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Matching two sequences of symbols
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symbols can be alphabets of a language or words in a language



Dynamic Programming (DP) 5/37

Bellman, 1960
“Optimal policy is composed of optimal sub-policies”.
Other Applications:

Cargo loading problem, VLSI design, etc...
Finding the shortest path between two points in a graph
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String matching using DP 6/37

D(m,n)

d(m,n)

D(m-1,n)

D(m-1,n-1) D(m,n-1)

d(m-1,n)

d(m-1,n-1) d(m,n-1)

m

n

local score d(m, n):
if str(m) = str(n)
d(m, n) = 0
else
d(m, n) = 1

1. Initial condition: path starts at (1, 1)

2. Recursion:

D(m, n)=d(m, n) +min[D(m − 1, n),
D(m − 1, n − 1),D(m, n − 1)]

Path(m, n)=argmin[D(m − 1, n),
D(m − 1, n − 1),
D(m, n − 1)]

∀m ∈ {1 . . .M} and n ∈ {1, . . .N}
3. Final condition: path ends at (M,N)

and D(M,N) is the global score

Path(m, n) denotes the path index. Path
can be traced back from Path(M,N)
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D(m, n) = d(m, n)+min[D(m−1, n),D(m−1, n−1),D(m, n−1)]

m
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ins: insertion, cor: correct, sub: substitution, del: deletion
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Match(Wk ,S)

How to match an observed speech signal S with a word hypothesis Wk?
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11/37w1,j wm,j wM,j LWj ,Sj

(M, N) {Yj}J
j=1 {Zj}J

j=1 {ym}I
wm=1

W1 Wk Wj Ŵ
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A = y1 …...... yn …….. yN

B = z1 …...... zm …….. zM

Core Idea

1. Map S and Wk to a
shared latent symbol
space

2. Match the resulting
two latent symbol
sequences A and B



Four sub questions 12/37

Q1: What is the shared latent symbol set?
Q2: How to map S to a latent symbol sequence B?
Q3: How to map Wk to a latent symbol sequence A?
Q4: How to match the two latent symbol sequences A

and B?

Different ASR methods mainly differ on how these
four sub questions are addressed.
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1. Knowledge-based approach
2. Instance-based approach
3. Model-based approach
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w1,j

wm,j

wM,j

{Sj}J
j=1

{Wj}J
j=1

LHMM (M,N)

y1,j

ym,j

yM,j

z1,j

zn,j

zN,j

l(ym,j , zn,j)

s1,j

sn,j

sN,j

(sn,j ,ym,j)

Wj

Sj

w1,j wm,j wM,j LWj ,Sj
(M, N) {Yj}J

j=1 {Zj}J
j=1 {ym}I

wm=1

W1 Wk Wj Ŵ W S
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y1=/b/ y2=/ae/ …...... yn=/k/ …….. yN=/t/
z1=/p/ z2=/ae/…...... zm=/g/ …….. zM=/t/

Q3. Apply linguistic knowledge

Q2. Segment and label based  on 
acoustic-phonetic knowledge

Q4: Match two phone sequences 
(string matching)

Q1: Phones (linguistic knowledge-based)

Limitations:
Overly relies on knowledge
Makes early decision so difficult to recover from errors such as,
segmentation and labeling errors
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FIG. 2. 

of the systems was also capable of understanding com- 
mands and statements of various types. 

A. Systems development corporation 
The structure of the final SDC speech understanding 

system is shown in Fig. 2 (Rites, 1975; Bernstein, 
1976). Formant frequencies and other parameters are 
first extracted from the input waveform. A phonetic 
transcription is obtained, including several alternative 
labels for each phonetic segment, and all of this infor- 

"L ofoyelle" 

FIG. 3. Lexical representation in the SDC system for the 
word "Lafayette." Branches in the string indicate acceptable 
alternative pronunciations. The "*" is a syllable boundary sym- 
bol, and the "1" and "2" indicate relative lexical stress levels. 
Other phonemic symbols have the obvious interpretation. The 
advantages of a network representation for alternative phonetic 
pronunciations of words include compactness of form and effi- 
ciency of search compared with a simple list of alternatives. 

marion is placed in a data array called the A-matrix for 
later examination by top-end routines. 

The utterance is processed from left to right by first 
generating a list of all possible sentence-initial words. 
The control box then retrieves an abstract phonetalc 
representation from the lexicon for each lexical hypoth- 
esis and computes expected phonetic variants, resulting 
in a phonetic graph representation such as is shown in 
Fig. 3. The phonetic graphs are sent, one at a time, to 
the mapper to see how good an acoustic match is ob- 
tained with the current position in/he unknown utter- 
once. The mapper is orcanized according to the syllable 
structure of a word and it examines the A-matrix in or- 
der to determine if the expected vowels and proper 41lo- 
phones of adjacent consonants are present. Since an 
exact match is unlikely, the mapper includes techniques 
for estimating the probability that the expected word is 
present given the phonetic and acoustic data. Perfor- 
mance of the mapper is indicated in Table IV. 

On the basis of mapper scores, the control box de- 
cides which word or partial sentence hypothesis to pur- 
sue next, and generates a list of all words that can fol- 
low this sentence fragment. A similar "best-first" con- 
trol strate• was used earlier in the Hearsay I speech 
understanding system (Heddy, Erman, and Neely, 1973) 

TABLE IV. Performance statistics for three work verification components--the SDC mapper, 
the BBN verifier, and the CMU Hearsay-II verifier. The last row indicates that the SDC veri- 
fier is presented with lexical hypotheses from a syntactic module, whereas the BBN and CMU 
verifiers are preceded by lexical hypothesizers that screen out all but the best acoustic candi- 
dates. 

VERIFICATION DFCISION 

SDC BBN CMU 

LEXICAL PROPOSAL ACCEPT REJECT ACCEPT RFJECT ACCEPT REJECT 

CORRECT WORD 
PERCENT 

INCOHRECT WORD 
PERCENT 

WORDS HYPOTH. 
CORRECT WORD 

ACOUST. SIMILARITY 

65 6 101 19 312 20 
92% 8% 84% 16% 94% 6% 

372 11,253 367 713 6462 6591 
3% 97• 34% 66% 49% 51% 

165 10 40 

RANDOM BEST 5% BEST 14% 

J. Acoust. Soc. Am., Vol. 62, No. 6, December 1977 

Source: D. H. Klatt. Review of the ARPA speech understanding project. J. Acoust.

Soc. Amer., 62(6):1345-1366, December 1977.
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limited task domain might have resulted in acceptable 
performance. It would be interesting to know, for ex- 
ample, how much of an improvement in certain critical 
components is needed to achieve acceptable performance, 
or how much improvement would be gained by restricting 
the language definition in various ways. 

The most interesting ideas to come out of the BBN 
project were a lexical decoding network incorporating 
sophisticated phonological rules, the technique of repre- 
senting segmentation ambiguity by a lattice of alterna- 
tives, and the concept of word verification at the para- 
metric level. However the performance of these com- 
ponents individually and as a total system did not seem 
to live up to their theoretical potential. Because of the 
slowness of the system, there was apparently not enough 
effort devoted to debugging and optimizing individual 
components in a system context. Specific problems that 
were never resolved were (1) how to ensure that the 
segment lattice was in fact providing more information 
than a linear string of best guesses, (2) how to normalize 
for talker differences, (3) whether sufficient data were 
analyzed to rely on the probability estimates of various 
phonetic confusions, extra segments, and missing seg- 
ments, and (4) whether the system would perform signif- 
icantly better if it were fast enough to evaluate many 
more partial sentence fragments. 

C. Carnegie-Mellon University Hearsay-II 
The CMU Hearsay-II system organization is shown in 

Fig. 8 (Lesser et al., 1975; Lesser and Erman, 1977; 
Reddy et al., 1977). The recognition process is similar 
in some respects to that employed in BBN Hwim, al- 
though the block diagrams and organizational philoso- 
phies are disparate. The CMU system configuration 
consists of a set of parallel asynchronous processes that 
simulate each of the component knowledge sources of a 
speech understanding system. Knowledge sources com- 
municate via a global "blackboard" data base. When ac- 
tivated by the appearance of certain types of new infor- 
mation on the blackboard, a knowledge source tries to 
extend the analysis. 

The information on the blackboard is divided into sev- 

eral major categories: sequences of segment labels, 
syllables, lexical items proposed, accepted words, and 
partial phrase theories. A knowledge source accepts 
information at one level and attempts to provide new in- 
formation at a higher level (bottom-up analysis) or lower 
level (top-down prediction and verification). 

Initially, amplitude and zero-crossing parameters are 
used to divide an utterance into segments that are cate- 
gorized by manner-of-articulation features (Goldberg 
and Reddy, 1976). Good performance is obtained by 
avoiding the more difficult place-of-articulation deci- 
sions in the preliminary analysis. 

A word hypothesizer lists all words having a syllable 
structure compatible with the partial phonetic represen- 
tation. For example, there might be ten lexical items 
that are consistent with a fricative--stop--vowel--stop 
pattern, three items consistent with a fricative--stop-- 
vowel subpattern, and five more items consistent with a 

stop--vowel subpattern. The performance of the lexical 
hypothesizer is such that only 70 percent of the correct 
words are detected (Smith, 1976), but others are found 
by top-down prediction at a later stage. 

A word verification component scores each lexical 
hypothesis by comparing an expected sequence of spectra 
with observed linear-prediction spectra. The lexicon 
used for verification is adapted from Harpy and thus is 
defined in terms of expected spectral patterns instead of 
expected phonetic patterns. Coarticulation across word 
boundaries is a problem using this approach, but: some 
word-boundary acoustic rules are included. Perfor- 
mance of the verification component is indicated in 
Table IV. 

High-scoring words activate a syntactic component 
which tries to put words together into partial sentence 
theories. Grammatically acceptable adjacent words are 
also predicted since the word hypothesizer is not ex- 
pected to get all of the words of the sentence. The con- 
trol strategy is similar to that used by BBN in that best-. 
scoring words or sentence-fragment pieces are sought 
anywhere in the utterance and extended to the left and/or 
to the right. CMU obtained significantly better perfor- 
mance with an island-driven strategy than BBN, but it 
is argued below that the Harpy left-to-right control 
strategy has advantages over any middle-out strategy. 
Once a complete sentence has been found, a response 
could be computed by accessing a data base. A more 
detailed description of the system is presented in Ap- 
pendix C. 

CMU HEARSAY 

DISPLAYED 
RESPONSE 

RESPONSE 
GENERATOR 

SYNT•CT•C ANALYSIS 

WORD HYPOTHESIZER 
FROM GROSS 

SYLLABLE TYPES 

SEGMENTER AND LABELER 

PARAMETRIC ANALYSIS 

DIGITIZED 
WAVEFORM 

FIG. 8. 
ization. 

BLACKBOARD 

SENTENCE SYNTACTIC 
THEORIES PREDICTOR 

VERIFIED WORDS ARPY" 

PROPOSED 
WORDS 

SEGMENT 

STRING 

A block diagram of the CMU Hearsay-II system organ.- 

J. Acoust. Soc. Am., Vol. 62, No. 6, December 1977 Source: D. H. Klatt. Review of the ARPA speech understanding project. J. Acoust.

Soc. Amer., 62(6):1345-1366, December 1977.
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In instance-based (also called template-based) approach Wk is
represented by a speech signal

For example, record each word
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Sound
Source Vocal tract filter Lips radiation

Nasal tract

Credits: Lindqvist-Gauffin, Sundberg, Stevens, Mannel
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Speech signal can be deconvolved into source and system
components and synthesized back by putting these
components. (e.g., linear prediction, cepstral analysis)
Vocal tract shape is different for different sounds (caution:
there are pair of sounds that differ mainly in terms of voicing,
e.g., /p/ and /b/ )
Parametrize the vocal tract system information integrating
speech perception knowledge (e.g. MFCCs, PLP cepstral
coefficients) and compare S and Wk .
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.  .  . .  .  .

Feature extraction
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.
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sm and wn,k denote of frame of speech signal
zm and yn,k denote the corresponding feature vectors
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(m,n)(m-1,n)

(m-1,n-1)
n

(m-1,n-2)

m

local score d(m, n):

Cepstral features: Euclidean
distance between zm and
yn,k
Linear prediction
coefficients: Itakura
distance between zm and
yn,k
Spectral information:
Itakura-Saito distance
between zm and yn,k

1. Initial condition: path starts at (1, 1)

2. Recursion:

D(m, n)=d(m, n) +min[D(m − 1, n),
D(m − 1, n − 1),
D(m − 1, n − 2)]

Path(m, n)=argmin[D(m − 1, n),
D(m − 1, n − 1),
D(m, n − 2)]

∀m ∈ {1 . . .M} and n ∈ {1, . . .N}
3. Final condition: path ends at (M,N)

and D(M,N) is the global score

Path(m, n) denotes the path index. Path
can be traced back from Path(M,N)

http://www.isle.illinois.edu/~hasegawa/notes/chap4.pdf
http://www.isle.illinois.edu/~hasegawa/notes/chap4.pdf
https://en.wikipedia.org/wiki/Itakura-Saito_distance
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SAKOE AND CHIBA:  OPTIMIZATION  FOR  SPOKEN WORD RECOGNITION 41 

TABLE I 
SYMMETRIC AND ASYMMETRIC DP-ALGORITHMS WITH SLOPE CONSTRAINT CONDITION P = 0, 4, 1, AND 2 

I 
Schematic 

DP-equation 4 explanation 

Symmetric 

g(i, j) = 

Symmetric min g(i-l,j-l)+2d(i,j) [ 1 g(i,j-I)+d(i,j) 

g(i-l,j)+d(i,j) 

Asymmetric 
g(i-l,j)+d(i,.i) 1 

Symmetric 

Asymmetric 

g(i-l,j-3)+2d(i,j-2)+d(i,j-l)+d(i,j) 
g(i-l,j-2)+2d(i,j-l)+d(i,j) 

g(i-2,j-l)+2d(i-l,J)+d(i,j) 
g(i-3,j-1)+2d(i-Z,~)+d(i-l,j)+d(i,j) 

g(i-l,j-2)+(d(i,j-l)+d(i,j))/2 

g(i-Z,j-l)+d(i-l,;)+d(i,J) 
g(i-3,j-l)+d(i-2,~)+d(i-l,j)+d(i,j) 

1 

Symmetric  min g(i-l,j-l)+2d(i,j) [ g(i-l,j-2)+2d(i,j-l)+d(i,j) g(i-2,j-l)+2d(i-l,j)+d(i,j) 

g(i-l,j-2)+(d(i,j-l)+d(i,j))/2 

g(i-2,j-l)+d(i-l,j)+d(i,j) 1 Asymmetric 

~ Symmetrlc 1 mi: [(i-l,j-l)+2d(i,j) ] , 1 g(i-2,j-3)+2d(i.-I,j-2)+2d(i,j-l)+d(i,j) 

g(i-3,j-2)+2d(j-2,j-1)+2d(i-l,j)+d(i,j) 

g(i-2,j-3)+2(d(i-l,j-2)+d(i,j-l)+d(i,j))/3 
g(i-l,j-l)+d(i,j.) 
g(i-3,j-2)+d(i-2,j-l)+d(i-l,j)+d(i,j) 

2 

Asymmetric 

Experiments were conducted  in  three parts. The first part 
was carried out with the objectives of comparing  the perfor- 
mances  of  symmetric  form  DP-matching  and  asymmetric  form 
DP-matching,  and  optimizing  the  slope  constraint  condition. 
In  the  second  part,  further  optimization  of  the slope con- 
straint  condition was investigated. In  the final part  of  the 
experiments,  the  algorithm  thus  optimized was compared  with 
several  DP-algorithms proposed  by different research  groups. 

B. Experiment ( I )  
The  objective  of this experiment was to compare  symmetric 

form DP-matching and  asymmetric  form  DP-matching perfor- 
mances,  and to determine the best  compromise for  the  slope 
constraint  intensity  (parameter P). Speech  data used in this 
experiment were Japanese digit words (see Table 11) isolatedly 
spoken  by 10 male speakers. Six repetitions  of the 10 digit 
words were  made  by each  speaker.  Then, for each  speaker, 
each  of  the six repetitions was  used  as a reference  pattern 
set.  For  each  reference  pattern  set,  the remaining  five repeti- 
tions were supplied to recognition.  Therefore, 10 (persons) 
X 6 (reference pattern sets) X 50 (input patterns) = 3000 
(recognition tests) were conducted. The DP-matching  sub- 
jected to this experiment covered both symmetric  and  asym- 
metric  forms,  with  slope  constraint  condition  of P = 0, i, 1 ,  
and 2. In  each case, window  length r was set equal to 6 ,  which 
covered the  utmost +lo8 ms timing difference. A linear time- 
normalization  method was also tested where  the  time axis of 
the  input  pattern was adjusted to that of  the  reference pattern 
with linear transformation. 

Results are shown in Fig. 5 as two error rate curves. In this 

S t o r t   i = i  , 1.1 
Initio1  condition - i = i + l  

DP- equation 

Fig. 4. DP-matching flowchaxt. 

figure, it can  be  seen that  the performance  of  the  asymmetric 
form  DP-matching is evidently inferior to  that of the  symmetric 
one,  and  that  the  difference in performance  between  them 
tends to vanish gradually as the slope  constraint is intensified. 
It can  also  be  seen that symmetric form DP-matching perfor- 
mance is utterly  unaffected by a  slope  constraint  of  up to 
P = 1. On the  other  hand,  the asymmetric  form  DP-matching 
performance is  very effectively improved  by  slope  constraint. 
The optimum  condition is P =  1. When the  slope  constraint 
is intensified beyond P = 1 ,  the performance  of  the  asym- 

Source: H. Sakoe and S. Chiba,"Dynamic Programming Algorithm Optimization for

Spoken Word Recognition", IEEE Trans. on Acoustics, Speech, and Signal Processing,

26(1), 1978.

https://www.irit.fr/page-perso/Julien.Pinquier/Docs/TP_MABS/res/dtw-sakoe-chiba78.pdf
https://www.irit.fr/page-perso/Julien.Pinquier/Docs/TP_MABS/res/dtw-sakoe-chiba78.pdf
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one-stage  algorithm  requires no more  computational  expendi- 
ture  than  the  corresponding case of  isolated  word  recognition 
with no adjustment  window.  The  implernentational  aspects  of 
the  one-stage  algorithm  are  described,  and  its  computational 
and  storage  requirements  are  compared  with  the  two-level  al- 
gorithm  of  Sakoe  and  the level building  algorithm  of  Myers 
and  Rabiner.  Finally,  the  algorithm is modified to  deal with a 
finite  state  syntax. 

11. FORMULATION 0 1 ’  THE PATTERN  MATCHING  PROBLEM 

In the  following,  we will present  a  simple  approach  to  the 
pattern  matching  problem  for  connected  word  recognition, 
the reason  being that  the  simplification  due  to  parameterizing 
the  time  warping  path  by  a single index is most  significant  and 
provides  some  insights  that  immediately reveal how  to arrive at 
a  practical  implementation  of  the  algorithm. 

Assume  an  unknown  input or test  pattern  consisting  of 
i = 1 ,  . , N time  frames,  where  a  time  frame is represented  by 
a  vector  of  features.  The  input  pattern is known to be  com- 
posed  of  individual  words,  which  are  chosen  from  a  prespeci- 
fied  vocabulary.  The  words  of  the  vocabulary  correspond  to 
a set of K reference  patterns  or  templates  obtained  from single 
word  utterances  spoken in isolation.  The  word  templates  are 
distinguished  by  the  index k = 1 ~. . . . K .  The  time  frames  of 
the  template k are  denoted  as j = 1,. . . , J ( k ) ,  where J ( k )  is 
the  length  of  the  template k .  

The  ultimate  goal  of  connected  word  recognition is to  de- 
termine  that  sequence y ( l ) ,  . . . y(R) of  templates  that  best 
matches  the  input  pattern,  where  the  criterion  of  match  needs 
further  specification.  The  concatenation of the  templates 
y( l ) ,  . . . , 4 (R)  is referred to  as  “super”  reference  pattern. 
Since  this  unknown  “super”  reference  pattern  may  be  handled 
like  a single utterance  pattern,  the  matching  procedure is the 
same  as in the case of  isolated  word  recognition. Based on  this 
consideration, it is obvious  what  specification  and  constraints 
to  apply  to  the  time  warping  procedure.  Instead  of  decom- 
posing  the  matching  procedure  into  a  single  template  matching 
level and  a  word  string  constructing  level, as it  was  done in the 
other  approaches  mentioned [ 3 ] ,  [4] ,  we  want to treat  the 
matching  procedure as a  one-stage  procedure [ I ]  , [ 2 ] .  

The  basic  idea is illustrated in Fig. 1. The  time  frames i of 
the  test  pattern  and  the  time  frames j of  each  template k de- 
fine  a  set  of  grid  points (i, j ,  k) .  Each grid point (i, j ,  k )  is 
associated  with  a  local  distance  measure d( i ,  j ,  k )  defining  a 
measure of dissimilarity  between  the  corresponding  acoustic 
events.  The  connected  word  recognition  problem  can  be  re- 
garded as one  of  finding  the  path  through  the set of grid  points 
(i,,j, k) which  provides  the  best  match  between  the  test  pattern 
and  the  unknown  sequence  of  templates.  The  path is often 
referred  to  as  time  warping  path.  The  three  parameters i, j ,  k 
are of different  characters:  the  time  parameters i and j tend to 
change  more  or less  uniformly  in  ascending  order,  whereas  the 
template  number k is constant  for  comparatively  long  subsec- 
tions of the  path  and  can  change  only  after  the  path  has  passed 
a  template  boundary  with j = J (k ) .  However,  for deriving the 
algorithm,  it is crucial to treat  the  three  parameters  as  mathe- 
matically  equivalent.  Formally,  the  path W is given as a  se- 
quence  of grid points 

< =  5 

< = L  

k = 3  

k:2 

<: 1 

‘ i l ? l  i, J I .  I V I ,  ~ 1 ,  ’ ! ‘ , . 1 ’ 1  l~,. 

Fig. 1. The connected  word  recognition  problcm.  The  optimal  path 
provides  the  unknown  sequence of words as  wcll as  thc  nonlinear 
time  alignment  between  the  Corresponding  scqucnce of ternplates 
and  the  input  pattern. 

w= ( w ( l ) ,  w(2) ,  . . ‘ , w(l) ,  ’ ’ ’ , w(L) )  (1) 

where w(l)  = (i(l), j ( l ) ,  k( l ) )  and 1 is the  path  parameter  for 
indexing  the.  ordered set of  path  elements.  The  criterion  for 
the  matching  procedure is the global  distance, i.e., the  sum 
over  the  local  distances  along  a given path.  The  problem  of 
connected  word  recognition  can  now  be  stated as the  minimi- 
zation  problem 

i.e.:  minimize  the  global  distance  with  respect to all allowed 
paths.  From  the  best  path,  the  associated  sequence  of  tem- 
plates  can  be  uniquely  recovered as is clear from  Fig. 1 .  

In addition to minimizing  the  global  distance,  the  time  warp- 
ing path is required to  obey  certain  continuity  constraints  im- 
plied  by  the  physical  nature  of  the  patterns to  be  matched. 
These  constraints  apply  to  consecutive  points  of  the  path.  The 
constraints  result  from  the  requirement  of  the  preservation of  
time  order  along  the  time  axes  and  from  the  requirement  of 
time  continuity  implying  that  no  time  frame,  i.e.,  acoustic 
event,  be  omitted in the  sequence i(l), . . . , i(l), . . . , i (L) .  
The  continuity  constraints  determine  the  possible  preceding 
points  for  a given path  point (z’, j ,  k )  and are  therefore  also 
referred to as transition rules. A possible  disadvantage of the 
global  distance  definition as given  in (2) is that  the global  dis- 
tance  depends 011 the  path  length,  and  thus  shorter  paths are 
favored.  This  problem will  be studied  later in connection  with 
the  details  of  the  dynamic  programming  algorithm. 

Due to the  concatenation  of single word  templates to a 
“super”  reference  pattern; it is convenient to distinguish  be- 
tween  two  types  of  transition  rules:  transition  rules  in  the 
template  interior  called  within-template  transition  rules  and 

Authorized licensed use limited to: Universitatsbibliothek Karlsruhe. Downloaded on February 18, 2009 at 07:52 from IEEE Xplore.  Restrictions apply.

Source: H. Ney,"The Use of a One-Stage Dynamic Programming Algorithm for
Connected Word Recognition ", IEEE Trans. on Acoustics, Speech, and Signal
Processing, 32(2), 1984.

https://csl.anthropomatik.kit.edu/downloads/vorlesungsinhalte/MMMK-Ney-One-StageDPAlgorithm.pdf
https://csl.anthropomatik.kit.edu/downloads/vorlesungsinhalte/MMMK-Ney-One-StageDPAlgorithm.pdf
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Q1 : Short-term spectral feature vectors are the
latent symbols. The set of symbols is undefined,
as there is no unique feature vector representation
for speech sounds due to variabilities.

Q2 : Short-term speech processing-based feature
extraction

Q3 : Short-term speech processing-based feature
extraction

Q4 : Dynamic programming, i.e. DTW, with
appropriate local score and local constraints
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Limitations
Works well for speaker-dependent, clean and controlled
conditions

Late 1990s name dialing on mobile phones

Generalization across speakers and conditions is a highly
challenging problem
Reference templates typically represent word units. Every new
word needs a new reference template.
Getting phone-based reference templates is a non-trivial task
Large amount of CPU and memory requirements

Pro: No training needed
Holy grail: Find the short-term speech processing based feature
representation that carries linguistic unit (phone/syllable) related
information and is robust to undesirable variabilities.
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String Matching

Automatic speech recognition as a string matching problem

Instance-based ASR approach

Next week
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Ŵ = argmax
Wk∈W

P(Wk |S) = argmax
Wk∈W

p(Wk , S)

p(S)

Likelihood-based approach
p(Wk , S)

Posterior-based approach
P(Wk |S)

Model-based approach
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