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Introduction

Outcome of the lecture
This lecture reminds the analogies between mechanical, acoustical and
electrical systems.
The main learning outcome is the realization of analogue electrical schemes
accounting for mechanical or acoustical phenomena.

Pre-requisite

• point mechanics

• physical acoustics

• electrical engineering
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Mechanical systems

Many mechanical or acoustical systems can be accurately modeled with a
finite number of discrete components.

⇔

.

In this course, the mechanical systems are supposed as only moving in
translation, but the same approach can be used for rotating movements, or a
combination of multiple translations and rotations.
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Mechanical components

We are about to represent the main mechanical phenomena by individual
components:

• the inertia of a mass,

• the deformation of an elastic object,

• the dissipation through viscous losses,

• the transformation by a lever.
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Inertia of a mass

Ponctual rigid mass

The resulting external forces F applied to a rigid body (without deformation
and without damping) leads to

an acceleration of the body.
The inertia linked to a mass M is proportional to the acceleration, within a
Galilean referential.

Fundamental dynamics law

F (t) = M
d

dt
(v1(t)− vref )

F = jωM(v1 − vref )

• In this lecture, the mechanical referential is not moving: vref = 0.

• The inertia of the mass corresponds to the kinetic energy of the system.
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Deformation of an object
Axial linear suspension without mass and without dissipation

The resulting external forces F applied to an elastic object (here without a
mass and without dissipation) leads to

deform this object.
Behavioral law

F (t) =
1

Cm
(ξ1(t)− ξ2(t))

=
1

Cm

∫
(v1(t)− v2(t))dt

F =
1

jωCm
(v1 − v2)

• In the frame of linear elasticity, the deformation (ξ1 − ξ2) is proportional
to the force.

• In this lecture, the elasticity is expressed as a ”compliance” Cm (rather
than the stifness Km = 1/Cm).

• The elastic deformation corresponds to a potential energy ”storage”.
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Damping

Linear ”dashpot”

The resulting external forces F applied to an object without mass and without
stiffness might deform it. The reaction of the object to this deformation leads
to a dissipation of energy.

Behavioral law

F (t) = Rm(v1(t)− v2(t))

F = Rm(v1 − v2)

• The deformation velocity (v1 − v2) is supposed proportional to F .

• It signifies an irreversible transformation due to a linear viscosity.
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Mechanical lever

Ideal mechanical (without losses)

A lever is an example of ideal mechanisms linking two pairs of mechanical
quantities (F1, v1) et (F2, v2).

Coupling equations

F1`1 = F2`2
v1

`1
=

v2

`2

• The lever plays the role of a transformer : F1
v1

= ( `2
`1

)2 F2
v2

.

• This ideal transformation preserves the energy.
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Mechanical-electrical analogies

We will represent now the basic mechanical phenomena with analogue
electrical schemes. This is based to formal analogies between mechanical and
electrical equations.
The analogies can take the 2 following forms:

• inverse analogy (or admittance analogy),

• direct analogy (or impedance analogy).
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Inverse analogy

Conventionally, the ”inverse” analogy consists in ”identifying” the velocity of
a mechanical mass with an electrical voltage.

On an energetic viewpoint, it yields that the kinetic energy of a mechanical
system is modeled by the potential energy stored in a condenser.
On the same way, the potential energy stored by the deformation of a
mechanical system is modeled by the kinetic energy linked to the circulation of
a courant in an inductance.

The ”inverse” analogy leads to associate an electrical admittance to a
mechanical impedance : it is then also called ”admittance analogy”.
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Inverse analogies of mechanical ideal
components (1)

Inertie

Souplesse
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Inverse analogies of mechanical ideal
components (2)

Amortissement

Levier
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Direct analogy

Conventionally, the ”direct” analogy consists in ”identifying” the velocity of a
mechanical mass with an electrical current.

On an energetic viewpoint, it yields that the kinetic energy of a mechanical
system is modeled by the same type of energy in an electrical system.
On the same way, the potential energy stored by the deformation of a
mechanical system under differential velocities is modeled by the potential
energy stored in a capacitance under a voltage difference.

The ”direct” analogy leads then to associate an électrical impedance àto a
mechanical impedance : it is then also called ”impedance analogy”..

The representations of the dash-pot and the lever are the same in the two
analogies, apart that the roles of force and velocity are interchanged.
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Direct analogies of ideal mechanical
components (1)

Inertie

Souplesse
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Direct analogies of ideal mechanical
components (2)

Amortissement

Levier
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Simple mechanical system

We will now illustrate the mechanical-electrical analogies (inverse and direct
analogies) with the mechanical scheme of a simple ”mass-spring-losses”
system.
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”Mass-spring-losses” (1/2)

Let’s consider the mechanical system schematically illustrated on the figure,
consisting of a loudspeaker diaphragm (mass-spring-losses system) subject to
the electromechanical force applied by the driver.

.

The dynamics of this system is described with only one degree of freedom
(dof), velocity (v − vref ), and is subject to the total external forces F (the
driver), to which it reacts.
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”Mass-spring-losses” system (2/2)

The Newton’s law reads:

F (t)− 1

Cm
(ξ(t)− ξref )− Rm(v(t)− vref ) = M∂t(v(t)− vref ),

or in harmonic regim:

F − 1

jCmω
(v − vref )− Rm(v − vref ) = jωM(v − vref ).

Considering the action is the exerted force (input) and the effect is the
movement of the mass (output), it is natural to consider that velocity v is
the dof (observable) in mechanics.
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Mass-spring-losses system in inverse analogy
(1)

Deduction of the inverse analogy scheme
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Mass-spring-losses system in inverse analogy
(2)

• The action of a mechanical force corresponds to an electric current
generator.

• The resulting velocity, common to the three mechanical elements,
corresponds to the electric voltage at the terminals of the three
corresponding electrical components (admittances!)

• The graphical structure of the electrical scheme resembles the symbolic
representation of the mechanical system (simple substitution of symbols
with electrical admittance).
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Mass-spring-losses system in direct analogy

• The action of the mechanical force corresponds to an electric voltage
generator.

• The resulting velocity, common to the 3 mechanical components,
corresponds to the electrical current circulating through the 3
corresponding electrical components (impedances).

• The graphical structure of the electrical scheme is not similar anymore to
the symbolic mechanical scheme.
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Mechanical admittance

Ym = v
F

= jωCm
[1−ω2(MCm)+jω(RmCm)]

= jωCm
[1−( ω

ω0
)2+j ω

Qmω0
]

.

with ω0 = 1√
MCm

and Q = Mω0
Rm

.

The mechanical admittance Ym is maximal at resonance, which is somehow an
intuitive way to represent the system dynamic response (input=force,
output=velocity).
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Mechanical impedance

Zm = F
v

= [ 1
jωCm

+ Rm + jωM] =
[1−( ω

ω0
)2+j ω

Qω0
]

jωCm
.

with ω0 = 1√
MCm

and Q = Mω0
Rm

.

Whereas the mechanical system presents a maximal reaction at resonance (at
the frequency f0 = 1

2π
√
MCm

), it corresponds to a minimum of the impedance
Zm.
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Method for drawing a scheme in direct analogy
1 inspect the mechanical system:

• identify all velocities (assign them a value vi ). Usually, a velocity should be
attributed to every mass in the mechanical system

• identify all components connecting the different velocities (mass, spring,
dash-pot) and assign them an identifier (Mi , Cmi , Rmi )

• do not forget any generator (force/velocity), and eventually any lever

2 draw the symbolic mechanical scheme
• draw an horizontal line for each velocity (ie. ”velocity potentials”),

including the reference vref
• draw the corresponding mechanical components between each potential of

velocity (do not forget masses, which should always connect to the ground
reference vref )

• draw any generator (it should also connect to the ground reference)

3 convert the symbolic scheme into an inverse electric scheme, by
substituting the symbolic components with the corresponding admittance
(beware: the dash-pots components should be assigned the value 1/Rmi

in this analogy!)
4 Convert the inverse scheme into a direct scheme

• all mesh becomes a node and vice-versa,
• all admittance is converted in the corresponding impedance (C → L,

L→ C , 1/R → R,)
• all generator is inverted (force generator → velocity generator and

vice-versa)
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1. Inspect the mechanical system

Considered mechanical system
Identification of velocities and

mechanical components
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2. draw the symbolic mechanical scheme and
3. conversion in inverse analogy

Arranged symbolic mechanical
scheme Inverse analogy scheme
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4. conversion in a direct scheme

.

left: inverse analogy scheme. right: direct analogy scheme.
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Conclusion

This section has provided a methodology to model mechanical systems with
simple electric equivalent components, allowing to derive the main
characteristics in a straightforward manner.
We will now see how acoustic systems can also be modelled through simple
electric equivalent components.
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Acoustic waveguide

Goals

• To remind acoustic propagation phenomena in a 1D medium (acoustic
waveguide) and illustrate the equations with analogue electrical schemes

• To present the equivalent acoustical elements based on
electrical-acoustical analogies

• To provide a methodology to derive an analogue scheme representing the
main acoustic phenomena is small acoustic systems
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Sound : vibratory movement of a fluid

(Onde particules.avi)
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Sound : vibratory movement of a fluid

• The sound corresponds to an oscillating movement of fluid particles.

• The material medium particles movement can be characterized, eg. by
the particle velocity v .

• It is important to precise that there is no matter transport within the
acoustic movement (each particle fluctuates around the same position).

• There is an instantaneous energy transport (with a certain propagation
velocity called the celerity).

• The sound celerity depends only on the medium properties.
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Hypotheses

Mechanical properties:

• Fluids, as opposed to solid matter, are easily deformable materials
(media): we consider in the following that the fluid is compressible and
that the fluid molecules are weakly linked together (in perfect gazes, we
even consider there is no mutual interaction between molecules),

• We also consider the fluid is homogeneous (physical properties, at rest,
are the same everywhere), continuous and isotropic, and unlimited,

• There is no external force applied to the fluid (gravity will be neglected),

• We only consider the acoustic pressure forces,

• Last, we suppose (at least in the beginning) there is no dissipation
phenomenon.
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Presentation of the physical problem

Let’s consider a cylindrical acoustic waveguide along axis x , of section S and
infinite transversal length, subject to an acoustic excitation. We will focus on
a fluid portion of length dx
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Acoustic quantities

Quantities describing the movement :

• Displacement of the fluid sections ξ(x , t)

• Particle velocity v(x , t) =
∂ξ

∂t

• Particle acceleration a(x , t) =
∂v

∂t
Quantities linked to forces :

• Acoustic pressure p(x , t) Represents the small fluctuation of pressure
around the static pressure (atmospheric pressure ps = Patm)

Intrinsic properties of the fluid :

• Mass density ρ0 at rest, locally fluctuating (ρ(x , t)) under the fluid
particles oscillation

• Thermodynamic quantities :
• static pressure ps
• ratio of heat capacity at constant pressure (Cp) and the heat capacity at

constant volume (Cv ): Γ = Cp/Cv (Γ ≈ 1, 402 for diatomic gazes)

→ adiabatic compressibility χs = (Γps)
−1, represents the capacity of the

fluid to deform under an external force without heat exchange (no losses)
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Linear hypothesis: small fluctuations

In acoustics, sound pressure, particle displacement and velocity, and mass
density are supposed to oscillate with a low magnitude compared to the static
values.



PT = ps + p(x , t)

ρT = ρ0 + ρ

vT = 0 + v(x , t)

p(x , t)� P0

ρ� ρ0

ps = cste

ρ0 = cste

Fluid at rest : ps ,ρ0

Acoustic disturbance: p(x , t), ρ(x , t), et v(x , t)

35/63



4.1 Elec-
troacoustic
analogies

H. Lissek

Introduction

Mechanical
systems

Inverse
analogy

Direct analogy

Example

Conclusion

Acoustic
systems

Introduction:
acoustic
waveguide

Small
acoustical
components

Methodology

Synthesis

bibliography

Linear hypothesis: small fluctuations

In acoustics, sound pressure, particle displacement and velocity, and mass
density are supposed to oscillate with a low magnitude compared to the static
values.



PT = ps + p(x , t)

ρT = ρ0 + ρ

vT = 0 + v(x , t)

p(x , t)� P0

ρ� ρ0

ps = cste

ρ0 = cste

Fluid at rest : ps ,ρ0

Acoustic disturbance: p(x , t), ρ(x , t), et v(x , t)

35/63



4.1 Elec-
troacoustic
analogies

H. Lissek

Introduction

Mechanical
systems

Inverse
analogy

Direct analogy

Example

Conclusion

Acoustic
systems

Introduction:
acoustic
waveguide

Small
acoustical
components

Methodology

Synthesis

bibliography

Equations of the acoustic wave: inertia effects

• Let’s consider for this part the fluid portion is not compressible. We only
consider the acceleration of a non deformable mass of fluid m0 = ρ0Sdx
under the sound pressure forces.

• Newton’s law → m0a(x , t) =
∑

F = F (x , t)− F (x + dx , t)

• it yields S(−p(x + dx , t) + p(x , t)) = −S ∂p
∂x

dx

• We finally derive the linearized Euler law:

∂p

∂x
= −ρ0

∂v

∂t
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Equations of the acoustic wave: compressibility
effects

• Let’s now consider the fluid portion is only compressible, without inertia.

• The relationship between the particle volume variation and the pressure is
derived from the state equation of the fluid :

• δV (x , t)

V0
= −χsp(x , t), where χs = (Γps)

−1 is the adiabatic

compressibility, and V0 = Sdx the volume at rest

• By expressing the fluid volume variation δV to the elongation of the faces
of the fluid portion (ξ(x , t) and ξ(x + dx , t)), and deriving this equation
over t, we get :

∂v

∂x
= −χs

∂p

∂t
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Wave equation (1D)


∂p

∂x
= −ρ0

∂v

∂t
Inertia

∂v

∂x
= −χs

∂p

∂t
Compressibility

This system yields the following wave equation:

∂2p

∂x2
− ρ0χs

∂2p

∂t2
= 0

Note: c =

√
1

ρ0χs
in m.s−1 is the sound celerity.
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Solutions of the wave equation

∂2p

∂x2
− ρ0χs

∂2p

∂t2
= 0

The solutions of this equation are propagatives harmonic solutions,
propagating

• towards increasing x at velocity c: p+(x , t) = p0+ · e j(ωt−kx)

• towards decreasing x at velocity c: p−(x , t) = p0− · e j(ωt+kx)

Amplitudes p0+ and p0− (can be complex values) depend on the boundary
conditions of the waveguide.
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Electrical-acoustical analogies

It is noticeable that the pair of equations resembles the telegraphist’s equation
for an electric transmission line:

Electric telegraphist’s equations
∂u

∂x
= −L′ ∂i

∂t
Meshes

∂i

∂x
= −C ′ ∂u

∂t
Nodes

where L′ is the lineic line inductance
and C ′ is the lineic line capacitance.

Acoustic waveguide equations
∂p

∂x
= −ρ0

∂v

∂t
Inertia

∂v

∂x
= −χs

∂p

∂t
Compressibility

where ρ0 is the fluid mass density
and χs is the fluid compressibility.
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Representation by schemes (direct) (1)

Substituting the flow velocity q(x , t) = Sv(x , t) for the velocity v(x , t)
(Reminder: Pa = p.q): 

∂p

∂x
= −

ρ0

S

∂q

∂t
Meshes

∂q

∂x
= −Sχs

∂p

∂t
Nodes

How can we represent these equations with an ”electric” scheme?

p(x ; t)

q(x ; t)
ρ0

S
dx

q(x + dx ; t)

Sχsdx p(x + dx ; t)

We notice on the scheme that the inductance is associated with the mass density,
and the capacitance is associated with the compressibility.
This is called the direct analogue circuit, where
• inertia effects are represented by a self-inductance symbol
• compressibility effects are represented by a capacity symbol
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Representation by schemes (inverse) (2)

Substituting the flow velocity q(x , t) = Sv(x , t) for the velocity v(x , t)
(Reminder: Pa = p.q): 

∂q

∂x
= −Sχs

∂p

∂t
Meshes

∂p

∂x
= −

ρ0

S

∂q

∂t
Nodes

How can we represent these equations with an ”electric” scheme?

q(x ; t)

p(x ; t)
Sχsdx p(x + dx ; t)

(ρ0

S

)
dx q(x + dx ; t)

We notice on the scheme that the inductance is associated with the compressibility,
and the capacitance is associated with the mass density.
This is called the inverse analogue circuit, where
• compressibility effects are represented by a self-inductance symbol
• inertia effects are represented by a capacity symbol
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Small acoustic components and systems

In this section, we will see how to model small (compared to the wavelength)
acoustic sytems, and identify basic acoustic components, in an electric
representation of the acoustic phenomena.

q
e

p
e p

s

q
s

Systeme acoustique

pe

q
e

p
s

q
s

Schema electrique equivalent

au systeme acoustique

?
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Hypotheses

In the following we will consider different air-filled ducts. We will assume here
that

• the duct length is larger than its radius (plane wave assumption)

• the wavelength is much larger than the duct length.

x

x

longueur d’onde

onde

TUBE

In the following, we will need to use analogue electric quadripoles, on which we
apply the antisymmetrical convention (the ”input” is in receiver convention,
and the ”output” is in generator convention) - see illustration on slide 43
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Lumped elements assumption

Definition
The former hypotheses are named lumped-element (or ”local constants”) hypotheses.
In the case of a duct of length L, they read kL << 1, where k is the wavenumber,
then λ >> 2π

L , where λ is the wavelength. It is then a ”low-frequency” assumption.

Example
• Example 1 : for a length L = 10 cm, the assumption is valide within the range 0 - 3000 Hz.

• Example 2 : for a length L = 1 m, the assumption is valide within the range 0 - 300 Hz.

Consequences

• The following problems are 1 dimensional, all wave structures are planar.

• The physical quantities are linearly varying between the duct input and output.
The partial derivatives in the wave equations can be written as finite differences.

• We can consider the physical quantities only at the input (p1,q2) and at the output (p2,q2).
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Portion de tube: description

Let’s consider a duct of length L = x2 − x1 and section S .

x1 x

onde plane

x

TUBE

2

p1

q1

p2

q2

The physical variables considered here are:

• pressure p1 and p2 at the duct input and output,

• flow velocities q1 and q2 at the duct input and output.

The linear differential equations within the fluid generally read:
∂p

∂x
= −ρ0

S

∂q

∂t
∂q

∂x
= −Sχs

∂p

∂t

.
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Behaviorial laws
∂p

∂x
= −

ρ0

S

∂q

∂t
∂q

∂x
= −Sχs

∂p

∂t

.

Considering lumped elements approximations
∂p

∂x
'

p2 − p1

x2 − x1
∂q

∂x
'

q2 − q1

(x2 − x1)

,

the lumped-element equations of the duct read:
p2 − p1

x2 − x1
' −

ρ0

S

∂q1

∂t
q2 − q1

S(x2 − x1)
= −χs

∂p1

∂t

(Reminder: χs =
1

Γps
=

1

ρ0c2
0

)

For a harmonic plane wave at pulsation ω:

p1 − p2 '
ρ0L

S
jωq1, (1)

q1 − q2 =
V

ρ0c2
0

jωp1, (2)

where V is the total volume of the duct (V = S(x2 − x1)).
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Analogue electrical scheme

p1 − p2 '
ρ0L

S
jωq1

q1 − q2 =
V

ρ0c2
0

jωp1

• equation 1 expresses the inertia effects (drop of pressure) through the acoustic

mass ma = ρ0L
S

,

• equation 2 expresses compressibility effects (drop of flow velocity) through the

acoustic compliance Ca = V
ρ0c

2
0

.

What could the analogue electrical scheme be?

q1

Ca

ma q2

p2p1
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Duct closed at one extremity

Let’s consider the duct is closed at the right-side termination.

��������������������

���������������������
�
�
�

�
�
�
�

1p

q1

2p

q2=0

The boundary conditions impose q2 = 0 (null output flow velocity).
Physically, it can be explained by the fact that the compressibility effect of the
air is predominant (at low frequencies) in the whole tube.

Eq. (2) → q1 = jω
V

ρ0c2
0

p1
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Analogue scheme for the closed duct (1)

We can easily find the analogue scheme for the closed duct, after the
compressibility law:

p1 =
1

jω V
ρ0c

2
0

p1

If we introduce the compliance Ca = V
ρ0c

2
0

it leads to the following scheme.

q1

Cap1
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Analogue scheme for the closed duct (2)

Another way to derive this scheme is to consider the following system:

δp = p = − 1

χs

δV

Vs

Since δV = −
∫
Svdt = −

∫
qdt,

it yields

p =
1

Vsχs

∫
qdt =

1

Ca

∫
qdt,

where Ca = Vsχs =
Vs

ρ0c2
0

q

Cap
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Duct open at both extremities

Let’s consider the duct is open at the right-side extremity:

The boundary conditions read (in a 1st order approximation) p2 = 0 (null
pressure at the output). Physically, it can be explained by the fact that the
inertia effect of the air is predominant (at low frequencies) in the whole tube.
The flow velocity is constant within the duct and there exists a pressure drop
between the input and the output.

Eq. (1) → p1 − p2 = jω
ρ0L

S
q1

We will see later that the boundary condition becomes p2 = Zarq2 (where Zar is an ”acoustic
radiation impedance”) when the duct is radiating sound in the fluid medium.
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Analogue scheme for the closed duct

The tube is equivalent as a rigid mass of air with a certain acceleration.

If we ignore sound radiation at the extremity p2 = 0 (equivalent to a terminal
impedance load Za = 0). The electric scheme analogue to the open duct is
then an inductance ma = ρ0L

S
in series.

q1
ma q1

p2p1

Note: If we account for the acoustic radiation, we will show that this will
result in a modified acoustic mass m′a = ρ0L

S
+ mar , where mar is an additional

”radiation mass”.

53/63



4.1 Elec-
troacoustic
analogies

H. Lissek

Introduction

Mechanical
systems

Inverse
analogy

Direct analogy

Example

Conclusion

Acoustic
systems

Introduction:
acoustic
waveguide

Small
acoustical
components

Methodology

Synthesis

bibliography

Junctions/derivations
The objective is to draw the electrical scheme analogue to the derivation of
ducts, through a junction (common small volume).
Let’s consider the situation where an input duct derives into two side output
channels.

Considering the antisymmetrical convention, the physical laws impose at the
junction:

• pressure balance : p1 = p2 = p3,

• conservation of flow velocities q1 = q2 + q3

(or q1 + (−q2) + (−q3) = 0).
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Analogue scheme for a derivation

The analogue scheme is then:
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Acoustic losses: principle
The main phenomena of dissipation of an acoustic wave along the propagation
are the viscosity and the thermal conduction effects. Here, we will only
consider the viscosity occurring at the boundary layer of lateral walls in a
(thin) duct.
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Acoustic losses: principle

The main phenomena of dissipation of an acoustic wave along the propagation
are the viscosity and the thermal conduction effects. Here, we will only
consider the viscosity occurring at the boundary layer of lateral walls in a
(thin) duct.
The general principle of losses mechanisms is presented below:

• Losses due to viscous effects. In a waveguide, the particles oscillate along the
axis of the guide. At the lateral walls, the velocity is null: there exists a zone of
transition (boundary layer) between walls and the zone of oscillation of the
fluid, where the particle velocity increases rapidly. In this boundary layer, the
viscosity of the fluid oppses to the tangential movement of the fluid along the
wall. The energy lost by viscous effect is transformed into heat.
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Losses in electroacoustics and audio engineering

In electroacoustic design, it is sometimes mandatory to account for losses,
such as in:

• loudspeaker cabinets assembly usually presenting leaks, even for careful
realizations

• acoustic waveguides for which viscothermal losses are important due to
the size

• small cavities (eg. in microphones) for which viscothermal losses
condition the overall acoustic performances (damping factor of the
membrane resonance).
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Acoustic resistances in thin tubes

• Effect of a leak/thin tube : acoustic resistance localized within the thin
tube (or thin slot) of principal dimension l small compared to the
wavelengthλ (l < λ). This resistance is mainly due to the viscous
frictions against the tube walls. It is called viscous resistance.

• The acoustic resistance Ra unit is kg .m−4.s−1. It depends on the
dynamic viscosity η of the fluid (η = 18.610−6kg .m−1.s−1). This unit
kg .m−1.s−1 is also called poise (named after the scientist Poiseuille).
• in the case of a cylindrical thin duct of radius R and length l , the acoustic

resistance is Ra =
8ηl

πR4
.

• in the case of a parallelepiped slot of width b, height h and length l , the

acoustic resistance is Ra =
12ηl

bh3
.
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Representation of acoustic resistances

As seen before for the acoustic mass ma associated to a duct, the acoustic
resistance represents the circulation of a flow velocity q1 through a thin tube
subject to a pressure difference p1 − p2.
The acoustic losses will then be represented by a resistance symbol, in series
between potentials p1 and p2, with flow velocity q1.

p1 − p2 = Raq1

q1
Ra q1

p2p1
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Assembling elements : methodology

It is possible now to draw analogue schemes (in ”direct” or ”inverse” conventions)
for a systems of differents acoustic components. The methodology is the following:

1 identify the source (pressure or flow velocity, assumed ”ideal” here)

2 identify all volumes and attribute them a ”node”, with a corresponding acoustic
pressure pi

3 identify all junctions and attribute them also a ”node”, with a corresponding
acoustic pressure pi

4 add a node outside the system, representing the reference pressure p0 = 0 (ie.
the ground of the acoustic analogue circuit)

5 join all nodes (incl. p0) through meshes passing through corresponding acoustic
components:

• an open duct is an acoustic mass mai = ρ Li
Si

, represented by an

”inductance” symbol
• for each tube, we generally consider a term of losses Rai = 8ηπLi

S2
i

(for a

thin cylindrical tube), represented by a ”resistance” symbol
• a closed duct (or more generally a volume V ) is an acoustic compliance

Cai = Vi

ρ0c
2
0

, reprrsented by a ”capacitance” symbol always connecting the

pressure pi to the ground pressure p0

Note: an acoustic compliance is always connected to the ground p0!
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Acoustical-electrical analogies

Direct analogy

Voltage p

Current q

Electrical impedance Za

Inductance ma

map1 p2
q

Capacity Ca

Ca p
q2q1

Resistance Ra

Rap1 p2
q

Inverse analogy

Current p

Voltage q

Electrical admittance Za

Capacity ma

ma q
p2p1

Inductance Ca

Caq1 q2
p

Conductance Ra

1/Ra q

p2p1

Acoustic domain

Pressure p

Flow velocity q

Acoustic impedance Za =
p

q

Mass ma = ρ0L
S

·p1 · p2q

Compliance Ca = V
ρ0c2

·p
q1 q2

Resistance Ra = 8πηL
S2

·p1 · p2
q
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Mechanical-electrical analogies

Direct analogy

Voltage F

Current v

Electrical impedance Zm

Inductance MmMm

F

v − vref

Capacity Cm

Cm

F
v1 − v2

Resistance Rm

Rm

F

v1 − v2

Mechanical domain

Force F

Velocity v

Mechanical impedance Zm =
F

v

Mass Mm

v
F

Compliance Cm

v2

v1F

Dash-pot Rm v1

v2

F

Indirect analogy

Current F

Voltage v

Electrical admittance Zm

Capacity Mm

Mm

v
−

v r
e
f

F

Inductance Cm

Cm

v 1
−

v 2 F

Conductance Rm

1/Rm

v 1
−

v 2

F
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