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Conventional feature extraction

1. Quasi-stationarity (windowing, time-frequency resolution)

» window size, typically 20-30 ms
» window shift, typically 5-10 ms

2. Speech production knowledge
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Credits: Lindqvist-Gauffin, Sundberg, Stevens, Mannel
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3. Sound perception knowledge
» Auditory modeling, such as, critical bands (filterbanks applied
on spectrum), non-linear compression, equal loudness curve
weighting
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Conventional Acoustic Modeling

» Conventional cepstral features extraction process and

modeling:
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Note: Neural networks is an example classifier here. There are several types of classifiers.
Similarly, classification is a pattern recognition problem. There are other types of pattern

recognition problems
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Clustering-based feature representation (1)

» Cluster the short-term hand-crafted feature vectors such as, cepstral feature,
linear prediction coefficients using k-Means, Gaussian mixture modeling (GMM)

« Typically use the parameters as representations

« Examples:

» |solated word recognition by clustering isolated word patterns
» Speaker verification using GMM supervectors

(m
1
GMM UBM (universal background model) is trained NMAP m,
7 ” GMM UBM ———» >m=| ,
on lots of “unseen” speakers data Adaptation :
| » { (M
MAP denotes Maximum Aposteriori GMM Supervector
Feature
. . : Extraction
m; denotes mean vector of Gaussian mixture | ¥
Low dimensional “i-vector’ representation builds on top of Input Utterance

GMM supervector by applying factor analysis

Source: Joe Campbell
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https://ieeexplore.ieee.org/document/1164581
https://ieeexplore.ieee.org/document/5545402
https://ieeexplore.ieee.org/document/5545402

Clustering-based feature representation (2)

Bag-of-Audio-Words (BoAW) representation for paralinguistic speech processing, such as, emotion
classification, affective rating, atypical speech detection/classification.

LLDs over time

|

s N T N O p
. Codebook Vector Postprocessing
Preprocessing: generation: .. e Histo
. - | quantisation: e
Normalisation » * K-means "| + Single/Multi
of LLDs (online) * Random mge HH
sampling assignment
\_ o /L
openXBOW —|)> BoAW

LLDs denote short-term frame level features, e.g., MFCCs, FO, Formants
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https://www.jmlr.org/papers/volume18/17-113/17-113.pdf

Supervised learning-based representations (1) Ka

« GMMs
Neural network-based features for speech recognition .

— P(Qt — d|Xt)

d

MLP outputs
prior to
final nonlinearity

Tandem features (2000)

“ m-

Global joint optimization

(1992)

Tandem

Features

Generative approach
Easy parameter
adaptation methods
Effectively model
context-dependent
phone units (late 1990s-
early 2000s)
Sophisticated tools

ANNs

X denotes sequence of cepstral/spectral feature vectors

» Output layer representation
« Hidden layer representation
» Bottleneck representation
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Discriminative approach
No prior assumption
about data

Modeling long temporal
context relatively easy,
enabling integrating
auditory processing
knowledge
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https://www.cs.cmu.edu/~ziada/selectedpapers/Hermansky_Ellis.pdf
https://courses.grainger.illinois.edu/ece544na/fa2016/bengio92a.pdf

Supervised learning-based representations (2)

Neural features for speaker recognition task.

P(spkr; | x1,X2,...,XT)

i
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« Snyder et al. Deep Neural

embedding b < Network Embeddings for Text-
c OO0 ! Sei”me?t' Independent Speaker
embeddinga «— (OO O e Verification, in Proc. of
Interspeech 2017
Statistics Pooling » Snyder et al. X-vectors: Robust
z DNN Embeddings For Speaker
OOOOlr Recognition Speaker
St RecoqnitiOn, in PrOC. Of
- frame-level
OOO O + Interspeech 2018.
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https://www.isca-archive.org/interspeech_2017/snyder17_interspeech.pdf
https://www.isca-archive.org/interspeech_2017/snyder17_interspeech.pdf
https://www.isca-archive.org/interspeech_2017/snyder17_interspeech.pdf
https://www.isca-archive.org/interspeech_2017/snyder17_interspeech.pdf
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf

Auto-encoding/Auto-association i

« Can be interpretted as principal component analysis

« With only one hidden layer, equivalent to singular
value decomposition (SVD)

« Can do better than standard SVD with different
topologies (e.g., more hidden layers)

« Different types auto-encoders, e.g., variational auto-
encoders (VAE), vector quantization VAE (VQ-VAE),
denoising autoencoders

|

input layer, 'n’ units dimension compressing output layer, 'n’ units
hidden layer, ’r’ units

Bourlard and Kemp, Auto-association by multilayer perceptrons and singular value decomposition, Biological Cybernetics, 1988

Ikbal, Misra and Yegnanarayana, Analysis of autoassociative neural networks, in Proc. of IJCANN, 1999

Bourlard and Kabil, Autoencoders reloaded, Biological Cybernetics, 2022.
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https://publications.idiap.ch/attachments/reports/2000/rr00-16.pdf
https://ieeexplore.ieee.org/document/836037
https://link.springer.com/article/10.1007/s00422-022-00937-6

End-to-end acoustic modeling using CNNs (1) -

|
speech < <« NN !
. 1

Joint Training

» Could aid in overcoming limitations of conventional
short-term speech processing

» Could aid in better understanding speech signal characteristics
in a task specific manner

Palaz, Magimai-Doss and Collobert,”"End-to-end acoustic modeling using convolutional neural networks for HMM-based
automatic speech recognition”, Speech Communication, 2019
D. Palaz,”Towards End-to-End Speech Recognition”, EPFL PhD Thesis, 2016
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https://www.sciencedirect.com/science/article/abs/pii/S0167639316301625
https://www.sciencedirect.com/science/article/abs/pii/S0167639316301625
https://infoscience.epfl.ch/entities/publication/6ead46a2-edcf-4f3b-8679-60a1d8343648

End-to-end acoustic modeling using CNNs (2)

Classification stage
Filter stage (feature learning) X N (acoustic modeling)

A = e mm o Em o Em o e e e e o e o e e R Ee R R R Em R Em e Em Em e e Em = e Em = =

I
Raw speech | _ Max : : ' :
: Convolution . tanh(- MLP p(i|x)
mput x I pooling : I I
1 1
|

_______________________________________

Minimal prior knowledge
» Short-term processing
» Feature extraction can be seen as a filtering operation
» Relevant Information can be spread across time

Determined in a data-driven manner.
All the stages are trained jointly using back-propagation with a
cost function based on cross entropy.
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First convulation layer illustration

A %} A

= kW ng

Wseq —— : Convolution |-

Jgoooom

Wseq: Input speech signal with temporal context
kW: Window size
» Sub-segmental (< 1 pitch period)
» Segmental (1 — 3 pitch periods)
» dW: Window shift (< 1 pitch period)
» ng: number of filters

vy
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lllustraton of CNN trained for speech recognition i
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Application Wseq kW # of conv. | # of hid- 13
layers den layers
Speech reco.’ 250-310 ms sub-seg 3-5 1-3
Speaker reco.® ~ 500 ms - 2.5 s | seg, sub-seg | 2-6 1
Presentation attack ~ 300 ms seg 2 1 or none
detection®
Gender reco.™ 250-310 ms seg, sub-seg | 1-3 1
. . A
Paralinguistic'®*? 250-500 ms seg, sub-seg | 3-4 1
Breathing Patt. Est.”® | 3-4s sub-seg 4 1 ] o,
.
Palaz, Magimai.-Doss, and Collobert, “End-to-end acoustic modeling using convolutional neural networks for —
HMM-based automatic speech recognition,” Speech Communication, Vol. 108, April 2019, Pages 15-32. Wseq Convolution [ —
H. Muckenhirn,” Trustworthy speaker recognition with minimal prior knowledge using neural networks”, PhD L
Thesis No. 7285, Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland, 2019. g
9Muckenhirn, Magimai-Doss, and Marcel, “End-to-End Convolutional Neural Network-based Voice
Presentation Attack Detection,” in Proceedings of the IEEE International Joint Conference on Biometrics (I1JCB), — T
2017. | == dWI
10Kabil, Muckenhirn, and Magimai.-Doss, “On learning to identify genders from raw speech signal using ) )
CNNSs,” in Proceedings of Interspeech, 2018. > Wseq- Input speech 5|gna| with temporal context

Purohit et al., “Towards learning emotion information from short segments of speech,” in Proc. of ICASSP, > kW: Window size _ _
2023. » Sub-segmental (< 1 pitch period)

Dubaganta, Vlasenko and Magimai.-Doss,” Learning voice source related information for depression > Seg.mental (1_ — 3 pitch _pe”Ods)_
detection”, in Proc. of ICASSP, 2019. » dW': Window shift (< 1 pitch period)

3Nallanthlgal et al., “Deep learning architectures for estimating breathing signal and respiratory parameters » ng: number of filters
from speech recordings,” Neural Networks, 2021.
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Central question

speech <+ ! «— NN

Joint Training

What information does such systems learn?

» Filter level analysis

» Whole network level analysis
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Filter analysis: first convolution layer

ng

-

Wseq

—1
—1
. I:I ngnm
Convolution ]-g SpeeCh recognltlon
= kW =1.8 ms

Normalized Magnitude

\/ =

P Wseq: Input speech signal with temporal context ‘ ‘ ‘ ‘ ‘ ‘ ‘
> kW W'ndOW SIZG OO 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
» Sub-segmental (< 1 pitch period) rreaueney [tz
» Segmental (1 — 3 pitch periods)
» dW: Window shift (< 1 pitch period)

0.022

0.02

0.018

> n¢: number of filters Speaker recognition . |

_ _ kW =18 ms o0

» Cumulative frequency response of filters ooz |
M 0.01

Fm 0.008 |-

Fcum — Z —, 0.006
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Between 1st and 2nd conv. layers: DFT analogy

» Response of filters to input speech by interpreting learned
filters collectively as a spectral dictionary

M
X = (x,fn) DFT[f],
m=1

where X, = (x, f,) is output of filter f,, and X" is the spectral
information modeled.

If {fm} were Fourier sine and cosine bases and kW = M then
X is DFT of x.

Automatic Speech Processing, Master Cycle

W/W &

VY e

X = I ‘I
+ o I
el 1

+ &y

X:Z%:ﬁm']:m

“=10130

RESEARCH INSTITUTE

=Pr-L




Between 1st and 2nd conv. layers: Speech Reco.

Magnitude spectrum of /iy/
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0.045 | /' voous | | peak peak o wol |
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Spectral response of /iy/ from American English Vowel dataset.
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Between 1st and 2nd conv. layers: Speaker Reco. (1)

300 |

voiced (226Hz)
— — unvoiced
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Between 1st and 2nd conv. layers: Speaker Reco. (2)

F, contours for female speaker f2nw0000
400 T T T T

o F0 reference
_ F0 estimated

Muckenhirn, Magimai-
Doss and Marcel,
Towards directly

Time Frame modeling raw speech
F, contours for male speaker m3nw0000 signal for speaker
200 ' ' ' ] S F, roference verification, in Proc. of
|J| o —-—-F, estimated |CASSP 201 8
150 | & @ Ii@ X T
N R oy | S |
E ! i i & \I: i 'I o | 1' . %
< 100 1 I I i | | J'IIO i III i l n
= i N O I T VN I A A &
0 S TR A T T R TR I TS R
50 | T A R N A .
i A
_ ; At Ly A T B b
0 . | Vo L P T I!j L—* IHI HE [ . Byl

0 100 200 300 400 500
Time Frame

FO contour estimated on Keele pitch database using the CNN-based speaker classifier trained on Voxforge.
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https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_ICASSP_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_ICASSP_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_ICASSP_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_ICASSP_2018.pdf
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Filter analysis: first convolution layer
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Between 1st and 2nd conv. layers: Speaker Reco. (3)

30 I I I I I I I 2‘5 X10.J | I l I

01

Muckenhirn, Magimai-
Doss and Marcel, On
learning vocal tract
system related
speaker discrimination
information from raw

—_
[
T

LP spectrum
[

10 speech signal using
CNNs, in Proc. of
20+ 05 Interspeech 2018
'30 . . I I I : : 0 | | | ' | | | | | |
01000 2000 3000 4000 5000 6000 7000 8000 o 400 200 3000 4000 500 6000 7000 8000
LP Spectrum X
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https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf

Central question

speech L | <— NN
I

Joint Training

What information does such systems learn?

» Filter level analysis

» Whole network level analysis
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Visualization in Computer Vision

Visualization of what is captured by neural networks is a very
active field of research for image recognition tasks.

Three approaches:
» input perturbation-based methods
» reconstruction-based methods

» gradient-based methods

“=10130
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Gradient-based visualization

Input (image, waveform...): x = [xp...xn_1].
Output unit corresponding to class ¢ (before softmax layer): y€.

Gradient:
oy°©

Oxp,’

» It measures how much a small variation of each pixel value
will impact the prediction score.

» It yields a “relevance’” map of the same size as the input.
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Example visualizations

Different gradient-based methods: differ on how the gradient is
computed at a RelLU layer.
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Gradient-based visualization for speech

» Given an input speech-output class pair and the trained system, what is

the contribution of each sample on the output score?'®
1 ' ' ' 1f ' ' '
0.5 F 05 r
3 S
2 0f 2 0
e | £
< .05 < .05}
-1 ) ) ) ) . -1+ . . . . 5
0 100 200 300 400 500 0 100 200 300 400 500
Time (ms) Time (ms)
Original Signal Relevance signal

0.2

Input Waveform
Relevance Signal

0.1

Amlitude

o

-0.1
Lags Autocorrelation

18H. Muckenhirn et al.,” Understanding and Visualizing Raw Waveform-based CNNs ,” Proc. of Interspeech,

2019.

* Unlike images
relevance signal for
speech signals are
not visually
interprettable.

 Interpretation can be
done in spectral
domain (can be
shown theoretically)
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Whole network analysis: speech recognition (1)

60
€ £
g g

|
40 -
_40 -
_60 | | | | | | | _60 | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 2000 8000
Frequency (Hz) Frequency (Hz)
Original Spectrum of /iy/ Relevance signal spectrum of /iy/
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Whole network analysis: speech recognition (2)

» Analysis of CNN trained on TIMIT phone recognition task on
American English Vowel (AEV) dataset

» FO, F1 and F2 estimated automatically for the relevance
signal for the steady state regions and compared to the values
specified on the original study.

Table: Average accuracy in (%) of fundamental frequencies, and formant
frequencies of vowels produced by 45 male and 48 female speakers,
estimated from relevance signal of AEV dataset.

/ah/ | Jeh/ | Jiy/ | [oa/ | [uw/

o LF | 93 | o1 [[o1 [ 04 | 9
M| 92 | 90 | 89 | 93 | 90

s LF [ 9 | 92 ]93] 91 | 93
M| 88 | 92 | 92 | 89 | 93
o> | F [ 94 [ 94 [ 94 ] 95 | 94
M| 94 | 93 | 94 | 94 | 03
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Whole network analysis: speaker recognition (1)

0.289709

-0.6865
-6.583
600 Hz
. ......... 129.1 Hz
: 0 Hz

Original signal

0.289709 0.289709
0.5475[ | : 0.8171 :
0.3392|
0 |I | | il 0
-0.1988
-0.5512 1
600 Hz 600 Hz
-..-.......é ........... 128.5 Hz ..- 125.3 Hz
; 0 Hz i 0 Hz
Segmental modeling Sub-segmental modeling

1
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Whole network analysis: speaker recognition (2)

50 T T T T T T T
1S S
= =
3 3
& 3
g g
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-60 1 1 1 1 1 1 1 -30 ] ] ] ] 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz) Frequency (Hz)
Segmental modeling Sub-segmental modeling

Utterance level average spectrum (long term average spectrum)
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Whole network analysis: speech and speaker

Original signal spectrogram

(oo}

»

Frequency (kHz)
N BN

Time (ms)
Phone CNN relevance signal spectrogram
8

»

Frequency (kHz)
N B

Frequency (kHz)

o

50 100 150 200
Time (ms)
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Self-supervised speech representation (1)

Phase 1: Pre-train

Combines several understandings from speech processing ; Generative |

and takes inspiration from text and computer vision domains e presane J PR

- Replacing hand-crafted features by CNN-based encoder Il _,[ T ]

« Temporal context modeling using transformers and B T
attention mechanism st s

 Hierarchical information processing Phase 2: Downstream

» Reconstructing information by clustering latent Howareyou?” Spesker 2

Downstream Downstream
Model 1 Model 2

representations or acoustic features, and predicting them

« Different types of modeling: generative, contrastive, T i
T . I
predictive, Siamese
« Multiple views of the data : I :
Labelled "[ Upstream Model ]4""" Labelled
data T data
Liu et al. “Audio self-supervised learning: A survey”, Patterns, Vol. 3, 2022. WwMWW

Mohammed et al. “Self-Supervised Speech Representation Learning: A Review”, IEEE JSTSP, 2022 |

|
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https://doi.org/10.1016/j.patter.2022.100616
https://ieeexplore.ieee.org/document/9893562

Self-supervised speech representation (2)

_—
> - L N (O71/7astive Loss Sl N
Distractors ( ( \ ;
R ... .Ct - " =qt_" : B : € € n exm
n $ t 4 ? t $ R S .
4 + 4 4 4 4 4
L
L
! t : ! T 4 4 4 4
L Zl 4
4

Wav2vec 2.0 HuBERT
En: CNN-based encoders

Liu et al. “Audio self-supervised learning: A survey”, Patterns, Vol. 3, 2022.
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https://doi.org/10.1016/j.patter.2022.100616

Self-supervised speech representation (3)
e

Masked prediction-based
approach

Mockingjay DAPC

Liu et al. “Audio self-supervised learning: A survey”, Patterns, Vol. 3, 2022.
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https://doi.org/10.1016/j.patter.2022.100616

Self-supervised speech representatlon (4)
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(C) HUBERT Large
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>
m_
<
[a)
:- N
1 1 1 1 1 1 1 1
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(b) WavLM Base+

. 0.30
mmam |-

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layers

(d) WavLM Large

Layerwise-Taskwise analysis on SUPERB Benchmark
Chen et al. “WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing”, IEEE JSTSP, 2022.
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SID: Speaker identification
ASV: Speaker verification
SD: Speaker diarization
KS: Keyword spotting
ASR: Speech recognition
PR: Phoneme recognition
IC: Intent classification
SF: Slot filling

EPF



https://ieeexplore.ieee.org/document/9814838

Self-supervised speech representation (5)

Open questions

Are all layers meaningful for all tasks?
* How to find that out and/or select?

Efficient adaptation

Model compression

Interpretability/explainability
* What kind of information are the layers modeling and how??
 Why and where the model fails?

Trustworthy?

Universal speech processing truly feasible with one single model?
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Thank you for

your attention!
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