4.4 Antenna and arrays

H. Lissek

Introductio

Introductio

antennas

Uniform lin

antennas

antenna

Interferenc

microphon

Superdirect

antenna

Cosinus

Linear

arrays

Onnorm line

arrays

Phased line

Arrays o

sources

Delay and

beamforming

4.4 Antenna and arrays

H. Lissek

November 14, 2018

1/17

Introduction

antennas

Phased line antenna

microphone Superdirectivantenna

antenna Cosinus weighting

Uniform li arrays

Phased line arrays

Arrays of directive sources

Delay an

Antenna and arrays in acoustics

- counteract intrinsic directivity of sources/sensors
- control the directivity of sources/sensors

The combination of multiple sources/sensors allows such custom directivities.

Examples

- line array sound system for controlling speech intelligibility
- microphones arrays for focused sensing

H. Lissek

Introduction

antennas

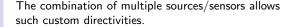
Phased line antenna

Interference microphone

Superdirective antenna Cosinus weighting

uniform li

Phased line arrays


Arrays of directive sources

Delay and sum beamform

Introduction

Antenna and arrays in acoustics

- counteract intrinsic directivity of sources/sensors
- control the directivity of sources/sensors

Examples

- line array sound system for controlling speech intelligibility
- microphones arrays for focused sensing

Note

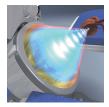
In this lecture, we will distinguish antenna and arrays:

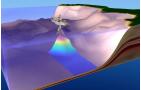
- antenna will refer to continuous arrangements of acoustic sources/sensors
- arrays will refer to discrete arrangements of acoustic sources/sensors

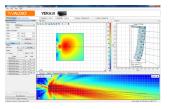
H. Lissek

Introduction

Applications of acoustic arrays/antennas


2D


2D FETAL PROFILE



Interferen

Superdire

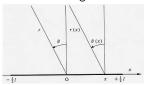
antenna Cosinus

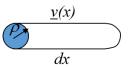
weighting

Uniform li arrays

Phased line

arrays Arrays of


directive sources


Delay an sum beamforr

Principle of linear antenna

Linear antenna

Continuum on a segment I of small pulsating sources of flow velocity dq.

In the far field

- $\theta(x) \approx \theta$
- $r(x) \approx r + x \cdot \sin \theta \approx r$

Radiation

Each element $dx \approx$ cylindrical monopole, with $dq(x) = 2\pi \rho v(x) dx = 2\pi \rho a(x) v_0 dx$ \rightarrow weighting function a(x)

Then $p(r,\theta)$ can be computed by integrating between -I/2 and I/2 the monopoles fields $dp = jZ_c k \underbrace{2\pi\rho a(x)v_0 dx}_{dg(x)} \underbrace{\exp(-jk(r+x\sin\theta))}_{4\pi r}$

Field of linear antenna

Sound pressure

$$p(r,\theta) = \int_{x=-I/2}^{+I/2} jZ_c k 2\pi \rho v_0 \mathbf{a}(\mathbf{x}) \frac{\exp(-jk(r+x\sin\theta))}{4\pi r} d\mathbf{x}$$

$$= jZ_c k \underbrace{2\pi \rho I v_0}_{q_0} \underbrace{\frac{\exp(-jkr)}{4\pi r}}_{\text{monopole field}} \underbrace{\frac{1}{I} \int_{x=-I/2}^{+I/2} \mathbf{a}(\mathbf{x}) \exp(-jk\theta \mathbf{x}) d\mathbf{x}}_{D_0(\theta)}, \text{ with } k_\theta = k \sin\theta$$

Fourier transform

Since a(x) = 0 outside segment I, we can integrate over $]-\infty; +\infty[$:

$$\int_{-\infty}^{+\infty} a(x) \exp(-jk_{\theta}x) dx = F_{x}|a(x)|$$

The directivity can be computed as a Fourier transform - over space quantities

- of the distribution a(x).

Interference microphone Superdirecti

Superdirectiv antenna Cosinus weighting

Uniform lines

Phased lin arrays Arrays of directive sources Delay and sum

Application

This example yields two different perspectives for using antenna theory:

- Analysis: from a(x) deriving the directivity $D_0(\theta)$
- Synthesis: specifying a directivity D₀(θ) to identify the target velocity distribution a(x)

However the second scenario is impractical: D_0 only specified for k_θ such as $|\sin\theta| < 1$ (incomplete information).

a(x) would be defined from $-\infty$ to ∞ but we need limited dimensions in practice.

Particular cases

- 1 Symmetric antenna: a(x) pair function $\to D(\theta)$ also pair function. $D_0(\theta) = \frac{1}{l} \int_{-l/2}^{+l/2} a(x) \cos(-k_\theta x) dx$
- 2 Uniform Linear Antenna (ULA): a(x) = 1, $\forall x \in [-\frac{1}{2}; \frac{1}{2}]$

$$D_0(\theta) = \frac{1}{l} \int_{-l/2}^{+l/2} \cos(-k_\theta x) dx = \frac{\sin(\frac{k_\theta l}{2})}{\frac{k_\theta l}{2}} = \operatorname{sinc}(\frac{k_\theta l}{2})$$

H. Lissek

Introduction

antennas Uniform linear

antennas Phased line

antenna Interference

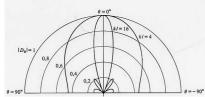
microphone Superdirective antenna

Cosinus weighting

Linear arrays

Uniform line arrays

Phased line arrays Arrays of

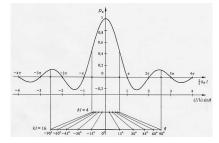

Delay and

Polar representation

Directivity diagram in polar coordinates for a single antenna

Highlight a principal lateral lobe (normal to the antenna)

+ eventual secondary lobes, if $kl>2\pi$


ULA representations

Cartesian representation

Cartesian representation of $D(\theta)$ as a function of $k_{\theta}I$.

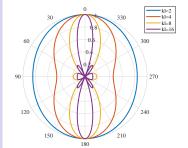
Allows comparing:

- 2 antennas of different lengths, at same frequency
- 2 antennas of same length, for different frequency ranges

Interference

microphon Superdirec

antenna


Linea

Uniform li

Phased lin

Arrays o

Delay an

ULA properties

- Directivity factor Δ: represents the ratio between a useful signal (targeted direction) and the noise (diffuse field).

$$\Delta = rac{4\pi}{\int\limits_{ heta=0}^{\pi}\int\limits_{\phi=0}^{2\pi}D_0^2(heta,\phi)\sin(heta)d heta d\phi}$$

• Radiation width θ_{-3} (half-power): Defined by $\mathrm{sinc}(\frac{kl}{2}\sin\theta_{-3})=\frac{1}{\sqrt{2}}$ Here, for $\theta_{-3}<30^\circ$, $\theta_{-3}\approx51\frac{l}{\lambda}$

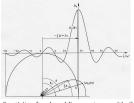
Phased linear antenna

Now if the distribution a(x) is a phase weighting:

$$a(x) = \exp(-j\beta x)$$
, with $\beta \in \mathbb{R}$

According to the former theory (Fourier transform), the directivity reads:

$$D_0(\theta) = \frac{\sin\left(\frac{I(k_{\theta} + \beta)}{2}\right)}{\frac{I(k_{\theta} + \beta)}{2}} = \operatorname{sinc}\left(\frac{I(k_{\theta} + \beta)}{2}\right)$$


The phased linear antenna allows controlling the orientation of the main lobe of a uniform antenna:

Polar representation

rotated by $\theta_0 = -a\sin(\frac{\beta}{L})$ in polar representation

Cartesian representation

shifted by $-\frac{\beta I}{2}$ in the cartesian representation

directivity of a phased linear antenna with $\beta=-k$ and $kl=6\pi$

Note: not only the orientation of the main lobe is rotated, but also a deformation occurs:

Example: for
$$\theta_0 = \frac{\pi}{2}$$
 (or $\beta = -k$), we have $\theta_{-3dB} \approx 110 \frac{\sqrt{l}}{\lambda}$

Phased lin

Arrays of directive

Delay an

Interference microphone

This is an example of an actual antenna concept used as a microphone.

It is mainly used as highly focusing microphone for the $\operatorname{film/radio}$ industry.

Same as phased linear antenna with longitudinal lobe (lineic phase shift $\beta=-k$). But how to achieve this?

H. Lissek

Introduction

Linear antennas Uniform lin

Phased antenna

Interference

microphone Superdirective antenna Cosinus

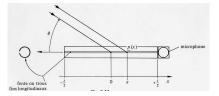
Linea array:

arrays

arrays Arrays of

directive sources

sum beamforr

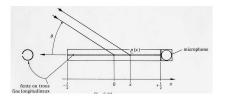

Interference microphone

This is an example of an actual antenna concept used as a microphone.

It is mainly used as highly focusing microphone for the $\operatorname{film/radio}$ industry.

Same as phased linear antenna with longitudinal lobe (lineic phase shift $\beta = -k$). But how to achieve this?

Cylindrical tube (plane mode) + narrow holes (or continuous slot), with a microphone at the termination (sensitivity M_p)


 \rightarrow Pressure p(x) created in x by far field sources induces a progressive plane wave in the tube up to the microphone

Interference microphone

Microphone output voltage = accumulation of infinitesimal plane waves. Each plane wave contributes to the global sensitivity (voltage) of the microphone:

$$M'(x) = M'_p \exp\left[-jk\left(\frac{l}{2} - x\right)\right] = M'_0 \exp(jkx), M'_p = \text{lineic sensitivity } \frac{M_p}{l}$$

It is then a phased antenna with $\beta = -k$.

Then the total sensitivity becomes: $\frac{M(\theta)}{M_p} = \operatorname{sinc}\left(\frac{kl(1-\cos\theta)}{2}\right)$ (here θ is defined wrt the axis of the microphone $\to \cos\theta$)

Cylindrical tube (plane mode) + narrow holes (or continuous slot), with a microphone at the termination (sensitivity M_p)

 \rightarrow Pressure p(x) created in x by far field sources induces a progressive plane wave in the tube up to the microphone

A particular case of phased linear antenna: $-\beta > k$:

- lobe centered at $\theta_0 > \frac{\pi}{2}$: a part of the lobe becomes "virtual" ($|\sin \theta| > 1!$)
- logitudinal real lobe ("endfire"): radiation angle narrower than the phased linear antenna

Introduction

antennas

antennas

Phased lin antenna

Interferen

Superdir

Cosinus

weighting

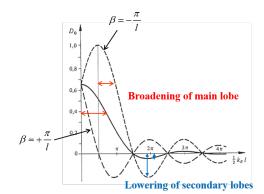
array

Unitorm I

Phased lin

Arrays

Dolay ar


sum sum

Let's assume $a(x) = \cos \frac{\pi x}{l}$

We can decompose into exponentials

ightarrow sum of 2 phased linear antennas with $\beta=\pm \frac{\pi}{I}$

$$D_0(\theta) = \frac{1}{2} \left[\mathsf{sinc}\left(\frac{k_\theta \mathit{l} - \pi}{2}\right) + \mathsf{sinc}\left(\frac{k_\theta \mathit{l} + \pi}{2}\right) \right]$$

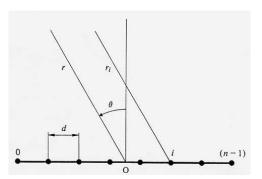
microph

Cosinus weighting

Linear arravs

Uniform I arrays

arrays


Arrays of

Delay ar

Linear array

Now, we will consider n sources/sensors, regularly arranged on a line with distance d from each other (total length l = (n-1)d).

- uniform linear array: small pulsating sources with same flow q
- phased linear array: small pulsating sources with flow $q=q_0\exp(-ji\psi)$, $i\in[0;n-1]$

Phased line

Interference

Superdirecti antenna Cosinus

Linea

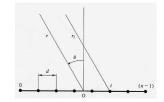
Uniform linea arrays

arrays

arrays Arrays of

directive

Delay and sum


Uniform linear arrays

Each source presents the same flow $\rightarrow a(i) = 1$, $i \in [0; n-1]$.

Far field

$$p(r,\theta) = p_m \sum_{i=0}^{n-1} \exp[-jk(r_i - r)]$$

Let's write
$$r_i = r + \left(i d - \frac{1}{2}\right) \sin \theta$$

Pressure *p* builds a geometrical suite:

$$p(r,\theta) = p_m \sum_{i=0}^{n-1} \exp\left[-jk_{\theta}(id - \frac{l}{2})\right]$$
$$= p_m \exp(jk_{\theta} \frac{l}{2}) \sum_{i=0}^{n-1} \exp(-jk_{\theta}d)^i$$
$$= p_m \exp(jk_{\theta} \frac{l}{2}) \cdot \frac{\exp(-jnk_{\theta}d) - 1}{\exp(-jk_{\theta}d) - 1}$$

Then
$$D(\theta) = \frac{p(r,\theta)}{np_m} = \frac{\operatorname{sinc}\left(\frac{nk_{\theta}d}{2}\right)}{\operatorname{sinc}\left(\frac{k_{\theta}d}{2}\right)} = \frac{\text{ULA of length } l' = nd = l+d}{\text{ULA of length } d}$$

Uniform linear arrays

$$D(\theta) = \frac{p(r, \theta)}{np_m} = \frac{\operatorname{sinc}\left(\frac{nk_\theta d}{2}\right)}{\operatorname{sinc}\left(\frac{k_\theta d}{2}\right)} = \frac{\operatorname{ULA of length } l' = nd = l + d}{\operatorname{ULA of length } d}$$

- if $d < \frac{\lambda}{4}$: $D(l = d) \approx 1 \rightarrow \text{array} = \text{ULA of length } l + d$
- if $d>\frac{\lambda}{4}$: higher directivity than antenna of same dimension
- for $d=m\lambda$, with $m\in\mathbb{N}$, D=1 not only for $\theta=0$: some secondary lobes might be as powerful as the main lobe...

Phased linear arrays

Let's consider:
$$q_i = qexp(-ji\psi), j \in [0; n-1].$$

Then
$$D_0(\theta) = \frac{\operatorname{sinc}\left[\frac{n(k_{\theta}d + \psi)}{2}\right]}{\operatorname{sinc}\left[\frac{k_{\theta}d + \psi}{2}\right]} = \frac{\operatorname{PLA of length } l' = nd}{\operatorname{PLA of length } d}$$

Once again, the phase ψ will orientate the lobe by $\theta_0 = - \mathrm{asin} \left(\frac{\psi}{k d} \right)$

4.4 Antenna and arrays

H. Lissek

Introductio

antennas

Phased lines

Interference microphone Superdirect

antenna Cosinus weighting

Unifor

Phased lin

Arrays of directive sources

Delay and sum beamform

Array of directive sources

Let's consider n identical sources with intrinsic directivity $D_S(\theta)$, orientated along same direction (coincident main lobes).

The array directivity is simply derived by multiplying the directivities:

- of the array $D_0(\theta)$
- of each directive source $D_S(\theta)$

$$\underbrace{D_r(\theta)}_{\text{array with directive sources}} = \underbrace{D_S(\theta)}_{\text{directivity array with of sources monopoles}} \underbrace{D_0(\theta)}_{\text{directivity array monopoles}}$$

Example: uniform array of n small uniform linear antenna of length a < d:

$$D_R(\theta) = \underbrace{\left[\mathsf{sinc}\left(\frac{k_\theta a}{2}\right) \right]}_{\substack{\mathsf{directivity of} \\ \mathsf{one antenna}}} \underbrace{\left[\frac{\mathsf{sinc}\left(\frac{nk_\theta d}{2}\right)}{\mathsf{sinc}\left(\frac{k_\theta d}{2}\right)} \right]}_{\substack{\mathsf{directivity of} \\ \mathsf{the array}}}$$

Objectives

- Control directivity
- reduce secondary lobes
- lower (or increase) θ_{-3dB}

Phased I antenna

Interferen

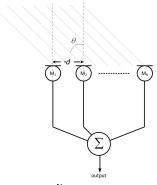
Superdire

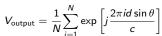
antenna

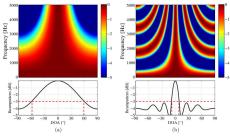
Cosinu weighti

Linea

Uniform


Phased li


Arrays o


directive sources

Delay and sum beamforming

Delay and sum beamforming

Beampatterns of a delay-and-sum beamformer composed of two microphones spaced by (a) 3.5 cm and (b) 20 cm

4.4 Antenna and arrays

H. Lissek

Introduction

Linear antennas

Uniform lin

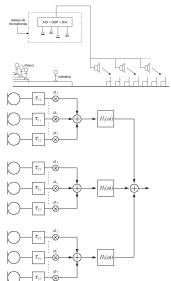
Phased lir antenna

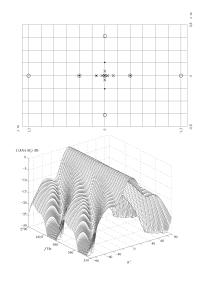
microphone

antenna Cosinus

Linea

Uniform Ii arrays


arrays


directive sources

Delay and sum beamforming

Delay and sum beamforming

Microphone array in the Cathedral of Lausanne (M. Rossi, F. Bongard, 2003)

