
String Edit Distance

$$D(i, j) = d(i,j) + min[D(i-1, j), D(i-1,j-1), D(i, j-1)]$$
 for $i=1....M$ and $j=1....N$ Path $(i,j) = arg min[D(i-1, j), D(i-1,j-1), D(i, j-1)]$

Initial condition path starts at D(1,1)Final condition path ends at D(M,N)

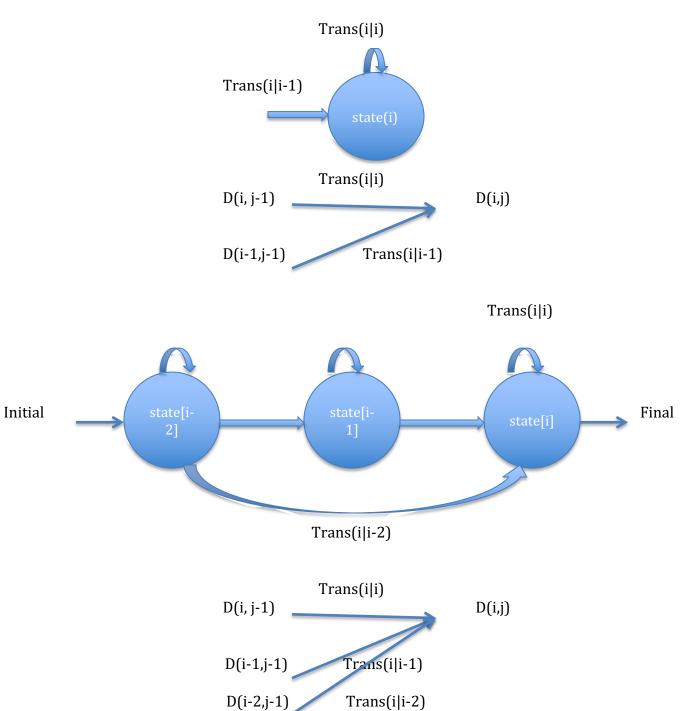
Backtrack the path to find the number of insertions, deletion, and substitution.

K	4					
R	3					
A	2					
P	1					
	0	1	2	3	4	5
		S	Р	A	К	Е

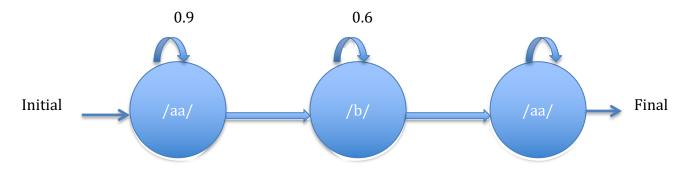
Word Error Rate

Reference transcript: she had a dark suit in greasy water all year

 $ASR\ output:\ \textit{he had a dark grey suit in water all there}$


WER = (# Ins + # Del + # Sub)/(# of words in reference transcript)

year	10										
all	9										
water	8										
greasy	7										
in	6										
suit	5										
dark	4										
а	3										
had	2										
she	1										
	0	1	2	3	4	5	6	7	8	9	10
		he	had	а	dark	grey	suit	in	water	all	there

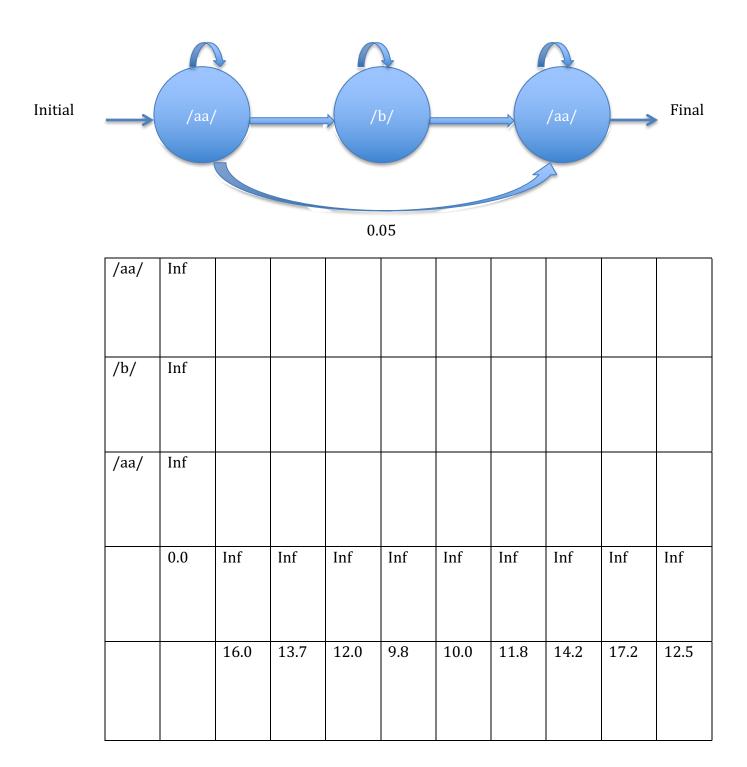

<u>Computation of log-likelihood of a HMM given an Observation Sequence using Viterbi algorithm</u>

$$\begin{split} &D(i,j) = d(i,j) + min[\ (D(i-1,j-1) + Trans(i|i-1)), \ (D(i,j-1) + Trans(i|i))] \\ &Path(i,j) = arg \ min \ [\ (D(i-1,j-1) + Trans(i|i-1)), \ (D(i,j-1) + Trans(i|i))] \\ &d(i,j) = -log(P(obs(j)|state(i)) \\ &Trans(i|i-1) = -log(P(state(i)|state(i-1)) \end{split}$$

NOTE: Local constraints are based on HMM topology

Example with single dimension observation

Initial and Final are non-emitting states


State /aa/: mean = 15.1 standard deviation = 3.2

State /b/: mean = 10.3 standard deviation = 4.4

Observation sequence: 16.0, 13.7, 12.0, 9.8, 10.0, 11.8, 14.2, 17.2, 12.5

		0.01100. 1	0.0, 20.7	, 12.0, 2	.0, 10.0,	1110, 11	, <u>.</u> ,	12.0		
/aa/	Inf									
/b/	Inf									
/aa/	Inf									
	0.0	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf
		16.0	13.7	12.0	9.8	10.0	11.8	14.2	17.2	12.5

Compute the log-likelihood for the following HMM topology. Note down the key changes in the computation that are to be made w.r.t the previous topology.

