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Abstract—Peripheral nerve interfaces are one of the most
important inventions in the field of bioelectronics, allowing for
direct communication between the peripheral nervous system
and external devices. These are being used at the forefront of
applications such as prosthetics, pain management, and neural re-
habilitation. This report provides an overview of PNI, describing
its biological basis, types, hardware components, data processing
techniques and clinical applications in detail. While holding
much promise for transformation, long-term biocompatibility,
signal reliability, and scalability continue to be some of the main
challenges facing PNIs. This report underscores the importance
of interdisciplinary efforts to address these barriers and advance
PNIs toward widespread clinical application.

I Introduction

Neurointerfaces for the peripheral nervous system are a
modern and promising area of research in the field of medicine
and technology. Peripheral nerves, unlike the spinal cord and
brain, do not have protection in the form of bones covering
them, as a result of which they are more likely to be injured,
but also more accessible for invasive manipulations [[1].

IT Biological background

The structure of a peripheral nerve can be described as
a complex organization where myelinated and unmyelinated
nerve fibers of varying diameter and function are tightly
packed together in fascicles (Figure [T). A specialized sheath-
like structure called the perineurium(p) forms the outer bound-
ary of each fascicle. The perineurium is the primary source
of mechanical strength for the nerve trunk and is comprised
of up to 15 dense layers of cells and collagen. In addition to
nerve fibers inside each fascicle there is the endoneurium(end)
which consists of Schwann cells, immune cells, capillaries,
and a matrix of collagen and other connective tissue fibers
that support nerve fibers. Finally, holding multiple fascicles
together to form the outer bundle of a compound nerve trunk
is the epineurium(epi).

Fig. 1: Peripheral nerve anatomy [2]

The peripheral nervous system transmits control (efferent)
and informational (afferent) signals between the central ner-
vous system and other parts of the body. In cases of neuro-
logical or other dysfunction caused by injury or disease, due

to the relative accessibility of the peripheral nervous system,
they are an attractive target for therapeutic intervention [2]. Im-
plantable interfaces represent an attractive solution for direct
access to peripheral nerves and provide increased selectivity
for both recording and stimulation compared to their non-
invasive counterparts. However, the long-term functionality of
implantable PNIs is limited by tissue damage that occurs at
the implant-tissue interface, and therefore strongly depends on
the properties of the material, biocompatibility and implant
design. Current research is focused on the development of
mechanically compatible PNIs that adapt to the anatomy and
dynamic movements of nerves in the body, thereby limiting
the reaction of a foreign body [3].

IIT Types of PNIs

The first Peripheral Nerve Interfaces emerged in the late
1960s, consisting of simple wires or metal foil insulated with
silicone rubber. These early interfaces were primarily applied
to the phrenic nerve for diaphragm stimulation and to sacral
roots for bladder control. Since then, the range of applications
has expanded, revealing specific opportunities and challenges
associated with different nerves and target functions in the
peripheral nervous system (PNS) [3].

The main types and categories of PNIs can be divided into
extraneural, interfascicular, intrafascicular, and regenerative

(Figure [2).

Fig. 2: Main types of PNIs [2]

Extraneural PNIs are positioned outside the nerve, which
can preserve the nerve’s integrity by maintaining a greater
distance from individual fibers. However, extraneural PNIs
can damage nerves through compression, disrupting nutrient
transport and metabolism. The most common example of
this type, extraneural cuffs (Figure [3), are insulating tubes
wrapped around the nerve with exposed inner contact points
for stimulation and recording.

Interfascicular PNIs penetrate the epineurium but do not
disrupt the blood-nerve barrier. Simulations have shown that
electrodes positioned closer to the fascicles can preferentially
activate nerve fibers within the fascicle while avoiding acti-
vation of other fibers in the nerve trunk. Due to the limited
examples of interfascicular PNIs in the literature, it can be



inferred that the main challenges in their design include
the placement of electrodes between fascicles of irregular
shapes and sizes, electrical isolation between fascicles, and
the severity of the body’s reaction during chronic use.

Fig. 3: Extraneural PNIs [2]]

Despite the inevitable nerve damage, numerous studies
have investigated the use of intrafascicular PNIs (Figure @),
which benefit from the insulating properties of the perineurium
and can provide more efficient stimulation, sub-fascicular
selectivity, a higher signal-to-noise ratio, and better signal
detection compared to other PNIs. The primary challenge with
intrafascicular PNIs lies in the risk of damaging nerve fibers
and intraneural blood vessels, which can impair long-term
functionality.

Fig. 4: Intrafascicular PNIs [2]

Regenerative PNIs (Figure 5) aim to leverage the well-
known regenerative capability of peripheral nerves, which can
reconnect after transection. Instead of implanting electrodes
within the nerve, the nerve fibers regenerate and integrate
with the electrodes inside the PNI. If successful, regenerative
PNIs could potentially offer significantly higher resolution
and stability compared to other types of PNIs discussed so
far. A drawback is the need to transect the nerve, limiting
use in applications requiring nerve integrity, like bioelectronic
medicine. It is better suited for cases where distal innervation
is non-essential, such as prosthetic limbs integration.[2]].

Fig. 5: Regenerative PNIs [?2]

IV Hardware for Peripheral Nerve Interfaces
Challenges in Hardware Design for Neural Interfaces

An ideal peripheral nervous system interface should record
biological signals robustly and consistently. State-of-the-art
devices aim for low noise levels to preserve the signal-to-
noise ratio despite neural signals’ inherently small amplitudes.
These devices must also achieve high spatial selectivity while
minimizing potential harm to the biological environment.
However, several challenges arise during the development of
such interfaces, as outlined below. Low signal strength is a

critical limitation, as neural signals in the PNS are typically
minimal, ranging from 0.5 to 2 uV RMS [4]. These weak
signals are susceptible to contamination from noise, particu-
larly when long cables connect the electrodes to amplifiers,
introducing significant interference that can obscure neural
activity. Another significant challenge is the need for numerous
cables, which increases tethering forces and can potentially
cause physical damage to the tissue. Additionally, spatial
constraints play a crucial role; these devices must be compact
enough to fit within the limited space available while reducing
the foreign body response in the biological system.

Solutions in Amplification and Signal Acquisition

Despite the persistent challenges in neural interface design,
various solutions have been developed to enhance perfor-
mance by combining noise reduction techniques with selective
amplification. One notable advancement involves eliminating
long cables, which significantly reduces noise contamination.
However, achieving an optimal balance between current and
voltage noise remains critical, necessitating careful bandwidth
control and often requiring application-specific amplifiers. A
key objective in optimizing the signal-to-noise ratio (SNR) is
to achieve an ideal source resistance, defined as Ry (optimum) =
j—:, where e, and i, are the input voltage and current
noise, respectively. Although Rgpimum) 18 typically higher
than the inherent source resistance of the system, introducing
an additional resistor to bridge this gap often adds noise,
which can counteract SNR optimization efforts. To address
this, several innovative approaches have been proposed and
successfully implemented. On-site amplification, which in-
volves placing amplifiers close to the electrodes, significantly
reduces noise caused by long transmission lines. Hardware
averaging, another effective technique, connects each electrode
to multiple identical devices operating in parallel, resulting in
an effective source resistance of R (optimum) = inex" ~» Where N
is the number of devices[S][4]]. Similarly, power matching uses
transformers to increase the effective source resistance, with
the relationship expressed as R (optimum) = Z.ni#, where n
is the transformer turns ratio. Together, these strategies offer
promising solutions for mitigating noise and improving the
fidelity of neural interface systems [4].

Drawbacks and Limitations

Modern amplifier and circuitry designs offer numerous
advantages but are not without their limitations. A key concern
is increased power consumption, particularly in systems that
use parallel amplifiers, which experience a cumulative rise
in energy demands. This issue is especially critical for elec-
trodes used in long-term, chronic applications lasting several
years. Rapid battery depletion in such cases necessitates either
battery replacement surgeries or the integration of recharge-
able batteries. Scalability is another significant challenge.
Techniques like hardware averaging and transformer-based
power matching become increasingly complex as the system
grows. Power matching, for example, often requires large
transformers, which limit the number of channels that can



be implemented within a given space. Despite the proposed
solutions significantly enhancing signal quality, noise remains
a major limitation. Power matching would still suffer from
insufficient sources for optimizing their transformers’ turn
ratio. Similarly, hardware averaging inherently suffers from
a cumulative increase in input current noise.

Hardware Systems

Many available devices have been demonstrated to find a
reasonable balance between these constraints [6]. To reiterate
what has been explained before, these devices can be cat-
egorized into two main groups based on their invasiveness.
Extraneural electrodes, such as cuff and FINE electrodes, do
not penetrate the nerve but merely surround it. While both are
relatively considered non-invasive, one could argue that the
FINE electrode, which compresses the circular nerve into a
rectangular shape, achieves better signal measurement at the
cost of being more invasive, as excessive compression might
damage the nerve. Similarly, there are invasive electrodes that
perturb the nerve. Examples include the TIME and LIFE
electrodes, both of which penetrate the nerve. The TIME
electrode traverses the nerve transversely, while the LIFE
electrode traverses it longitudinally. The various electrodes are
illustrated in Figure [6]
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Fig. 6: Various peripheral nerve interfaces are diagrammed.
Extraneural interfaces such as i. cuff electrodes and ii. flat
interface nerve electrodes (FINE) surround the nerve. Intra-
neural interfaces such as iii. transverse intrafascicular multi-
channel electrodes (TIME) and iv. longitudinal intrafascicular
electrodes (LIFE) penetrate the nerve

One notable example of a complete advanced hardware
system is the FINE cuff electrode with on-cuff electronics,
combined with the circuitry presented below. This system
integrates a 16-channel low-noise amplifier, achieving a noise
level of 0.78 uV RMS for the frequency range of 700 Hz
to 5 kHz by incorporating the hardware averaging technique
with N = 4, along with multiplexers and digitizers. The design
offers several advantages, including a compact form factor, a
high signal-to-noise ratio (SNR), and reduced tethering forces.
Another benefit of this circuit is its scalability, allowing for
duplication by placing one on each side, thereby increasing
the number of channels to 32 while still maintaining the same
noise performance as well as on device processing.

Fig. 7: Left: Circuit layout for on-cuff electronics. This system
is capable of recording 16 channels of ENG at 15 kHz each
with < 1uVgars inputreferred noise and will fit on the back
of a typical FINE. One of these circuits may be placed on
each side for 32 channel recordings. A multiplexer and analog-
to-digital converter are included in the package, reducing the
number of wires and hence the force on the cuff, from 20 to
6. Right: Modified schematic of the Intan RHD2164 chip with
the external connection of four parallel devices per electrode
contact to implement hardware averaging for noise reduction.

V Data Processing
Lower limb EMG decoding

The movement of powered lower-limb prosthesis depends
on the ability to decode in real time motor intentions from non-
invasive electrode signals like electromyograms. In a recent
study[/7], EMG electrodes were placed on the residual muscles
of 13 subjects, and the electrical activity from these muscles
was recorded alongside motion data detecting gait events like
heel and toe strikes. This aimed to predict the user’s intended
movements during various tasks such as level-ground walking,
stair navigation, and ramp ascent/descent. This data is input
into a support vector machine (SVM) classifier, which was
trained to classify motor tasks based on the extracted features.
The algorithm focused on decoding motor intentions early
in the gait cycle, leveraging sliding observation windows to
enhance computational efficiency. The optimal setup, combin-
ing data from three EMG channels and IMUs, achieved a
decoding accuracy of over 94% while maintaining minimal
computational complexity, particularly when using a linear
SVM.

Wavelet denoising and spike sorting for electroneuro-
graphic signal processing

Invasive approaches of PNS interfaces for prosthesis control
rely heavily on the ability to differentiate efferent signals from
afferent ones. To that end, two main methods are combined in
literature(8]], wavelet denoising and spike sorting.

Wavelet denoising is a robust method to reduce noise
while preserving the critical features of the neural signal.
The process involves transforming the raw ENG data into
an orthogonal time-frequency domain using a translation-
invariant wavelet transform, which decomposes it into coef-
ficients representing different frequency components. Noise
components, assumed to follow a Gaussian distribution, are
filtered by applying a threshold to the wavelet coefficients
before reconstructing the signal. This ensures that transient



neural features, like spikes, are retained while minimizing
background noise.

Following denoising, spike sorting is applied to identify and
classify individual spike waveforms. The process begins by de-
tecting spikes that exceed a predefined threshold, segmenting
their waveforms into fixed windows and clustering them into
distinct groups using machine learning or statistical methods.
These clusters correspond to different neurons, enabling re-
searchers to study neural activity at a single-unit level.

VI Clinical Applications
Peripheral nerve stimulation for pain relief

Today, peripheral nerve stimulation can be used for pain
relief in patients suffering from chronic pain disorders which
have been failed by other types of treatment like medications
and physical therapy.

One example of that is the treatment of trigeminal neuralgia,
which is a condition of neuropathic facial pain. It can be
caused by compression of the root nerve and complications
from other neurological conditions such as multiple sclerosis,
or, like a lot of other chronic pain disorders, it can have
no discernable causes[9]. PNS is emerging as a promising
treatment for this condition.

A study analyzing case series of trigeminal neuralgia pa-
tients treated with PNS shows a typical process for these
trials[10]]. Nineteen patients first underwent percutaneous trial
stimulations before permanent implantation. Different regions
of the face depending on pain location and different stim-
ulation parameters were tested, only subjects demonstrating
significant pain relief were considered for permanent implan-
tation. Electrodes are implanted on the relevant trigeminal
branches and stimulation is left under the control of the patient
with appropriate thresholds of intensity. Long term follow-
ups (6 to 58 months) showed that patients still receiving
stimulation reported a mean pain reduction of 52.3% .

This is one of many studies showing promising results
regarding the efficacy of this treatment[11], however research
in this field has its limitations. In the aforementioned study,
20% of patients experienced infections, and overall, studies
on PNS for trigeminal neuralgia show higher incidences of
complications than other stimulation methods such as spinal
chord stimulation[12]. Efficacy of pain relief seems to be
dependent on the stimulation target and etiology of trigeminal
neuralgia.[11]. Further research and randomized controlled
trials are warranted before PNS of the trigeminal nerve can
be considered as a common clinical treatment of trigeminal
neuralgia.

Peripheral nerve recording for prosthesis control

Restoration of sensory-motor function in patients having lost
a limb due to disease, injury or amputation is a crucial field
of research that could improve the lives of millions. There are
currently many research groups developing neurocontrolled
prosthesis using different approaches. One of which is based
on the recording of efferent nervous signals in the nerves

and muscles of the residual limb for prothesis control and
stimulation of afferent nerves for sensory feedback.

Invasive electrodes, such as intrafascicular and regenera-
tive electrodes, provide high-resolution signal acquisition and
bidirectional communication. Intrafascicular electrodes, for
example longitudinal intrafascicular electrodes (LIFEs), are
inserted along the length of a nerve, positioned between and
parallel to nerve fibers. They have demonstrated the ability
to distinguish signals originating from different areas of the
skin and accurately decode motor intentions[/13]][[14]. Addi-
tionally, intrafascicular electrodes can deliver sensory feedback
by stimulating specific nerve fibers, enabling users to feel
sensations such as pressure or touch from their prosthetic
limbs[13]]. Despite their promising capabilities, they are lim-
ited by a restricted number of recording channels and long-
term biocompatibility concerns for their widespread clinical
application consideration. In contrast, regenerative electrodes,
or sieve electrodes, rely on axonal regeneration, where nerve
fibers grow through micro-scale holes in the electrode array,
establishing direct contact with individual axons or small
groups. This design allows for an interface with a potentially
larger number of axons and higher SNR than other electrode
types[[15][[16]. However, their functionality depends on the
quality and consistency of axon regeneration, which can be
unpredictable and time-consuming.

A recent case study proposes a new design for a soft
transfemoral prosthetic socket[17]] for lower limb amputees
which would allow integration of sensors on the residual
limb skin interface. EMG sensors decode the user’s movement
intentions, achieving a median accuracy of 73% in motor
intention classification during various walking tasks, while
vibrotactile units provide sensory feedback to enhance user
interaction and balance. Accuracy could be further enhanced
with techniques such as muscle reinnervation[18], however it
requires surgical intervention. Additionally, the temperature
and humidity sensors monitor the thermal conditions of the
residual limb, permitting better health monitoring. The ability
to decode user intent accurately and provide real-time sen-
sory feedback not only enhances prosthetic control but also
promotes a better gait recovery.

VII Conclusion

Peripheral nerve interfaces have the potential to revolution-
ize medicine and human-machine interaction. In the future,
further miniaturization and biocompatibility improvements
will enhance the longevity and integration of PNIs with the
human body. Advances in signal processing, including the
incorporation of artificial intelligence and machine learning,
will refine our ability to decode complex neural signals,
leading to more precise and naturalistic control of prosthetics
and other devices. Hybrid approaches that combine invasive
and non-invasive techniques could overcome the gap between
performance and usability, thus broadening their clinical im-
pact. Beyond restoring lost functions, in the future, PNIs may
also be able to easily integrate with brain-computer interfaces
and provide targeted treatments of neurological disorders.
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