HMM-based ASR

Illustrations
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LEFT-to-RIGHT HMM
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Let n € {1,--- N} denote the sequence of emitting states in the HMM

D(m,n) = d(m,n) + max|[(D(m—1,n) + log(P(¢m = n|¢n_1 =n)),

(D(m—1,n—1) + log(P(gm = n|gm_1 =n—1))]

Pa(m,n) = argmax|(D(m—1,n) + log(P(gmn = n|¢m_1 =n)),

(D(m—1,n—1) + log(P(gm = n|gm_1 =n—1))]

o ore LEFT-to-RIGHT HMM

d(m,n) = log(v,,ayn,k)

In the example, there are N = 3 emitting states.

Let us consider n = 2, i.e. HMM state /n/

D(m, 2) = d(m, 2) + max[(D(m—1,n) + log(P(gn=/n/gm1=/n/)).
(D(m—1,n—1) +log(P(gm=/n/|gm-1=/ae/))]

Pa(m, 2) = arg max[(D(m—1,n) + 10g(P(gn=/n/gm1 = /n/)),
(D(m—1,n—1) +log(P(qn=/n/|gn-1=/ae/))]

Local score :

d(m7 2) — log(VrTnY/n/,k:)



HMM Training



Data Preparation

Resources needed: Speech utterances and their word level
transcriptions, Phonetic dictionary (also called as lexicon)

Let {5}, H; le denote a set of speech utterances and their
corresponding word level transcriptions.

1. Extract the acoustic feature sequence X; = (x1,- - Xm, "+ Xpm;)
corresponding to each speech utterance S;. x, is typically 39
dimensional cepstral feature vector (Cy — Ci2 and their
approximate first and second temporal derivatives).

2. For each corresponding transcription H; create a left-to-right
HMM model W; by using the phonetic dictionary. For example,
see creation of HMM for "AND", "IT" and "AND IT".



Goal of Training

Infer the HMM parameters, i.e., emission distribution parameters and the
transition probabilities for each HMM state such that it maximizes

J
1 p(XiIW;)
j=1
Emission distribution parameters (besides the lexical model parameter y):

1. single multivariate Gaussian: mean vector and covariance matrix for
each latent symbol a“

2. GMMs: mixture weights, mean vectors and covariance matrices of
the GMM for each a¢

3. ANNSs: weights and biases and prior probability of each a?, i.e.
P(a%).
Direct optimization of the above objective function is not possible.
Parameters are iteratively estimated using Expectation-Maximization

(EM) algorithm.



Case 1: emission distribution modeled by single multivariate Gaussian

Step 1: For each latent symbol a?, randomly initiliaze the mean vector
and covariance matrix of the multivariate Gaussian and the
transition probabilities.

Step 2: Given the parameters, Vj € {1,---J}, estimate log(P(X;|W;))
by dynamic programming and obtain the alignment between
the feature sequence X; and the state sequence in W; by
backtracking using Pa(m, n).

Step 3: In the alignment, map the states to a? based on the
one-to-one mapping in the lexical model parameter y, ;. For
each a9, collect all the feature vectors x,, that belong to that
latent symbol and estimate the new mean vector and
covariance matrix.

From the aligned sequence of states, estimate the self
transition probabilities for each state by counting.

Step 4: Go to Step 2.

Repeat Step 2 (E-step) and Step 3 (M-step) until convergence.



Case 2: emission distribution modeled by GMMs

Step 1: For each acoustic unit a¢, randomly initiliaze the GMM
parameters, i.e. mixture weights, mean vector and covariance
matrix each multivariate Gaussian, and the transition
probabilities.

Step 2: Given the parameters, Vj € {1,---J}, estimate log(P(X;|W;))
by dynamic programming and obtain the alignment between
the feature sequence X; and the state sequence in W; by
backtracking using Pa(m, n).

Step 3: In the alignment, map the states to a based on the
one-to-one mapping in the lexical model parameter y, ;. For
each a9, collect all the feature vectors x,, that belong to that
latent symbol and estimate the new GMM parameters.

From the aligned sequence of states, estimate the self
transition probabilities for each state by counting.

Step 4: Go to Step 2.

Repeat Step 2 (E-step) and Step 3 (M-step) until convergence.



Case 3: emission distribution modeled by ANNs

Step 1: Initialize the weights and biases of the ANN that takes as input x, and
classifies the acoustic units {a®}5_;. Randomly initialize the transition
probability of states. Assume equal prior probability for the acoustic units.

Step 2: Given the parameters, Vj € {1,--- J}, estimate log(P(X;|W;)) by dynamic
programming and obtain the alignment between the feature sequence X;
and the state sequence in W; by backtracking using Pa(m, n).

Step 3: In the alignment, map the states to a® based on the one-to-one mapping
in the lexical model parameter y, ;. Train a new ANN classifier that
classifies the latent symbols {a“}5_; using cross entropy or mean square
error criterion given X, as input.

From the alignment, estimate the prior probability for each a°

From the aligned sequence of states, estimate the self transition
probabilities for each state by counting.

Step 4: Go to Step 2.
Repeat Step 2 (E-step) and Step 3 (M-step) until convergence.

Training in this fashion is quite expensive. In practice, as part of E-step, a
GMM-based system is trained to obtain a good alignment between X; and W,

Vj, and the M-step is carried out once.



Decoding
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Discrete Markov model to estimate P(W;)

P(ANDI|I*) Tr¥ = P(IN|I") Tr¥ = P(BID|I")
P(AND|AND) Tr¥ = P(AND|IN) Tr¥ = P(AND|BID)
P(IN|JAND) Tr¥ = P(IN|IN) Tr¥ = P(IN|BID)

BID|AND) Tr¥ = P(BID|IN) Tr% = P(BID|BID)
F*|AND) Tr?, = P(F“|IN) Tr% = P(F"|BID)

*‘8 *‘8 \'8 *“S *‘8

P
P

Parameters estimated using a large text database by counting.
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Key changes in dynamic programming for each word w; in the vocabulary

allow the possibility to begin and end any word at any time frame.
D(0, Ly;) = log(P(w;|I%))
D(0, 1,,,) = log(P(w; = ANDI|I")) = log(T'r}") (For the illustrated example)

D(m, ]wj) = max [D(m_la Fw/) + 1Og(P(w]‘w]/))]
j'e{i-J} ’

Pa(m, L,) = argmax [D(m—1, Fu,,) + log(P(w;luw;))
j/E J

I and F' denote the initial and final states of the language model DMM
I,, and F,, denote the non-emitting initial and final states of the HMM of word w;
J denotes the number of words in the vocabulary

After reaching end of utterance i.e. last time frame M :

Wi, = arg I?lax }D(M—H F, ,)+log(P(Fw|wj/))(start back tracking using Paf(,))
7'e

w;, denotes the recognized last word in the utterance.



