Automatic Speech Recognition - Part I

Dr. Mathew Magimai Doss

September 21, 2022

Outline

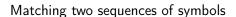
String Matching

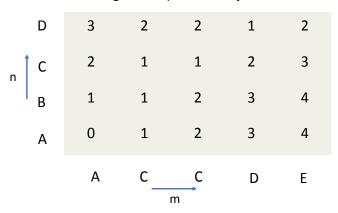
Automatic speech recognition as a string matching problem

Instance-based ASR approach

Next week

Outline


String Matching

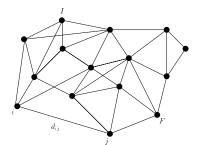

Automatic speech recognition as a string matching problem

Instance-based ASR approach

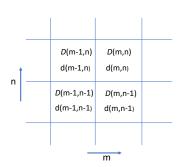
Next week

String Matching

symbols can be alphabets of a language or words in a language


Dynamic Programming (DP)

Bellman, 1960


"Optimal policy is composed of optimal sub-policies".

Other Applications:

- Cargo loading problem, VLSI design, etc...
- Finding the shortest path between two points in a graph

String matching using DP

local score
$$d(m, n)$$
:
if $str(m) = str(n)$
 $d(m, n) = 0$
else
 $d(m, n) = 1$

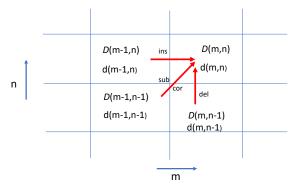
- **1.** Initial condition: path starts at (1,1)
- 2. Recursion:

$$D(m,n) = d(m,n) + min[D(m-1,n), D(m-1,n-1), D(m,n-1)]$$

$$Path(m, n) = \arg \min[D(m-1, n),$$

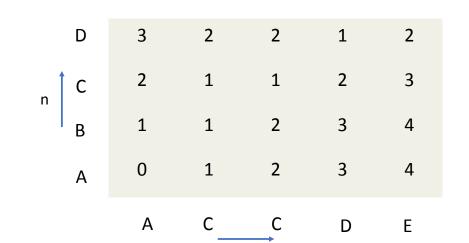
$$D(m-1, n-1),$$

$$D(m, n-1)]$$


$$\forall m \in \{1 \dots M\} \text{ and } n \in \{1, \dots N\}$$

3. Final condition: path ends at (M, N) and D(M, N) is the global score

Path(m, n) denotes the path index. Path can be traced back from Path(M, N)


Local constraints

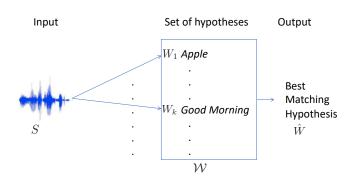
$$D(m, n) = d(m, n) + min[D(m-1, n), D(m-1, n-1), D(m, n-1)]$$

ins: insertion, cor: correct, sub: substitution, del: deletion

String Matching

m

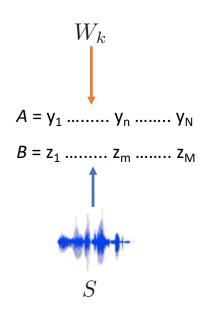
Outline


String Matching

Automatic speech recognition as a string matching problem

Instance-based ASR approach

Next week


Automatic speech recognition (ASR)

$$\hat{W} = \operatorname*{arg\,max}_{W_k \in \mathcal{W}} \operatorname{Match}(W_k, S)$$

How to match an observed speech signal S with a word hypothesis W_k ?

Abstract formulation for matching S and W_k

Core Idea

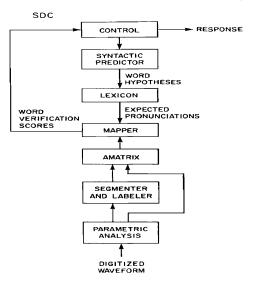
- 1. Map S and W_k to a shared latent symbol space
- 2. Match the resulting two latent symbol sequences A and B

Four sub questions

- Q1: What is the shared latent symbol set?
- $\mathbf{Q2}$: How to map S to a latent symbol sequence B?
- Q3: How to map W_k to a latent symbol sequence A?
- Q4: How to match the two latent symbol sequences A and B?

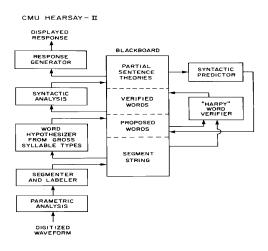
Different ASR methods mainly differ on how these four sub questions are addressed.

ASR methods


- 1. Knowledge-based approach
- 2. Instance-based approach
- 3. Model-based approach

Knowledge-based ASR approach

Limitations:


- Overly relies on knowledge
- Makes early decision so difficult to recover from errors such as, segmentation and labeling errors

Knowledge-based ASR system (1)

Source: D. H. Klatt. Review of the ARPA speech understanding project. J. Acoust. Soc. Amer., 62(6):1345-1366, December 1977.

Knowledge-based ASR system (2)

Source: D. H. Klatt. Review of the ARPA speech understanding project. J. Acoust. Soc. Amer., 62(6):1345-1366, December 1977.

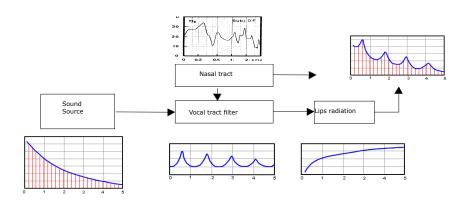
Outline

String Matching

Automatic speech recognition as a string matching problem

Instance-based ASR approach

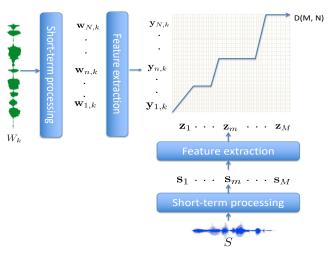
Next week


Instance-based ASR approach

In instance-based (also called template-based) approach W_k is represented by a speech signal

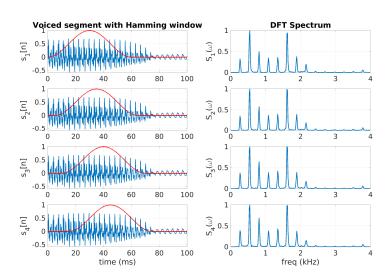
For example, record each word

Motivation (1)

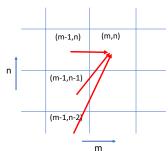


Credits: Lindqvist-Gauffin, Sundberg, Stevens, Mannel

Motivation (2)


- Speech signal can be deconvolved into source and system components and synthesized back by putting these components. (e.g., linear prediction, cepstral analysis)
- Vocal tract shape is different for different sounds (caution: there are pair of sounds that differ mainly in terms of voicing, e.g., /p/ and /b/)
- Parametrize the vocal tract system information integrating speech perception knowledge (e.g. MFCCs, PLP cepstral coefficients) and compare S and W_k .

Matching S and W_k



- \blacksquare s_m and w_{n,k} denote of frame of speech signal
- \blacksquare z_m and $y_{n,k}$ denote the corresponding feature vectors

Short-term spectral processing

Dynamic Time Warping (DTW)

local score d(m, n):

- Cepstral features: Euclidean distance between z_m and y_{n,k}
- Linear prediction coefficients: Itakura distance between z_m and y_{n,k}
- Spectral information: Itakura-Saito distance between z_m and y_{n,k}

- 1. Initial condition: path starts at (1,1)
- **2.** Recursion:

$$D(m, n) = d(m, n) + min[D(m - 1, n),$$

$$D(m - 1, n - 1),$$

$$D(m - 1, n - 2)]$$

$$Path(m, n) = arg min[D(m - 1, n),$$

$$D(m - 1, n - 1),$$

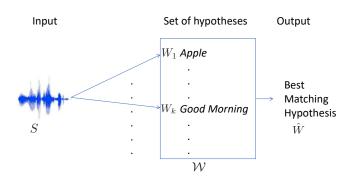
$$D(m, n - 2)]$$

$$\forall m \in \{1 \dots M\} \text{ and } n \in \{1, \dots N\}$$

3. Final condition: path ends at (M, N) and D(M, N) is the global score

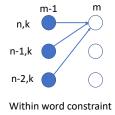
Path(m, n) denotes the path index. Path can be traced back from Path(M, N)

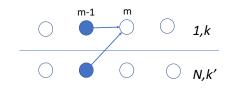
DTW local constraints


TABLE I

Symmetric and Asymmetric DP-Algorithms with Slope Constraint Condition $P = 0, \frac{1}{2}, 1, \text{ and } 2$

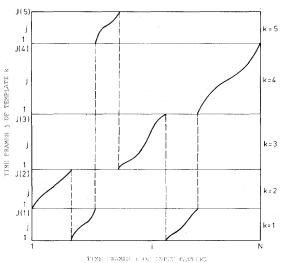
Р	Schematic explanation	Symmetric Asymmetric	DP-equation g(i, j) =
	Z	Symmetric	$\min \begin{bmatrix} g(i,j-1)+d(i,j) \\ g(i-1,j-1)+2d(i,j) \\ g(i-1,j)+d(i,j) \end{bmatrix}$
~		Asymmetric	$\min \begin{bmatrix} g(i,j-1) \\ g(i-1,j-1)+d(i,j) \\ g(i-1,j)+d(i,j) \end{bmatrix}$
1/2		Symmetric	$ \begin{bmatrix} g(i-1,j-3)+2d(i,j-2)+d(i,j-1)+d(i,j) \\ g(i-1,j-2)+2d(i,j-1)+d(i,j) \\ g(i-2,j-1)+2d(i,j) \\ g(i-2,j-1)+2d(i-1,j)+d(i,j) \\ g(i-2,j-1)+2d(i-2,j)+d(i-1,j)+d(i,j) \end{bmatrix} $
./2		Asymmetric	$ \begin{bmatrix} g(i-1,j-2) + (d(i,j-2) + d(i,j-1) + d(i,j))/2 \\ g(i-1,j-2) + (d(i,j-1) + d(i,j))/2 \\ g(i-1,j-1) + d(i,j) \\ g(i-2,j-1) + d(i-1,j) + d(i,j) \end{bmatrix} $
1	17	Symmetric	$\min \begin{bmatrix} g(i-1,j-2)+2d(i,j-1)+d(i,j) \\ g(i-1,j-1)+2d(i,j) \\ g(i-2,j-1)+2d(i-1,j)+d(i,j) \end{bmatrix}$
		Asymmetric	$\min \begin{bmatrix} g(i-1,j-2)+(d(i,j-1)+d(i,j))/2\\ g(i-1,j-1)+d(i,j)\\ g(i-2,j-1)+d(i-1,j)+d(i,j) \end{bmatrix}$
2	/7	Symmetric	$\min \begin{bmatrix} g(i-2,j-3)+2d(i-1,j-2)+2d(i,j-1)+d(i,j) \\ g(i-1,j-1)+2d(i,j) \\ g(i-3,j-2)+2d(i-2,j-1)+2d(i-1,j)+d(i,j) \end{bmatrix}$
		Asymmetric	$\min \begin{bmatrix} g(i-2,j-3)+2(d(i-1,j-2)+d(i,j-1)+d(i,j))/3 \\ g(i-1,j-1)+d(i,j) \\ g(i-3,j-2)+d(i-2,j-1)+d(i-1,j)+d(i,j) \end{bmatrix}$


Source: H. Sakoe and S. Chiba, "Dynamic Programming Algorithm Optimization for Spoken Word Recognition", IEEE Trans. on Acoustics, Speech, and Signal Processing, 26(1), 1978.


Instance-based ASR

$$\hat{W} = \operatorname*{arg\,min}_{W_k \in \mathcal{W}} \mathrm{DTW}(W_k, S)$$

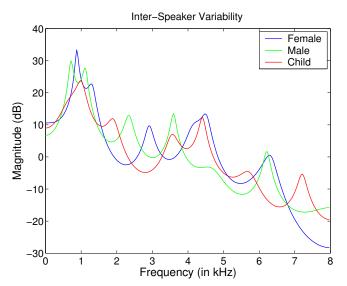
Across word local constraint



Across word constraint

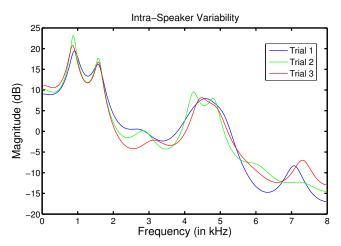
$$\forall k' \in \{1, \cdots K\}$$

Continuous speech recognition



Source: H. Ney, "The Use of a One-Stage Dynamic Programming Algorithm for Connected Word Recognition", IEEE Trans. on Acoustics, Speech, and Signal Processing, 32(2), 1984.

Four sub questions for instance-based approach


- Q1 : Short-term spectral feature vectors are the latent symbols. The set of symbols is undefined, as there is no unique feature vector representation for speech sounds due to variabilities.
- **Q2**: Short-term speech processing-based feature extraction
- Q3 : Short-term speech processing-based feature extraction
- **Q4**: Dynamic programming, i.e. DTW, with appropriate local score and local constraints

Inter-speaker variability

Linear prediction spectrum of a frame of sustained vowel /aa/ from different speakers

Intra-speaker variability

Linear prediction spectrum of a frame of sustained vowel /aa/ from the same speaker

Summary

Limitations

- Works well for speaker-dependent, clean and controlled conditions
 - Late 1990s name dialing on mobile phones
- Generalization across speakers and conditions is a highly challenging problem
- Reference templates typically represent word units. Every new word needs a new reference template.
- Getting phone-based reference templates is a non-trivial task
- Large amount of CPU and memory requirements

Pro: No training needed

Holy grail: Find the short-term speech processing based feature representation that carries linguistic unit (phone/syllable) related information and is robust to undesirable variabilities.

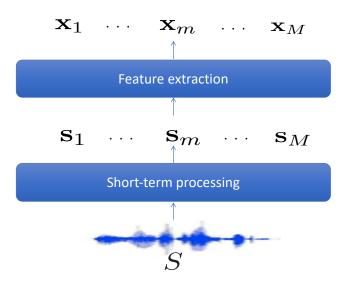
Outline

String Matching

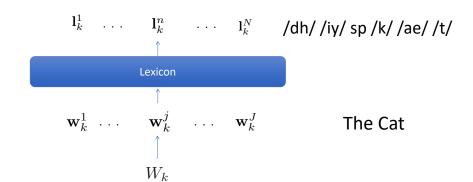
Automatic speech recognition as a string matching problem

Instance-based ASR approach

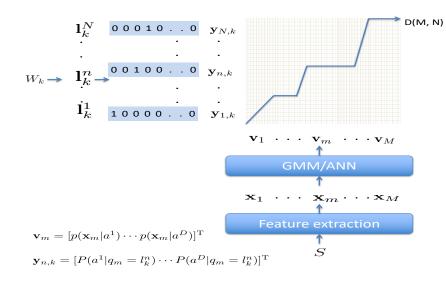
Next week


Statistical formulation for matching S and W_k

$$\hat{W} = \underset{W_k \in \mathcal{W}}{\operatorname{arg max}} P(W_k | S) = \underset{W_k \in \mathcal{W}}{\operatorname{arg max}} \frac{p(W_k, S)}{p(S)}$$


- Likelihood-based approach $p(W_k, S)$
- Posterior-based approach $P(W_k|S)$

Model-based approach


Speech signal *S* representation

Word hypothesis W_k representation

Matching S and W_k : $P(W_k, S)$

Thank you for your attention!

Dr. Mathew Magimai Doss

Idiap Research Institute, Martigny, Switzerland

