## Chapter V - 1. Microphones

H. Lissek

Fall 2015

## Exercice 1. Omnidirectional electrodynamic microphone

Let's consider the omnidirectional electrodynamic microphone represented as a cut-view on the following figure :

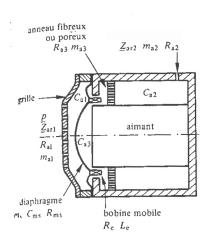



Figure 1 – Omnidirectional electrodynamic microphone scheme

- 1. Justify the directivity of the microphone by examining the scheme of Fig. 1.
- 2. What is the use of the hole  $(m_{a2}, R_{a2})$ ?
- 3. Justify the use of the grid  $(m_{a1}, R_{a1})$  and the ring of fibrous material  $(m_{a3}, R_{a3})$ .
- 4. Establish the electro-mechanical scheme of the microphone (including the two-ports).
- 5. Derive the pressure sensitivity function  $\frac{u(f)}{p(f)}$
- 6. What happens if we modify the acoustic circuit as in Figure 2?

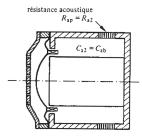



Figure 2 – Modified electrodynamic microphone

## Exercice 2. Omnidirectional electrostatic (measurement) microphone

Let's consider the elctrostatic microphone which is illustrated on the following figure:

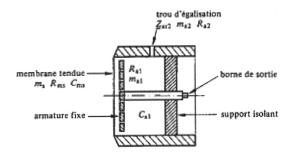



Figure 3 – Omnidirectional electrostatic microphone scheme

- 1. Establish the electro-mechanical scheme of the microphone (including the two-ports).
- 2. Derive the sensitivity in pressure  $\frac{u(f)}{p(f)}$
- 3. What happens if we modify the acoustic circuit as in the following figure?

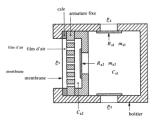
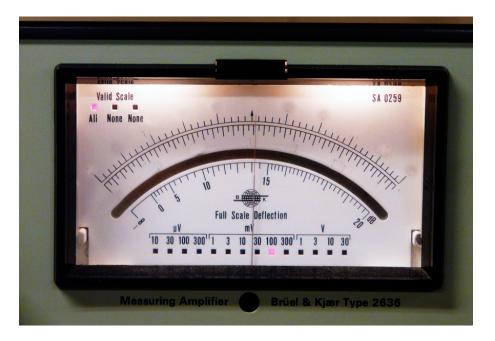



Figure 4 – Alternative electrostatic microphone scheme

4. Draw the electro-mechanical scheme of the modified microphone.

## Exercise 3. Microphone sensitivity


We want to measure a sound pressure rms value  $\tilde{p}$  in Pa. You own a measurement microphone of which the only sensitivity **level**  $L_M$  (dB re. 1V/Pa) is specified.

You also own a microphone pre-amplifier, on which the microphone is connected, with a VU-meter displaying a voltage level  $L_U$  (dB re. 1  $\mu$ V). During the measurement, the VU-meter is set to display  $L_{U,max}$ =100 dB (re. 1  $\mu$ V) on full-scale.

- 1. What is the maximum rms value of voltage measurable at full-scale with this setting?
- 2. Give the expression of:
  - the sound pressure level  $L_p$  (in dB re. 20  $\mu$ Pa) as a function of the rms value of pressure  $\tilde{p}$  and the reference pressure  $\tilde{p}_0$
  - the voltage level  $L_U$  (in dB re. 1 V) as a function of the voltage U and the reference voltage  $U_0$

– the linear sensitivity M (in V/Pa) as a function of the intensity level  $L_M$  and the reference sensitivity  $M_0$ 

We measure the following value :



3. Derive the relationship giving  $L_p$  as a function of  $L_U$  and  $L_M$ . What is the sound pressure level, and then the rms value of pressure measured in this case?

**Definition:** a microphone sensitivity is defined as the ratio of the output voltage of the microphone over the input sound pressure p.

Numerical application :  $L_M$ =-26.2 dB (re. 1 V/Pa);  $U_0$ =1  $\mu$ V;  $p_0$ =20  $\mu$ Pa;  $M_0$ =1 V/Pa.