons (given a biometric signal).
Pattern classification problem: Given a feature sequence
X = {x1, · · · xm, · · · xM} (extracted from the biometric signal),
a person I identified (classified) as person Ic if

P(I = Ic |X ) ≥ P(I = Iℓ|X ), ∀ℓ ̸= c

Person verification: verify a claimed identity of a person.
Hypothesis testing problem: Given a feature sequence X ,
and a claimed identity Ic , estimate the probability that the
person I is indeed Ic and not another person:

P(I = Ic |X )

P(I = Ic |X )
≥ ∆



Similarity Measures (1) 7/37

Given a biometric signal/feature sequence X the probability that it
belongs to a person (rather than some other person) is given by:

P(Ic |X ) =
P(X |Ic)P(Ic)

P(X )
=

P(X |Ic)P(Ic)∑I
i=1 P(X |Ii )P(Ii )

Ideally, the sum in the denominator should include all possible
persons.
Person Identification:
In this case, after training, P(X ) is a constant, and person I will be
identified as person Ic if:

P(X |Ic) ≥ P(X |Ii ), ∀i ̸= c



Similarity Measures (2) 8/37

Person Verification:
Person verification, however, is a form of hypothesis test. In this
case, we will verify the hypothesis that a person I is indeed the
putative person Ic if:

P(Ic |X ) > P(Ic |X )

where Ic represents the set of all possible rival persons, and the
right hand side is the probability of the person being anyone except
Ic .
Typically, this is stated with some margin or threshold, i.e., a
person I is taken to be the person Ic if:

P(Ic |X )

P(Ic |X )
> δ

where δ is a threshold > 1



Similarity Measures (3) 9/37

P(Ic |X ) = P(I1 or I2 or . . . or Ii ̸=c |X ) =
∑
i ̸=c

P(Ii |X )

if events Ii are independent (which is the case) and collectively
exhaustive (which will often be wrong).
Consequently,

I = Ic if
P(X |Ic)
P(X |Ic)

=
P(X |Ic)∑
i ̸=c P(X |Ii )

> δ

defined as the likelihood ratio criterion, and where the sum over
i incorporates all the possible persons.
Alternatively:

I = Ic if logP(X |Ic)− logP(X |Ic) > ∆

where ∆ = log δ.



Typical applications (1) - person ID 10/37

identify the person from the closed set
Identify the person from the open set
Cluster persons into a finite set of clusters?

Example of a investigation platform built at Idiap:



Typical applications (2) - person verif. 11/37

Verification of an user of given app.
Comparison of suspect with an offender for forensics (law
enforcement)

Example of a forenscics platform :



Design of person verification system 12/37

Feature representation xm:
Cepstral features (typically high order cepstral coefficients and
their temporal derivatives): C0 − C20 +∆+∆∆ and
optionally log F0 +∆+∆∆

Log filter bank energies +∆+∆∆ (when using neural
networks)

1. Training of a P(X |Ic) estimator for each speaker on their
respective speech data. (also referred to as speaker
enrollment)

2. Training of a good normalization factor P(X |Ic) estimator
3. Optimal setting of the decision threshold.

Typically, by assuming a Gaussian distribution of likelihoods
P(X |Ic) and P(X |Ic) for a specific training and test set. The
variability of these distributions also shows the importance of
using a similarity measure based on a likelihood ratio measure.
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Estimation of P(X |Ic) (1) 14/37

1. Bag of Features: With independence assumption, treats the
feature sequence X as a collection (i.e. features in the
sequence can be treated in any order).

P(X |Ic) = (
M∏

m=1

P(xm|Ic))
1
N

The likelihood P(xm|Ic) can be estimated by modelling the
feature distribution using

i. K-Means clustering
ii. Training models based on long-term statistics such as the

mean and variance calculated on a sufficiently large collection
of features, such as Gaussian mixture model (GMM).

iii. Adapting a pre-trained universal backgroundGMM (see the
P(X |Ic) estimation part)



Estimation of P(X |Ic) (2) 15/37

2. Sequential model: Here it is assumed that the feature
sequence X has been generated by a sequence of states
Q = {q1, · · · qm, · · · qM} (structured model), e.g. an HMM.

P(X |Ic) = (
M∏

m=1

P(xm|qm, Ic)
1
M

i. Constrained topology, such as left-to-right (Text-dependent)

ii. Unconstrained topology, such as fully connected (ergodic)
HMM where all states are connected to each other



Estimation of P(X |Ic) (1) 16/37

There are different approaches to model the "normalization factor"
P(X |Ic) estimator.
1. We assume that the set of reference persons already enrolled

in the database is sufficiently representative of all possible
persons:

logP(X |Ic) ≈
∑

Ii∈R,i ̸=c

logP(X |Ii )

where R represents the set of persons already enrolled in the
system.

2. We assume that the sum in the denominator is dominated by
the closest rival person:

logP(X |Ic) ≈ max
Ii ∈ R, i ̸= c

logP(X |Ii )



Estimation of P(X |Ic) (2) 17/37

3. “Cohort” model: a well chosen subset of reference persons on
which P(X |Ic) will be estimated:

logP(X |Ic) ≈
∑

Ii∈Rc ,i ̸=c

logP(X |Ii )

where Rc represents the cohort associated with person Ic .
4. “Universal background model” (UBM): approximating P(X |Ic)

by training a Gaussian mixture model on a large set of
"auxiliary" speakers data (i.e., speakers not part of the speaker
verification system).



Speaker embeddings-based approach 18/37
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Najim Dehak et al. “Front-end factor analysis for speaker verification”. IEEE Transactions on Audio,
Speech, and Language Processing, 19(4):788–798, 2011.
David Snyder et al., “X-vectors: Robust DNN embeddings for speaker recognition”, ICASSP, 2018.
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Speaker embeddings-based approach (cont.)19/37

1. Training
i-vector: Universal background model GMM (UBM-GMM) trained
on auxiliary speakers data.
x-vector: speaker classification neural network (with a stats pooling
layer) trained on auxiliary speakers data.

2. Speaker embedding extraction
i-vector: Enrollment and verification speaker embeddings are
extracted by adapting the UBM-GMM on the feature vectors
extracted from enrollment speech signal and verification speech
signal and then applying factor analysis on the updated UBM-GMM
parameters (total variability analysis), respectively.
x-vector: Enrollment and verification speaker embeddings are
extracted by feeding the feature vectors extracted from enrollment
speech signal and verification speech signal and taking output of an
intermediate layer that is close to the output layer, respectively.

3. Scoring
Applying linear discriminant analysis (LDA) on the enrollment speaker
embeddings and verification speaker embeddings to reduce feature
dimension, and comparing them using probabilistic linear discriminant
analysis (PLDA). The output score is an estimate of log-likelihood ratio
logP(X |Ic)− logP(X |Ic).
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Decision threshold ∆ (1) 21/37

I = Ic if logP(X |Ic)− logP(X |Ic) > ∆

When making a decision the system can commit one of the two
types of errors

False acceptance (FA): An impostor claim is accepted.
False rejection (FR): A true claim is rejected.

The choice of the decision threshold gives a tradeoff between these
errors. Furthermore, the cost associated to each of these errors is
not usually equal.
For instance, in a banking application it is better to have 0% FA
rate at the cost of having a FR rate higher than 0%. However, too
high FR rate can be a cause of dissatisfication to customers.



Decision threshold ∆ (2) 22/37

Example of Gaussian approximations of the distributions of P(X |Ic ) (the left two Gaussians, respectively

for training and test set) and P(X |Ic ) (right Gaussians). The vertical line (750) represents the decision

threshold corresponding to the Equal Error Rate (EER) as estimated on the training data. As shown

here, the position of the Gaussian can vary from training to test data, depending on the variability of

environment and person characteristics. Means and variances were computed on a set of real data

corresponding to a specific person Ic and a given set of impostors.
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Decision threshold ∆ (3) 23/37

Theory: The decision threshold ∆ > 0 ideally should be depending
upon the operating conditions, e.g., which type of error is more
tolerable.

Practice: The decision threshold is also dependent upon factors
such as actual person, model of the person, recording environment,
quality of the signal. As a result, the decision threshold can be
different for different person, i.e., ∆c .

The main reason being mismatch between observation X and the trained
model due to

Model limitations, e.g. flexibility to model the distribution, choice
for estimating P(X |Ic)
Insufficient training data/lack of coverage

Unseen test conditions, e.g. environment (indoor conditions,
outdoor conditions), signal quality (change in the type of
microphone or camera or resolution of image), behavioral changes
(emotions, facial expressions, change in voice characteristics due to
cold).



Score normalization (1) 24/37

Let,
SIc (X ) = logP(X |Ic)− logP(X |Ic)

for a test feature sequence X .
To handle the score SIc (X ) variability and to make “person
independent” decision threshold (∆) tuning easier different score
normalization methods have been proposed, such as,

Z-norm: For each person model Ic normalize the impostor
score distribution

SIc (X )− µIc

σIc

where, µIc and σIc are the mean and standard deviation of
impostor score distribution estimated by using “pseudo”
impostors data.
pros: µIc and σIc can be estimated offline during training.
cons: pseudo impostor data and test data may not match.



Score normalization (2) 25/37

T-norm: For a given test feature sequence X normalize the
impostor score distribution

SIc (X )− µX

σX

where, µX and σX are the mean and standard deviation of the
impostor score distribution obtained by matching the test
feature sequence X using person models other than Ic .
pros: no pseudo impostor data required and can deal with
variability in the test feature sequence.
cons: requires more resources during testing to estimate µX

and σX .
The choice to normalize impostor score distribution is dictated by
two reasons (a) easy availability of pseudo impostors, and (b)
impostor distribution represents the largest part of score
distribution variance.
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Evaluation measures (1) 27/37

Given a set of decisions D1, · · ·Dk , · · ·DK made by the system (using a
person independent threshold ∆) and their respective “true”
decisions/labels T1, · · ·Tk , · · ·TK for a set of test feature sequences
X1, · · ·Xk , · · ·XK

1. Set number of FA (nFA), number of FR (nFR), number of true
claims (nTC ), and number of impostor claims (nIC ) to 0.

2. For each test feature sequence k = 1, · · ·K
nFA = nFA+ 1 if (Dk = accept | Tk = impostor claim)

nFR = nFR + 1 if (Dk = reject | Tk = true claim)

nIC = nIC + 1 if (Tk = impostor claim)

nTC = nTC + 1 if (Tk = true claim)

3.

FA rate (in %) = PFA(∆) =
nFA

nIC
∗ 100

FR rate (in %) = PFR(∆) =
nFR

nTC
∗ 100

Half total error rate (HTER): average of FA rate and FR rate.



Evaluation measures (2) 28/37

By varying ∆ and estimating PFA(∆) and PFR(∆) different systems
(based on different approaches/methods) can be evaluated and compared
in terms of one of the following measures:

1. Equal error rate (EER)

∆EER = arg
∆

{PFA(∆) = PFR(∆)}

PFA(∆EER) = PFR(∆EER) = EER

2. Receiver operating characteristics (ROC): Plotting PFA(∆) versus
PTP(∆) on a linear scale as a function of ∆.

3. Detection error trade off (DET) curve: Plotting PFR(∆) versus
PFA(∆) on a normal deviate (log) scale as a function of ∆. Helps in
distinguishing different well performing systems.

4. Decision cost function (DCF): Given a system operational cost
α ≤ 1 associated with one of the errors, say, FA

DCF (α,∆) = α ∗ PFA(∆) + (1 − α) ∗ PFR(∆)
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THE DET CURVE IN ASSESSMENT OF DETECTION TASK PERFORMANCE

A. Martin*, G. Doddington#, T. Kamm+, M. Ordowski+, M. Przybocki*
*National Institute of Standards and Technology, Bldg. 225-Rm. A216, Gaithersburg, MD 20899, USA

#SRI International/Department of Defense, 1566 Forest Villa Lane, McLean, VA 22101, USA
+Department of Defense, Ft. Meade, MD 20755, USA

ABSTRACT

We introduce the DET Curve as a means of representing
performance on detection tasks that involve a tradeoff of
error types.  We discuss why we prefer it to the traditional
ROC Curve and offer several examples of its use in
speaker recognition and language recognition.  We explain
why it is likely to produce approximately linear curves. 
We also note special points that may be included on these
curves, how they are used with multiple targets, and
possible further applications.

INTRODUCTION

Detection tasks can be viewed as involving a tradeoff
between two error types: missed detections and false
alarms.  An example of a speech processing task is to
recognize the person who is speaking, or to recognize the
language being spoken.  A recognition system may fail to
detect a target speaker or language known to the system, or
it may declare such a detection when the target is not
present.

When there is a tradeoff of error types, a single
performance number is inadequate to represent the
capabilities of a system.  Such a system has many
operating points, and is best represented by a performance
curve.

The ROC Curve traditionally has been used for this
purpose. Here ROC has been taken to denote either the
Receiver Operating Characteristic [2,3,4] or alternatively,
the Relative Operating Characteristic [1]. Generally, false
alarm rate is plotted on the horizontal axis, while correct
detection rate is plotted on the vertical.

We have found it useful in speech applications to use a
variant of this which we call the DET (Detection Error
Tradeoff) Curve, described below.  In the DET curve we
plot error rates on both axes, giving uniform treatment to
both types of error, and use a scale for both axes which
spreads out the plot and better distinguishes different well
performing systems and usually produces plots that are
close to linear.

Figure 1 gives an example of DET curves, while Figure 2
contrasts this with traditional ROC type curves for the
same data.  Note the near linearity of the curves in the DET

plot and how better spread out they are permitting easy
observation of  system contrasts.

Figure 1: Plot of DET Curves for a speaker
recognition evaluation.

GENERAL EVALUATION PROTOCOL

Our evaluations of speech processing systems are
comparable to fundamental detection tasks. Participants are
given a set of known targets (speakers or languages) for 
which their systems have trained models and a set of
unknown speech segments. During the evaluation the
speech processing system must determine whether or not
the unknown segment is one of the known targets.

The system output is a likelihood that the segment is an
instance of the target.  The scale of the likelihood is
arbitrary, but should be consistent across all decisions, with
larger values indicating greater likelihood of being a target.
These likelihoods are used to generate the performance
curve displaying the range of possible operating
characteristics.

Figure 2 shows a traditional ROC curve for a NIST
coordinated speaker recognition evaluation task.  The
abscissa axis shows the false alarm rate while the ordinate
axis shows the detection rate on linear scales. The optimal
point is at the upper left of the plot, and the curves of well
performing systems tend to bunch together near this corner.

Source: A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, “The 
DET curve in assessment of detection performance”, in Proc. of Eurospeech, 1997.

1. Different systems
can be compared at
different operating
points (i.e., decision
thresholds)

2. Closer is the curve
to the origin better
is the speaker
verification system
performance

3. Point of intersection
of the curve with the
diagonal line from
the origin yields EER
estimate.
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Presentation attacks 31/37

Forged or altered speech samples

Physical access: attacker needs a replay device
Logical access: attacker needs to hack and inject the fake
sample into the system



Presentation attacks 32/37

Bona fide sample
Replay

Speech synthesis

Voice conversion



Speaker verification system vulnerability33/37

Zero-effort-impostor refers to conventional impostor in speaker
verification system.



Presentation attack detection (PAD) 34/37

Challenge: we do not have a good prior knowledge about the "task
specific" information present in the speech signal.
Features:

magnitude spectrum-based features (e.g, cepstral features,
filter-bank energies);
phase spectrum-based features (e.g., group delay, relative
phase-shift);
spectro-temporal features (e.g., modulation spectrum).

Classifiers: Gaussian mixture models, neural networks, support
vector machine, logistic regression.



PAD system evaluation 35/37

Types of errors: False acceptance (attack classified as genuine)
and False rejection (genuine classified as attack)
Evaluation measures used for speaker verification system
evaluation such as, HTER, EER, ROC, DET, DCF can be
employed

Independent development and evaluation of speaker verification
system and presentation attack detection system is not sufficient.
Challenge: how to combine the two systems? (open research
question)

One solution: Fuse the decisions of the two systems using AND
logic.



Vulnerability after integrating PAD 36/37

Zero-effort-impostor refers to conventional impostor in speaker
verification system.
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