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Feature/Representation Learning Overview
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2Conventional feature extractionConventional feature extraction

1. Quasi-stationarity (windowing, time-frequency resolution)

↭ window size, typically 20-30 ms

↭ window shift, typically 5-10 ms

2. Speech production knowledge

3. Sound perception knowledge

↭ Auditory modeling, such as, critical bands (filterbanks applied

on spectrum), non-linear compression, equal loudness curve

weighting
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3Conventional Acoustic Modeling
Conventional acoustic modeling

↭ Conventional cepstral features extraction process and

modeling:
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Neural network here is one example of a classifier here.

↭ More recent trend using Convolutional Neural Networks

(CNN):
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Note: Neural networks is an example classifier here. There are several types of classifiers. 
Similarly, classification is a pattern recognition problem. There are other types of pattern 
recognition problems
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Clustering-based feature representation (1)
• Cluster the short-term hand-crafted feature vectors such as, cepstral feature, 

linear prediction coefficients using k-Means, Gaussian mixture modeling (GMM)
• Typically use the parameters as representations
• Examples: 
Ø Isolated word recognition by clustering isolated word patterns
Ø Speaker verification using GMM supervectors

GMM UBM (universal background model) is trained 
on lots of “unseen” speakers data

MAP denotes Maximum Aposteriori 

mj denotes mean vector of Gaussian mixture j

Low dimensional “i-vector” representation builds on top of 
GMM supervector by applying factor analysis Source: Joe Campbell

https://ieeexplore.ieee.org/document/1164581
https://ieeexplore.ieee.org/document/5545402
https://ieeexplore.ieee.org/document/5545402
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5Clustering-based feature representation (2)

Per-utterance representations 58/61

acoustic features are summarized in statistical functionals
( e.g. means, moments, extrema, percentile, slopes, regression
lines, max, min)
bag-of-audio–word (BoAW) representations
derived from bag-of-word vectors used in NLP 4

robust, time-invariant, non-reconstructable (good for privacy)
4
https://github.com/openXBOW/openXBOW

LLDs denote short-term frame level features, e.g., MFCCs, F0, Formants

Bag-of-Audio-Words (BoAW) representation for paralinguistic speech processing, such as, emotion 
classification, affective rating, atypical speech detection/classification. 

https://www.jmlr.org/papers/volume18/17-113/17-113.pdf
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6Supervised learning-based representations (1)

o

o

o
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• Output layer representation
• Hidden layer representation
• Bottleneck representation

• GMMs
• Generative approach
• Easy parameter 

adaptation methods
• Effectively model 

context-dependent 
phone units (late 1990s- 
early 2000s)

• Sophisticated tools
• ANNs

• Discriminative approach
• No prior assumption 

about data
• Modeling long temporal 

context relatively easy, 
enabling integrating 
auditory processing 
knowledge

Tandem features (2000)

Global joint optimization (1992)

Neural network-based features for speech recognition

X denotes sequence of cepstral/spectral feature vectors

https://www.cs.cmu.edu/~ziada/selectedpapers/Hermansky_Ellis.pdf
https://courses.grainger.illinois.edu/ece544na/fa2016/bengio92a.pdf
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7Supervised learning-based representations (2)

Figure 1: Diagram of the DNN. Segment-level embeddings (e.g.,
a or b) can be extracted from any layer of the network after the
statistics pooling layer.

2. Baseline i-vector system

The baseline is a traditional i-vector system that is based on the
GMM-UBM Kaldi recipe described in [11]. The front-end fea-
tures consist of 20 MFCCs with a frame-length of 25ms that
are mean-normalized over a sliding window of up to 3 seconds.
Delta and acceleration are appended to create 60 dimension fea-
ture vectors. An energy-based VAD selects features correspond-
ing to speech frames. The UBM is a 2048 component full-
covariance GMM. The system uses a 600 dimension i-vector
extractor. Prior to PLDA scoring, i-vectors are centered, di-
mensionality reduced to 150 using LDA, and length normalized.
PLDA scores are normalized using adaptive s-norm [24].

3. DNN embedding system

3.1. Overview

The proposed system is a feed-forward DNN (depicted in Fig-
ure 1) that computes speaker embeddings from variable-length
acoustic segments. The architecture is based on the end-to-end
system described in [23]. However, an end-to-end approach re-
quires a large amount of in-domain data to be effective. We
replace the end-to-end loss with a multiclass cross entropy ob-
jective. In addition, a separately trained PLDA backend is used
to compare pairs of embeddings. This enables the DNN and
similarity metric to be trained on potentially different datasets.
The network is implemented using the nnet3 neural network li-
brary in the Kaldi Speech Recognition Toolkit [25].

3.2. Features

The features are 20 dimensional MFCCs with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3
seconds. The same energy-based VAD from Section 2 filters
out nonspeech frames. Instead of stacking frames at the input,
short-term temporal context is handled by a time-delay DNN
architecture.

3.3. Neural network architecture

The network, illustrated in Figure 1, consists of layers that op-
erate on speech frames, a statistics pooling layer that aggregates
over the frame-level representations, additional layers that oper-
ate at the segment-level, and finally a softmax output layer. The
nonlinearities are rectified linear units (ReLUs).

The first 5 layers of the network work at the frame level,
with a time-delay architecture [26]. Suppose t is the current
time step. At the input, we splice together frames at {t� 2, t�
1, t, t+1, t+2}. The next two layers splice together the output
of the previous layer at times {t�2, t, t+2} and {t�3, t, t+3},
respectively. The next two layers also operate at the frame-level,
but without any added temporal context. In total, the frame-
level portion of the network has a temporal context of t � 8 to
t+ 8 frames. Layers vary in size, from 512 to 1536, depending
on the splicing context used.

The statistics pooling layer receives the output of the final
frame-level layer as input, aggregates over the input segment,
and computes its mean and standard deviation. These segment-
level statistics are concatenated together and passed to two ad-
ditional hidden layers with dimension 512 and 300 (either of
which may be used to compute embeddings) and finally the soft-
max output layer. Excluding the softmax output layer (because
it is not needed after training) there is a total of 4.4 million pa-
rameters.

3.4. Training

The network is trained to classify training speakers using a mul-
ticlass cross entropy objective function (Equation 1). The pri-
mary difference between this and training in [16, 17, 21] is that
our system is trained to predict speakers from variable-length
segments, rather than frames. Suppose there are K speakers in
N training segments. Then P (spkrk | x(n)

1:T ) is the probabil-
ity of speaker k given T input frames x(n)

1 ,x(n)
2 , ...x(n)

T . The
quantity dnk is 1 if the speaker label for segment n is k, other-
wise it’s 0.

E = �
NX

n=1

KX

k=1

dnkln(P (spkrk | x(n)
1:T )) (1)

The DNN is trained on the combined SWBD and SRE data
described in Section 4.1. We refine the dataset by removing any
recordings that are less than 10 seconds long, and any speak-
ers with fewer than 4 recordings. This leaves a total of 4,733
speakers, which is the size of the softmax output layer.

To reduce sensitivity to utterance length, it is desirable to
train the DNN on speech chunks that capture the range of du-
rations we expect to encounter at test time (e.g., a few seconds
to a few minutes). However, GPU memory limitations force
a tradeoff between minibatch size and maximum training ex-
ample length. As a comprise, we pick examples that range
from 2 to 10 seconds (200 to 1000 frames) along with a mini-
batch size of 32 to 64. The example speech chunks are sampled
densely from the recordings, resulting in about 3,400 examples
per speaker. The network is trained for several epochs using
natural gradient stochastic gradient descent [27].

3.5. Speaker embeddings

Ultimately, the goal of training the network is to produce em-
beddings that generalize well to speakers that have not been
seen in the training data. We would like embeddings to capture
speaker characteristics over the entire utterance, rather than at

1000

• Snyder et al. Deep Neural 
Network Embeddings for Text-
Independent Speaker 
Verification, in Proc. of 
Interspeech 2017

• Snyder et al. X-vectors: Robust 
DNN Embeddings For Speaker 
Recognition Speaker 
Recognition, in Proc. of 
Interspeech 2018.

Neural features for speaker recognition task.

https://www.isca-archive.org/interspeech_2017/snyder17_interspeech.pdf
https://www.isca-archive.org/interspeech_2017/snyder17_interspeech.pdf
https://www.isca-archive.org/interspeech_2017/snyder17_interspeech.pdf
https://www.isca-archive.org/interspeech_2017/snyder17_interspeech.pdf
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf
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8Auto-encoding/Auto-associationMLP Auto-Association and SVD
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• Can be interpretted as principal component analysis
• With only one hidden layer, equivalent to singular 

value decomposition (SVD)
• Can do better than standard SVD with different 

topologies (e.g., more hidden layers)
• Different types auto-encoders, e.g., variational auto-

encoders (VAE), vector quantization VAE (VQ-VAE), 
denoising autoencoders

Bourlard and Kemp, Auto-association by multilayer perceptrons and singular value decomposition, Biological Cybernetics, 1988

Ikbal, Misra and Yegnanarayana, Analysis of autoassociative neural networks, in Proc. of IJCANN, 1999

Bourlard and Kabil, Autoencoders reloaded, Biological Cybernetics, 2022.

https://publications.idiap.ch/attachments/reports/2000/rr00-16.pdf
https://ieeexplore.ieee.org/document/836037
https://link.springer.com/article/10.1007/s00422-022-00937-6
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9End-to-end acoustic modeling using CNNs (1)

In this talk

speech

signal
CNN

NN

classifier
P (i|x)

x

Joint Training

↭ Could aid in overcoming limitations of conventional

short-term speech processing

↭ Could aid in better understanding speech signal characteristics

in a task specific manner
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Palaz, Magimai-Doss and Collobert,”End-to-end acoustic modeling using convolutional neural networks for HMM-based 
automatic speech recognition”, Speech Communication, 2019
D. Palaz,”Towards End-to-End Speech Recognition”, EPFL PhD Thesis, 2016

https://www.sciencedirect.com/science/article/abs/pii/S0167639316301625
https://www.sciencedirect.com/science/article/abs/pii/S0167639316301625
https://infoscience.epfl.ch/entities/publication/6ead46a2-edcf-4f3b-8679-60a1d8343648
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10End-to-end acoustic modeling using CNNs (2)
CNN-based system using raw speech as input
Overview

Raw speech

input x
Convolution

Max

pooling
tanh(·)

Filter stage (feature learning) ⇥ N

MLP

Classification stage
(acoustic modeling)

p(i|x)

Minimal prior knowledge

↭ Short-term processing

↭ Feature extraction can be seen as a filtering operation

↭ Relevant Information can be spread across time

Determined in a data-driven manner.

All the stages are trained jointly using back-propagation with a

cost function based on cross entropy.

5 / 47
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11First convulation layer illustration
CNN-based system using raw speech as input
Illustration of the first convolutional layer

wseq Convolution

nf

dW

kW

↭ wseq: Input speech signal with temporal context

↭ kW : Window size

↭ Sub-segmental (< 1 pitch period)

↭ Segmental (1 → 3 pitch periods)

↭ dW : Window shift (< 1 pitch period)

↭ nf : number of filters
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12Illustraton of CNN trained for speech recognition
CNN-based system using raw speech as input
Detailed view for one example
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Speech processing applications
Application wseq kW # of conv. # of hid-

layers den layers
Speech reco.7 250-310 ms sub-seg 3-5 1-3
Speaker reco.8 → 500 ms - 2.5 s seg, sub-seg 2-6 1
Presentation attack → 300 ms seg 2 1 or none
detection9

Gender reco.10 250-310 ms seg, sub-seg 1-3 1
Paralinguistic11,12 250-500 ms seg, sub-seg 3-4 1
Breathing Patt. Est.13 3-4 s sub-seg 4 1

7
Palaz, Magimai.-Doss, and Collobert, “End-to-end acoustic modeling using convolutional neural networks for

HMM-based automatic speech recognition,” Speech Communication, Vol. 108, April 2019, Pages 15–32.
8
H. Muckenhirn,”Trustworthy speaker recognition with minimal prior knowledge using neural networks”, PhD

Thesis No. 7285, Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland, 2019.
9
Muckenhirn, Magimai-Doss, and Marcel, “End-to-End Convolutional Neural Network-based Voice

Presentation Attack Detection,” in Proceedings of the IEEE International Joint Conference on Biometrics (IJCB),
2017.

10
Kabil, Muckenhirn, and Magimai.-Doss, “On learning to identify genders from raw speech signal using

CNNs,” in Proceedings of Interspeech, 2018.
11

Purohit et al., “Towards learning emotion information from short segments of speech,” in Proc. of ICASSP,
2023.

12
Dubaganta, Vlasenko and Magimai.-Doss,”Learning voice source related information for depression

detection”, in Proc. of ICASSP, 2019.
13

Nallanthigal et al., “Deep learning architectures for estimating breathing signal and respiratory parameters
from speech recordings,” Neural Networks, 2021.
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CNN-based system using raw speech as input
Illustration of the first convolutional layer

wseq Convolution

nf

dW

kW

↭ wseq: Input speech signal with temporal context

↭ kW : Window size

↭ Sub-segmental (< 1 pitch period)

↭ Segmental (1 → 3 pitch periods)

↭ dW : Window shift (< 1 pitch period)

↭ nf : number of filters

6 / 47



Automatic Speech Processing, Master Cycle

14

Central question
Remainder of this talk

speech

signal
CNN

NN

classifier
P (i|x)

x

Joint Training

What information does such systems learn?
↭ Filter level analysis

↭ Whole network level analysis

24 / 47
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15Filter analysis: first convolution layer

Filter level analysis
First convolution layer14

↭ Cumulative frequency response of filters

Fcum =

M∑

m=1

Fm
→Fm→2

,

where Fm is the DFT of filter fm and M is number of filters.

↭ Response of filters to input speech by interpreting learned

filters collectively as a spectral dictionary

X =

M∑

m=1

↑x, fm↓ DFT[fm],

where x̂m = ↑x, fm↓ is output of filter fm and X is the spectral

information modeled.

If {fm} were Fourier sine and cosine bases and kW = M then

X is DFT of x.
14

Dimitri Palaz, Mathew Magimai.-Doss, and Ronan Collobert, “End-to-end acoustic modeling using
convolutional neural networks for HMM-based automatic speech recognition,” Speech Communication, Vol. 108,
April 2019, Pages 15–32.
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Filter level analysis
Speech recognition:15 cumulative response

↭ Filters model sub-segmental speech

↭ Standard filterbank: constant-Q filters, i.e. flat response.
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CNN trained on WSJ corpus

15
Dimitri Palaz, Mathew Magimai.-Doss, and Ronan Collobert, “End-to-end acoustic modeling using

convolutional neural networks for HMM-based automatic speech recognition,” Speech Communication, Vol. 108,
April 2019, Pages 15–32.
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CNN-based system using raw speech as input
Illustration of the first convolutional layer

wseq Convolution

nf

dW

kW

↭ wseq: Input speech signal with temporal context

↭ kW : Window size

↭ Sub-segmental (< 1 pitch period)

↭ Segmental (1 → 3 pitch periods)

↭ dW : Window shift (< 1 pitch period)

↭ nf : number of filters

6 / 47

Speech recognition
kW = 1.8 ms

Filter level analysis
Speaker recognition: cumulative response

Seg. modeling (kW = 300 samples)

Subseg. modeling (kW = 30 samples)
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Speaker recognition
kW = 18 ms
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16Between 1st and 2nd conv. layers: DFT analogyFilter level analysis
First convolution layer

↭ Cumulative frequency response of filters

Fcum =

M∑

m=1

Fm
→Fm→2

,

where Fm is the DFT of filter fm and M is number of filters.

↭ Response of filters to input speech by interpreting learned

filters collectively as a spectral dictionary

X =

M∑

m=1

↑x, fm↓ DFT[fm],

where x̂m = ↑x, fm↓ is output of filter fm and X is the spectral

information modeled.

If {fm} were Fourier sine and cosine bases and kW = M then

X is DFT of x.
25 / 47

DFT analogy

x

x̂1

x̂2

x̂3

.

.

.

x̂M

x̂ = x̂1·

+ x̂2·

+ x̂3·

+ x̂M ·

X =
∑M

m=1 x̂m · Fm
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17Between 1st and 2nd conv. layers: Speech Reco.
Filter level analysis
ASR:15 spectral response X foraframeofspeech

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

G
a

in
 n

o
rm

a
li

ze
d

 m
a

g
n

it
u

d
e

 s
p

e
c

tr
u

m

Magnitude spectrum of /iy/

Speaker     F1 range     F2 range       Obs. 1st     Obs. 2nd
                                                          peak           peak
                  (in Hz)         (in Hz)           (in Hz)        (in Hz)
                                                                             
m01          328-357     2418-2458      375            2625
w01          439-441     2767-2822      437            2812                
b01           468-554     2981-3024      500            3000
g01           382-392     3034-3078      375            -

m01
w01
b01
g01

X: 375
Y: 0.03938

X: 2625
Y: 0.01812

X: 2812
Y: 0.02566

X: 437.5
Y: 0.0339

X: 500
Y: 0.04751

X: 3000
Y: 0.01049

X: 375
Y: 0.04882

Spectral response of /iy/ from American English Vowel dataset.

15
Dimitri Palaz, Mathew Magimai.-Doss, and Ronan Collobert, “End-to-end acoustic modeling using

convolutional neural networks for HMM-based automatic speech recognition,” Speech Communication, Vol. 108,
April 2019, Pages 15–32.
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CNN 
trained 
on Wall 
Street 
Journal 
corpus 
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18Between 1st and 2nd conv. layers: Speaker Reco. (1)
Filter level analysis
Speaker recognition: spectral response X (Segmental modeling)

|X |

30 / 47

kW =18 ms
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19Between 1st and 2nd conv. layers: Speaker Reco. (2)
Filter level analysis
Speaker recognition:16 spectral response X (Segmental modeling)

F0 contour estimated on Keele pitch database using the CNN-based speaker classifier trained on Voxforge.

16
H. Muckenhirn, M. Magimai.-Doss, and S. Marcel, “Towards directly modeling raw speech signal for speaker

verification using CNNs,” in Proc. of ICASSP, 2018.
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Muckenhirn, Magimai-
Doss and Marcel, 
Towards directly 
modeling raw speech 
signal for speaker 
verification, in Proc. of 
ICASSP 2018

https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_ICASSP_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_ICASSP_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_ICASSP_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_ICASSP_2018.pdf
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Filter level analysis
First convolution layer14

↭ Cumulative frequency response of filters

Fcum =

M∑

m=1

Fm
→Fm→2

,

where Fm is the DFT of filter fm and M is number of filters.

↭ Response of filters to input speech by interpreting learned

filters collectively as a spectral dictionary

X =

M∑

m=1

↑x, fm↓ DFT[fm],

where x̂m = ↑x, fm↓ is output of filter fm and X is the spectral

information modeled.

If {fm} were Fourier sine and cosine bases and kW = M then

X is DFT of x.
14

Dimitri Palaz, Mathew Magimai.-Doss, and Ronan Collobert, “End-to-end acoustic modeling using
convolutional neural networks for HMM-based automatic speech recognition,” Speech Communication, Vol. 108,
April 2019, Pages 15–32.
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CNN-based system using raw speech as input
Illustration of the first convolutional layer

wseq Convolution

nf

dW

kW

↭ wseq: Input speech signal with temporal context

↭ kW : Window size

↭ Sub-segmental (< 1 pitch period)

↭ Segmental (1 → 3 pitch periods)

↭ dW : Window shift (< 1 pitch period)

↭ nf : number of filters
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Speaker recognition
kW = 1.8 ms

Filter level analysis
Speaker recognition: cumulative response

Seg. modeling (kW = 300 samples)

Subseg. modeling (kW = 30 samples)
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Speaker recognition
kW = 18 ms

Filter level analysis
Speaker recognition: cumulative response

Seg. modeling (kW = 300 samples)

Subseg. modeling (kW = 30 samples)

29 / 47
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21Between 1st and 2nd conv. layers: Speaker Reco. (3)Filter level analysis
Speaker recognition:17 spectral response Xofaframeofspeech. (Sub-segmental modeling)

LP Spectrum |X |
17

Hannah Muckenhirn, Mathew Magimai.-Doss, and Sébastien Marcel, “On learning vocal tract system related
speaker discriminative information from raw signal using CNNs,”, in Proc. of Interspeech, 2018. 32 / 47

Muckenhirn, Magimai-
Doss and Marcel, On 
learning vocal tract 
system related 
speaker discrimination 
information from raw 
speech signal using 
CNNs, in Proc. of 
Interspeech 2018

https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
https://publications.idiap.ch/attachments/papers/2018/Muckenhirn_INTERSPEECH_2018.pdf
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Central question
Remainder of this talk

speech

signal
CNN

NN

classifier
P (i|x)

x

Joint Training

What information does such systems learn?
↭ Filter level analysis

↭ Whole network level analysis

33 / 47



Automatic Speech Processing, Master Cycle

23Visualization in Computer Vision

Visualization in computer vision

Visualization of what is captured by neural networks is a very

active field of research for image recognition tasks.

Three approaches:

↭ input perturbation-based methods

↭ reconstruction-based methods

↭ gradient-based methods

34 / 47
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24Gradient-based visualization
Gradient-based visualization

Input (image, waveform...): x = [x0 . . . xN→1].

Output unit corresponding to class c (before softmax layer): y c .

Gradient:
ωy c

ωxn
,

n = 0, . . . ,N → 1

↭ It measures how much a small variation of each pixel value

will impact the prediction score.

↭ It yields a “relevance” map of the same size as the input.

35 / 47
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Di!erent methods

Di!erent gradient-based methods: di!er on how the gradient is

computed at a ReLU layer.

original image saliency map deconvnet guided
backpropagation

36 / 47
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26Gradient-based visualization for speech
Whole network analysis
Gradient-based visualization

↭ Given an input speech-output class pair and the trained system, what is
the contribution of each sample on the output score?18
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18
H. Muckenhirn et al.,”Understanding and Visualizing Raw Waveform-based CNNs ,” Proc. of Interspeech,

2019.
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• Unlike images 
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done in spectral 
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Case study on speech recognition (2)

↭ Analysis of CNN trained on TIMIT phone recognition task on

American English Vowel (AEV) dataset

↭ F0, F1 and F2 estimated automatically for the relevance

signal for the steady state regions and compared to the values

specified on the original study.

Table: Average accuracy in (%) of fundamental frequencies, and formant

frequencies of vowels produced by 45 male and 48 female speakers,

estimated from relevance signal of AEV dataset.

/ah/ /eh/ /iy/ /oa/ /uw/

F0
F 93 91 91 94 92

M 92 90 89 93 90

F1
F 90 92 93 91 93

M 88 92 92 89 93

F2
F 94 94 94 95 94

M 94 93 94 94 93
39 / 47
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Original signal

Segmental modeling Sub-segmental modeling
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Case study on speaker recognition (2)

Utterance level average spectrum
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Whole network analysis
Speech recognition versus Speaker recognition
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Self-Supervised Speech Representation Learning:
A Review

Abdelrahman Mohamed*, Hung-yi Lee*, Lasse Borgholt*, Jakob D. Havtorn*, Joakim Edin, Christian Igel
Katrin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars Maaløe, Tara N. Sainath, Shinji Watanabe

Abstract—Although supervised deep learning has revolution-
ized speech and audio processing, it has necessitated the building
of specialist models for individual tasks and application scenarios.
It is likewise difficult to apply this to dialects and languages
for which only limited labeled data is available. Self-supervised
representation learning methods promise a single universal model
that would benefit a wide variety of tasks and domains. Such
methods have shown success in natural language processing and
computer vision domains, achieving new levels of performance
while reducing the number of labels required for many down-
stream scenarios. Speech representation learning is experiencing
similar progress in three main categories: generative, contrastive,
and predictive methods. Other approaches rely on multi-modal
data for pre-training, mixing text or visual data streams with
speech. Although self-supervised speech representation is still
a nascent research area, it is closely related to acoustic word
embedding and learning with zero lexical resources, both of
which have seen active research for many years. This review
presents approaches for self-supervised speech representation
learning and their connection to other research areas. Since many
current methods focus solely on automatic speech recognition as
a downstream task, we review recent efforts on benchmarking
learned representations to extend the application beyond speech
recognition.

Index Terms—Self-supervised learning, speech representations.

I. INTRODUCTION

Over the past decade, deep learning approaches have rev-
olutionized speech processing through a giant leap in perfor-
mance, enabling various real-world applications. Supervised
learning of deep neural networks has been the cornerstone
of this transformation, offering impressive gains for scenarios
rich in labeled data [1]–[3]. Paradoxically, this heavy reliance
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Fig. 1: Framework for using self-supervised representation
learning in downstream applications

on supervised learning has restricted progress in languages
and domains that do not attract the same level of labeling
investment.

To overcome the need for labeled data, researchers have
explored approaches that use unpaired audio-only data to
open up new industrial speech use-cases and low-resource
languages [4]–[6]. Inspired by how children learn their first
language through listening and interacting with family and sur-
roundings, scientists seek to use raw waveforms and spectral
signals to learn speech representations that capture low-level
acoustic events, lexical knowledge, all the way to syntactic
and semantic information. These learned representations are
then used for target downstream applications requiring a min-
imal number of labeled data [7]–[9]. Formally, representation
learning refers to algorithms for extracting latent features that
capture the underlying explanatory factors for the observed
input [9].

Representation learning approaches are generally considered
examples of unsupervised learning, which refers to the family
of machine learning methods that discover naturally occurring
patterns in training samples for which there are no pre-
assigned labels or scores [10]. The term “unsupervised” is
used to distinguish this family of methods from “supervised”
approaches, which assign a label to each training sample, and

ar
X

iv
:2

20
5.

10
64

3v
3 

 [c
s.C

L]
  2

7 
O

ct
 2

02
2Combines several understandings from speech processing 

and takes inspiration from text and computer vision domains
• Replacing hand-crafted features by CNN-based encoder
• Temporal context modeling using transformers and 

attention mechanism
• Hierarchical information processing
• Reconstructing information by clustering latent 

representations or acoustic features, and predicting them
• Different types of modeling: generative, contrastive, 

predictive, Siamese
• Multiple views of the data

Liu et al. “Audio self-supervised learning: A survey”, Patterns, Vol. 3, 2022.
Mohammed et al. “Self-Supervised Speech Representation Learning: A Review”, IEEE JSTSP, 2022

https://doi.org/10.1016/j.patter.2022.100616
https://ieeexplore.ieee.org/document/9893562


Automatic Speech Processing, Master Cycle

33Self-supervised speech representation (2)

Liu et al. “Audio self-supervised learning: A survey”, Patterns, Vol. 3, 2022.

CBoWand skip-gram formulations, while the last only considers a
method similar to CBoW. In the CBoW formulation, the task is to
reconstruct a temporal spectrogramslice of pre-determineddura-
tion from a number of past and future slices. The method has also
been shown to be effective for ASC in Gontier et al.92 Differently,
the roles of the target and surrounding slices are reversed in the
skip-gram formulation. Audio2Vec and Speech2Vec mainly differ
in the following aspects: (1) Speech2Vec applies audio segmenta-
tion, by using an explicit forced alignment technique, in order to
isolate audio slices corresponding to eachword. The forced align-
ment segmentationmay introduce supervision to some extent. (2)
Audio2Vec requires no explicit assistance and hence completely
removes the need for supervision. (3) Unlike neural network archi-
tectures, Speech2Vec isbuilt basedonanRNNencoder-decoder,
andAudio2Vec is built of stacksofCNNblocks. (4) Asmodel input,
Speech2Vec processes the mel spectrogram of an audio, while
Audio2Vec operates on MFCCs. (5) In Audio2Vec, the
TemporalGap formulation is additionally introduced, which re-
quests that the model estimates the absolute time distance be-
tween two (randomly sampled) slices taken from the same
audio clip.
CPC
Van den Oord proposed CPC,42 which can effectively learn rep-
resentations by predicting the future in a latent space using an
auto-regressivemodel, showing very promising results for audio,
images, text processing, and reinforcement learning. For audio,
a strided convolutional network is used to encode raw audio to
its latent representation. Then, a gated recurrent unit (GRU)-
RNN aggregates the information from all the past time steps to
form a context vector. More importantly, contrastive loss is
applied to learnmore discriminative representations by contrast-
ing the true future to noise representations, given an aggregated
context vector. Speech signals can be pre-processed by using a
time-domain data augmentation library, such asWavAugment,93

in order to achieve more powerful representations by CPC. The
library contains several data augmentation (DA) techniques,
including pitch modification, additive noise, reverberation,
band reject filtering, or time masking, to name a few. In Kharito-
nov et al.,93 the authors define aCPC2model, which replaces the
GRU-RNN of CPC by a two-layer long short-term memory
(LSTM)-RNN and replaces the linear prediction network by a sin-
gle multi-head transformer layer, leading to better training effi-
ciency without harming representation performance.
Wav2vec,77 as shown in Figure 6A, adjusts the CPC structure

to a fully convolutional architecture, enabling easy parallelization
over time on hardware. OneCNNencodes the rawwaveform into
audio representations for each time step, and the other captures
global context information into a context vector. Specifically, the
wav2vec approach is optimized by minimizing contrastive loss
for each step k = 1;.;K:

Lk = !
XT ! k

i = 1

ðlogs
!
zTi + khkðciÞ + lE½logs

!
! ~zThkðciÞ

"#
;

(Equation 13)

where ~z is the distractor uniformly sampled from the audio repre-
sentations, sðxÞ = 1=ð1 + e! xÞ. sðzTi + khkðciÞ stands for the prob-
ability of zi + k being the true future sample of ci, and
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hkðciÞ = Wkci +bk applies an affine transformation to ci, similar
as in Oord et al.42 The total loss sums up considering K steps;
L =

PK
k = 1Lk is minimized for training. After pre-training, the

affine projection layer is removed for creating the learned repre-
sentations from the raw audio. This method moves beyond
phoneme-based automatic speech recognition (ASR), as
explored in Oord et al.,42 and substantially improves a char-
acter-based ASR system.
A follow-up work by Baevski et al.78,94 (cf. Figure 6B) imple-

ments a vector quantization module after the wav2vec encoder
in order to discretize the audio representations. This aims to
find, for each representation, the closest embedding and code-
word from a fixed size codebook. The discrete representations
are fed into the context network and then optimized in the
same way as for wav2vec. We will introduce the principle of vec-
tor quantization in detail, comparing its two realization methods,
i.e., K-means clustering and Gumbel-Softmax, in the section
representation quantization.
MPC
Masked acoustic model (MAM) (cf. Figure 4B), built on trans-
former architecture, masks some parts of an audio input and re-
constructs the entire original input in order to fill the masked
parts that are not known by MAM during training.95,96 Such
model can be optimized by minimizing the reconstruction error,
contrastive loss, and clustering.
Optimization with reconstruction error. Mockingjay95 (cf.
Figure 7A) takes the mel spectrogram as input acoustic features
and exploits transformers to code randomly masked frames into
audio representations. The encoded representations are map-
ped to predict the complete frames using a projection head built
of two-layer MLP with layer normalization. The transformer
encoder and projection head are jointly optimized by minimizing
the L1 reconstruction loss. The effectiveness of self-attention in
transformer encoders has been further explored in Yang et al.;97

the authors also provide a visualization tool for understanding

the attention, based on which several attention refinement tech-
niques are proposed to improve model performance. Audio
ALBERT98 has the same network architecture as Mockingjay,
but the parameters are shared across all its transformer encoder
layers, thus achieving a faster inference and increasing training
speedwithout harming the performance of two evaluation down-
stream tasks, i.e., speaker classification and phoneme classifi-
cation. In transformer encoder representations from alternation
(TERA),96 the authors extend the used masking procedures,
including replacing contiguous segments with randomness,
masking along the channel axis, and applying Gaussian noise
for pre-training the transformers. This resulted in a better repre-
sentation performance than the one shown by Mockingjay and
audio ALBERT for downstream tasks, phoneme classification,
keyword spotting, and speaker classification.96 In addition, it
shows also promising results for ASR tasks based on the Libri-
speech and TIMIT datasets.
Unlike the works that predict the entire audio frames from their

masked version, DAPC99 (cf. Figure 7B) proposes a method to
only predict the missing components along the time and fre-
quency axes of an audio spectrogram by minimizing a masked
reconstruction loss. The method is also regarded as an exten-
sion of CBoW, for which the input’s masked spectrogram can
be easily generated using SpecAugment,100 and hence, the
missing parts to be predicted are not only temporal frames but
are also frequency bins.
Optimization using contrastive loss. Wav2vec 2.0 Figure 6D ex-
ploits a MAM as in the section MPC but is optimized using a
contrastive loss, i.e., InfoNCE.42 The raw audio is encoded using
multiple one-dimensional (1D)-CNN layers, and the resulting rep-
resentations are partly masked before being sent to a trans-
former network to learn contextualized representations. The net-
works are jointly trained to contrast the true representations from
distractors given the contextualized representations. Similar to
VQ-wav2vec, wav2vec 2.0 applies product quantization, too;
however, the quantized vector qt for each time step is not fed
into a context network but is only used in the objective function:

L = E

"

# log
ecTt qt=t

P
~q$Qt

ecT
t
~q=t

#

; (Equation 14)

where ~q $ Qt includes qt and K distractors. In addition to this
InfoNCE, the training loss is regularized by a diversity loss Ld
to encourage the model to make better use of the codebook,
which is detailed in wav2vec 2.0 and shows very promising re-
sults for ASR tasks evaluating on both Librispeech101 and
TIMIT102 datasets.
Wav2vec 2.0 has been further investigated for analyzing its

efficacy in terms of cross-domain shift103 and cross-lan-
guage.104,105 To explore the effect of cross-domain shift, the
data for pre-training, fine-tuning, and evaluation are from
different domains. The authors conclude that the matching
conditions between data of pre-training and testing are very
important in order to achieve satisfying speech recognition re-
sults. Moreover, pre-training on multiple domains can improve
the generalization ability of the learned representations. The
task of learning multi-lingual speech representations has also
been undertaken based on wav2vec 2.0104 and Babu

A B

Figure 7. MPC models for audio SSL
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(a) HuBERT Base (b) WavLM Base+

(c) HuBERT Large (d) WavLM Large

Fig. 2. Weight analysis on the SUPERB Benchmark. Layer 0 corresponds to the input of the first Transformer layer. The y-axis represents different tasks,
while the x-axis represents different layers.

C. Speaker Verification

1) problem formulation: The training dataset for speaker
verification contains audio and speaker id pairs as D = {xi,yi}.
Given audio clip x and a reference x

0, the goal of speaker
verification is to determine whether x0 is from the same speaker
as x.

2) Datasets: VoxCeleb1 [20] and VoxCeleb2 [54] datasets
are used in our experiments for speaker verification. For
data pre-processing, we apply online data augmentation using
the MUSAN [55] noise, DNS noise [49] and the RIR 4

reverberation with probability 0.6. Voice activity detection
(VAD) processing is not adopted. We use all three official trial
lists Vox1-O, Vox1-E, and Vox1-H to evaluate the system.

3) Setup: We choose the ECAPA-TDNN (small) [19]
architecture as the downstream model and compare different
input speech representations, including handcrafted features and
the pre-training features. The model contains a frame encoder
to extract speaker information from the input sequence, a
statistic pooling layer to transform input to a fixed-dimensional
representation, and a fully connected layer to extract speaker
embedding. For the handcrafted feature, we compare the
reported results in [19] with our re-implemented results, where
we extract the 40-dimensional Fbank feature with 25ms window
size and 10ms frameshift. For pre-trained representations, we
compare WavLM with HuBERT model. Following SUPERB
evaluation, we weighted-sum the representations from different
transformer layers with learnable weights as the input to the
downstream speaker verification task.

In the training stage, all the recordings are chunked into 3s
segments to construct the training batches. We use the additive
angular margin (AAM) loss [56] for model optimization and

4https://www.openslr.org/28/

set the margin to 0.2. We also add an Inter-TopK penalty [57]
on the 5 easily misclassified centers with a penalty margin of
0.1. We train the ECAPA-TDNN system with Fbank feature
for 165 epochs. For systems using pre-trained representations,
we first fix the pre-trained model to train ECAPA-TDNN for
20 epochs and then finetune both the pre-trained and ECAPA-
TDNN models for another 5 epochs. When we add the large
margin fine-tuning strategy [58], we train the systems for an
extra 2 epochs, during which we sample 6s training segments
and set the AAM margin to 0.4.

In the evaluation stage, the whole utterance is fed into the
system to extract speaker embedding. We use cosine similarity
to score the evaluation trial list. We also use the adaptive s-
norm [59], [60] to normalize the trial scores. The imposter
cohort is estimated from the VoxCeleb2 dev set by speaker-
wise averaging all the extracted speaker embeddings. We set
the imposter cohort size to 600 in our experiment. To further
push the performance, we also introduce the quality-aware
score calibration [58] for our best systems, where we randomly
generate 30k trials based on the VoxCeleb2 test set to train
the calibration model.

4) Results: Table II shows the results for the speaker
verification task. From the results, we find that all the systems
with pre-trained representations exceed the Fbank baseline
system on the Vox1-O and Vox1-E trials. The system with
HuBERT Base representations is slightly worse than the Fbank
feature on the Vox1-H trial. Interestingly, the representations
extracted from our proposed pre-trained models, WavLM Base+
and Large, both outperform the SOTA ECAPA-TDNN system.
Compared with the Fbank feature, the representations from
WavLM Large achieve over 35% relative EER improvement
on all three trials for the VoxCeleb1 evaluation set. To further

Layerwise-Taskwise analysis on SUPERB Benchmark 

SID: Speaker identification
ASV: Speaker verification
SD: Speaker diarization
KS: Keyword spotting
ASR: Speech recognition
PR: Phoneme recognition
IC: Intent classification
SF: Slot filling

https://ieeexplore.ieee.org/document/9814838
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Open questions

• Are all layers meaningful for all tasks?
• How to find that out and/or select?

• Efficient adaptation
• Model compression
• Interpretability/explainability

• What kind of information are the layers modeling and how?
• Why and where the model fails?

• Trustworthy?
• Universal speech processing truly feasible with one single model?
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Thank you for 
your attention!


