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Introduction



Biometric Person Recognition (1)

Biometric characteristics can be categorized as

m Physiological only: face, fingerprint, iris, hand geometry,
palmprint, DNA

m Behavioral only: handwriting, signature, typing rhythm, gait
m Both: voice
A few applications:
m Access control
m Forensics

m Surveillance

How precise these characteristics are? 1

YFingerprint FP ~ 0.1%, FN ~ 7%



Biometric Person Recognition (2)

Biometric person recognition can be seen as a pattern recognition
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Types of person recognition tasks

m Person identification: identify a person from a finite set of
persons (given a biometric signal).
Pattern classification problem: Given a feature sequence
X ={x1, - -xm, - -xm} (extracted from the biometric signal),
a person [ identified (classified) as person I if

P(I = I¢|X) > P(I = I,|X), V¢+#c

m Person verification: verify a claimed identity of a person.
Hypothesis testing problem: Given a feature sequence X,
and a claimed identity /., estimate the probability that the
person [ is indeed /. and not another person:



Similarity Measures (1)

Given a biometric signal/feature sequence X the probability that it
belongs to a person (rather than some other person) is given by:

P(X|l)P(le) _  P(X]l)P(l)

P(lI:|X) = =
el P(X) Sl P(XI1)P(L)

Ideally, the sum in the denominator should include all possible
persons.

Person Identification:

In this case, after training, P(X) is a constant, and person [ will be
identified as person . if:

P(X|lc) > P(X|l;), Vi # ¢



Similarity Measures (2)

Person Verification:

Person verification, however, is a form of hypothesis test. In this
case, we will verify the hypothesis that a person / is indeed the
putative person . if:

P(Ic|X) > P(Ic|X)

where I, represents the set of all possible rival persons, and the
right hand side is the probability of the person being anyone except
Ic.

Typically, this is stated with some margin or threshold, i.e., a
person [ is taken to be the person I if:

P(lc|X)

— >4
P(lc|X)

where § is a threshold > 1



Similarity Measures (3)

P(Ic|X) = P(h or b or ... or lizc|X) =" P(l;|X)
i#c

if events /; are independent (which is the case) and collectively

exhaustive (which will often be wrong).

Consequently,
P(X|I. P(X|I.

o P P

P(X[le) — >ize P(X[h)

defined as the likelihood ratio criterion, and where the sum over

i incorporates all the possible persons.

Alternatively:

I =1. if logP(X|l)—log P(X|lc) > A

where A = log §.



Typical applications (1) - person ID o8
m identify the person from the closed set

m Identify the person from the open set

m Cluster persons into a finite set of clusters?

Example of a investigation platform built at Idiap:

@ Netwak ptons

e
120412019,240000 ® Phone Num & Speaker(s) ~ [} [ ] B
s % »0
10/3/2022,20000 1 8 e Unked 1] o 15 -
B« ] 1. ] %
o =3 % ) 8
(0 Oynamic Graph View 135 14 8 =
g B % g 8
&% 8 7
p 8 " ] ] ]
] ot & g g
[T —, e B g8 o ©
e 2 7 3 o ]
_ ) g i o %
Froguency of Occurnce © /] % . = e 1 STy ”
5
; [} b Ly 28 ]
- 3 fi)
. 2w e )
prmspuivn . [} 1o B oE & 95 A 8 8
w 7
- o b :ﬁ« B e 8 z =
o - 2 - .
. e v -
. i PR TR 8
2, e & u
[o— 1 [ Dt 0. S ] ]
o g ug w 0 - 2 2
. [i] w 3 B 5. o-§ B ]
— o -
» oyt
» \
P @ LR 7 o vomt @ s
st C8 - - Ve, P
B3 oo o oo

‘Speaker Based Graph

© Netwark ptons

Sereenshot



Typical applications (2) - person verif.

m Verification of an user of given app.
m Comparison of suspect with an offender for forensics (law
enforcement)

Example of a forenscics platform :
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Design of person verification system

Feature representation x,:

m Cepstral features (typically high order cepstral coefficients and
their temporal derivatives): Cp — Cyo + A + AA and
optionally log Fo + A + AA

m Log filter bank energies +A + AA (when using neural
networks)

1. Training of a P(X]/.) estimator for each speaker on their
respective speech data. (also referred to as speaker
enrollment)

2. Training of a good normalization factor P(X|l.) estimator

3. Optimal setting of the decision threshold.
Typically, by assuming a Gaussian distribution of likelihoods
P(X|l.) and P(X|I.) for a specific training and test set. The
variability of these distributions also shows the importance of
using a similarity measure based on a likelihood ratio measure.
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Estimation of P(X|/.) (1)

1. Bag of Features: With independence assumption, treats the
feature sequence X as a collection (i.e. features in the
sequence can be treated in any order).

M

P(XIlc) = (T] PGxmllc))™

m=1

The likelihood P(xm|/c) can be estimated by modelling the
feature distribution using
i. K-Means clustering
ii. Training models based on long-term statistics such as the
mean and variance calculated on a sufficiently large collection
of features, such as Gaussian mixture model (GMM).
ili. Adapting a pre-trained universal backgroundGMM (see the
P(X|l.) estimation part)



Estimation of P(X|/.) (2)

2. Sequential model: Here it is assumed that the feature
sequence X has been generated by a sequence of states
Q@ =1{qg1, " gm, - gm} (structured model), e.g. an HMM.
M

P(X|lc) = (T] PCemlam, fc)¥

m=1

i. Constrained topology, such as left-to-right (Text-dependent)

(1510

ii. Unconstrained topology, such as fully connected (ergodic)
HMM where all states are connected to each other

Plala) P(g, ;)




Estimation of P(X|/.) (1)

There are different approaches to model the "normalization factor"

P(X|l.) estimator.

1. We assume that the set of reference persons already enrolled
in the database is sufficiently representative of all possible
persons:

log P(X|l)~ > log P(X|))
li€R,ic
where R represents the set of persons already enrolled in the
system.

2. We assume that the sum in the denominator is dominated by

the closest rival person:

log P(X|I;) =~ max log P(X|1;)
i eR,i 75 Cc



Estimation of P(X|/.) (2)

3. “Cohort” model: a well chosen subset of reference persons on
which P(X|/.) will be estimated:

log P(X[lc)~ > log P(X|I;)
LERc,i#c

where R. represents the cohort associated with person /..

4. “Universal background model” (UBM): approximating P(X|/.)
by training a Gaussian mixture model on a large set of
"auxiliary" speakers data (i.e., speakers not part of the speaker
verification system).



Speaker embeddings-based approach

i-vectors Xx-vectors

ni Feature Universal Feature spk;
speech : N | :
trammg ss;?eﬁgr Extraction Background spignal Extraction nef\‘ljvl;ark :
9 (MFCC) Model (GMM) (MFCC) sphy

Najim Dehak et al. “Front-end factor analysis for speaker verification”. IEEE Transactions on Audio,
Speech, and Language Processing, 19(4):788-798, 2011.
David Snyder et al., “X-vectors: Robust DNN embeddings for speaker recognition”, ICASSP, 2018.



Speaker embeddings-based approach
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Speaker embeddings-based approach
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Najim Dehak et al. “Front-end factor analysis for speaker verification”. IEEE Transactions on Audio,
Speech, and Language Processing, 19(4):788-798, 2011.
David Snyder et al., “X-vectors: Robust DNN embeddings for speaker recognition”, ICASSP, 2018.



Speaker embeddings-based approach ((m

1. Training
B i-vector: Universal background model GMM (UBM-GMM) trained
on auxiliary speakers data.
B x-vector: speaker classification neural network (with a stats pooling

layer) trained on auxiliary speakers data.
2. Speaker embedding extraction

m i-vector: Enrollment and verification speaker embeddings are
extracted by adapting the UBM-GMM on the feature vectors
extracted from enrollment speech signal and verification speech
signal and then applying factor analysis on the updated UBM-GMM
parameters (total variability analysis), respectively.

m x-vector: Enrollment and verification speaker embeddings are
extracted by feeding the feature vectors extracted from enrollment
speech signal and verification speech signal and taking output of an
intermediate layer that is close to the output layer, respectively.

3. Scoring
Applying linear discriminant analysis (LDA) on the enrollment speaker
embeddings and verification speaker embeddings to reduce feature
dimension, and comparing them using probabilistic linear discriminant
analysis (PLDA). The output score is an estimate of log-likelihood ratio
log P(X|Ic) — log P(X|I).
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Decision threshold A (1)

I =1 if logP(X|l.) —log P(X|lc) > A

When making a decision the system can commit one of the two
types of errors

m False acceptance (FA): An impostor claim is accepted.
m False rejection (FR): A true claim is rejected.

The choice of the decision threshold gives a tradeoff between these
errors. Furthermore, the cost associated to each of these errors is
not usually equal.

For instance, in a banking application it is better to have 0% FA
rate at the cost of having a FR rate higher than 0%. However, too
high FR rate can be a cause of dissatisfication to customers.



Decision threshold A (2)

Example of Gaussian approximations of the distributions of P(X|Ic) (the left two Gaussians, respectively
for training and test set) and P(X|/.) (right Gaussians). The vertical line (750) represents the decision
threshold corresponding to the Equal Error Rate (EER) as estimated on the training data. As shown
here, the position of the Gaussian can vary from training to test data, depending on the variability of
environment and person characteristics. Means and variances were computed on a set of real data

corresponding to a specific person /. and a given set of impostors.
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Decision threshold A (3)

m Theory: The decision threshold A > 0 ideally should be depending
upon the operating conditions, e.g., which type of error is more
tolerable.

m Practice: The decision threshold is also dependent upon factors
such as actual person, model of the person, recording environment,
quality of the signal. As a result, the decision threshold can be
different for different person, i.e., A..

The main reason being mismatch between observation X and the trained
model due to

m Model limitations, e.g. flexibility to model the distribution, choice
for estimating P(X|/.)

m Insufficient training data/lack of coverage

m Unseen test conditions, e.g. environment (indoor conditions,
outdoor conditions), signal quality (change in the type of
microphone or camera or resolution of image), behavioral changes
(emotions, facial expressions, change in voice characteristics due to
cold).



Score normalization (1)
Let, B
Si.(X) = log P(X|l.) — log P(X]I.)
for a test feature sequence X.
To handle the score S, (X) variability and to make “person
independent” decision threshold (A) tuning easier different score
normalization methods have been proposed, such as,

m Z-norm: For each person model /. normalize the impostor
score distribution
51 (X) — pu.

g

c

where, 1. and oy, are the mean and standard deviation of
impostor score distribution estimated by using “pseudo”
impostors data.

pros: (. and o, can be estimated offline during training.
cons: pseudo impostor data and test data may not match.



Score normalization (2)

m T-norm: For a given test feature sequence X normalize the
impostor score distribution

51.(X) — px
ox

where, px and ox are the mean and standard deviation of the
impostor score distribution obtained by matching the test
feature sequence X using person models other than /..

pros: no pseudo impostor data required and can deal with
variability in the test feature sequence.

cons: requires more resources during testing to estimate pux
and ox.

The choice to normalize impostor score distribution is dictated by
two reasons (a) easy availability of pseudo impostors, and (b)
impostor distribution represents the largest part of score
distribution variance.
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Evaluation measures (1)

Given a set of decisions Dy, - - - Dy, - - - Dx made by the system (using a
person independent threshold A) and their respective “true”
decisions/labels Ty,--- Ty, --- Tk for a set of test feature sequences
X1, X, Xk
1. Set number of FA (nFA), number of FR (nFR), number of true
claims (nTC), and number of impostor claims (n/C) to 0.

2. For each test feature sequence k=1, --- K

nFA = nFA+1 if (Dx = accept | Ty = impostor claim)
nFR = nFR+1 if (D = reject | Ty = true claim)
nlC = nlC+1 if (Tx = impostor claim)
nTC = nTC+1 if (Tx = true claim)
3.
FA
FA rate (in %) = Pra(A) = - == £ 100
. nFR
FR rate (in %) = Prr(4A) = e * 100

Half total error rate (HTER): average of FA rate and FR rate.




Evaluation measures (2)

By varying A and estimating Pra(A) and Prr(A) different systems
(based on different approaches/methods) can be evaluated and compared
in terms of one of the following measures:

1. Equal error rate (EER)
Aper = agg {Pra(A) = Per(A)}
Pra(Ager) = Prr(Aeer) = EER
2. Receiver operating characteristics (ROC): Plotting Pra(A) versus

Prp(A) on a linear scale as a function of A.

3. Detection error trade off (DET) curve: Plotting Prr(A) versus
Prea(A) on a normal deviate (log) scale as a function of A. Helps in
distinguishing different well performing systems.

4. Decision cost function (DCF): Given a system operational cost
a < 1 associated with one of the errors, say, FA

DCF(O{7 A) = % PFA(A) + (1 - a) * PFR(A)



DET curve example

SPEAKER RECOGNITION SYSTEM COMPARISON 1 ) Different Systems

can be compared at
different operating
points (i.e., decision
thresholds)
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to the origin better
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40

Miss probability (in %)
w3 3

[S)

0.5
3. Point of intersection

of the curve with the
R S S S i i diagonal line from
0102 05 1 2 5 10 20 40 - .

False Alarm probabilty (in %) the origin yields EER

Source: A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, “The .
DET curve in assessment of detection performance”, in Proc. of Eurospeech, 1997. estimate.
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Presentation attacks

Forged or altered speech samples
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m Physical access: attacker needs a replay device

m Logical access: attacker needs to hack and inject the fake
sample into the system



Presentation attacks
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Speaker verification system vulnerabilitm

Speaker Verification[ >

Zero-effort-impostor refers to conventional impostor in speaker
verification system.
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Presentation attack detection (PAD)

speech Feature - _
sample ‘ Extraction ]——[ Classifier ]—genume/attack

Challenge: we do not have a good prior knowledge about the "task
specific" information present in the speech signal.
Features:

m magnitude spectrum-based features (e.g, cepstral features,
filter-bank energies);

m phase spectrum-based features (e.g., group delay, relative
phase-shift);

m spectro-temporal features (e.g., modulation spectrum).

Classifiers: Gaussian mixture models, neural networks, support
vector machine, logistic regression.



PAD system evaluation

m Types of errors: False acceptance (attack classified as genuine)
and False rejection (genuine classified as attack)

m Evaluation measures used for speaker verification system
evaluation such as, HTER, EER, ROC, DET, DCF can be
employed

Independent development and evaluation of speaker verification
system and presentation attack detection system is not sufficient.
Challenge: how to combine the two systems? (open research
question)
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or attack
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system

accept or reject

Presentation attack
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raw
signal

One solution: Fuse the decisions of the two systems using AND
logic.



Vulnerability after integrating PAD

Speaker Verification >

Zero-effort-impostor refers to conventional impostor in speaker
verification system.
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