EE-517: Bio-Nano-Chip Design

Solutions 11: Current-to-frequency converters, Amperometric detection, Temperature measurement November 24, 2020

Problem 1

In amperometric detection, Current-to-Frequency Converters (I-to-F converters) are current-mode circuits used to transduce the faradaic current into a frequency-modulated signal that could be directly fed to processing circuits or relayed to transceivers. They present several advantages over voltage-mode circuits. They are more power and area-efficient, thanks to the elimination of amplifying circuitry and analog-to-digital converter, that are used in typical transimpedance current readout circuits. I-to-F converters are also less sensitive to matching and noise issues.

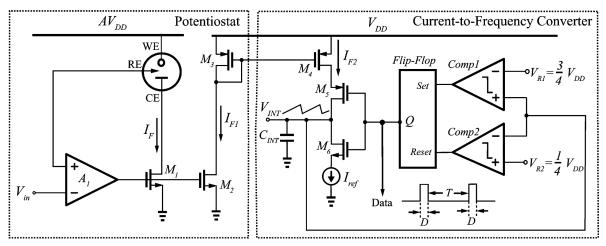


Figure 1: Simplified schematic of potentiostat and current-to-frequency conversion of oxidation currents.

- (a) Fig. 1 is a simplified schematic of the circuit implemented at transistor level. Nevertheless, it highlights the main blocks constituting the potentiostat and the I-to-F converter.
 - Potentiostat: A₁ is a single-stage amplifier. Together with transistor M₁, they constitute the control amplifier of the potentiostat, fixing the electrochemical cell potential to AV_{dd}-V_{in} through the feedback loop, while measuring the faradaic current drawn by the cell. A current conveyor structure is adopted, where the faradaic current is conveyed from WE to a high impedance node (drain of M₁). The current I_F is mirrored at M₂, and is injected to the I-to-F converter. The current mirror formed by M₃ and M₄ is added to minimize the injection of the switching noise from the converter to the potentiostat.
 - I-to-F converter: it comprises a sampling capacitor C_{INT} , two comparators and a flip-flop. I_F is encoded as a pulse signal as the following:
 - during the sensing phase (Data=0): M_5 is on and M_6 is off. The mirrored faradaic current I_{f2} is integrated in C_{INT} until the voltage across the capacitor, V_{INT} , exceeds $V_{R1} = \frac{3}{4} \cdot V_{dd}$. Then, the comparator Comp1 sets the flip-flop.
 - during the reset phase (Data=1): M_5 is off and M_6 is on. I_{ref} starts discharging C_{INT} until V_{INT} reaches $V_{R2} = \frac{1}{4} \cdot V_{dd}$. Then, the comparator Comp2 resets the flip-flop.

 $V_{\rm INT}$ is a sawtooth waveform, whereas Data is a low-duty-cycle pulse waveform of fixed pulsewidth D, and the time between two consecutive pulses, T, is inversely proportional to $I_{\rm F}$,

$$D = \frac{V_{dd}C_{INT}}{2I_{ref}} \qquad T = \frac{V_{dd}C_{INT}}{2I_{F}}$$

(b) The maximum resolvable frequency of the pulsed signal Data allows sizing the capacitor C_{INT} .

$$f = \frac{1}{D+T} = \frac{2}{V_{dd}C_{INT}} \cdot \frac{I_{ref}I_f}{I_{ref}+I_f} \leq f_{max}$$

Thus, $C_{\rm INT} \geq 5.55\,\mathrm{pF}.$ $C_{\rm INT} = 6\,\mathrm{pF}$ is taken.

(c) The circuit of Fig. 1 allows to measure oxidation currents only. In order to measure reduction currents, the potentiostat should be updated as in Fig. 2.

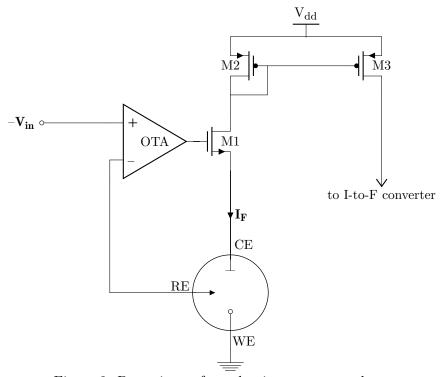


Figure 2: Potentio
stat for reduction current readout.

Problem 2

A differential current measurement is performed between two electrodes, one functionalized with Carbone Nanotube (CNT) and cytochrome P450 3A4, and one with just CNT. A grounded-WE electrochemical cell with two Transimpedance Amplifiers (TIAs) is implemented. The TIA measuring the enzymatic reaction is multiplexed between the two sensing electrodes, for Cyclophosphamide and Dextromethorphan detection. The circuit is shown in Fig. 3. An unity-gain differential amplifier is added downstream to resolve the difference between V_2 and V_1 , so that

$$V_{out} = R_{12}I_{1,2} - R_3I_3$$

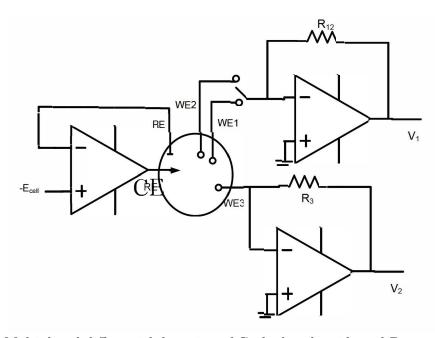


Figure 3: Multiplexed differential detection of Cyclophosphamide and Dextromethorphan.

To detect Cyclophosphamide with Cytochrome P450 3A4, we need to apply $E_{\rm cell} = -296\,\mathrm{mV}$ (book p.210). Likewise, Dextromethorphan detection is carried out by applyin $E_{\rm cell} = -392\,\mathrm{mV}$ (book p.210)

Problem 3

Temperature measurement is implemented with a *Proportional-to-Absolute Temperature* (PTAT) circuit. A beta-multiplier architecture is adopted. The circuit is displayed in Fig. 4.

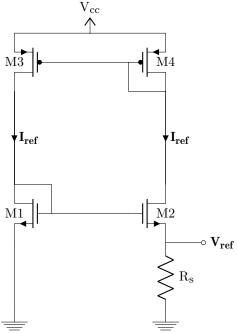


Figure 4: Beta-multiplier implemented for temperature measurement.

The MOS transistors are operating in weak inversion. The currents in the branches are

$$\begin{split} \mathrm{M1:} & \quad I_{D1} = I_{S1} \exp\left(\frac{V_{g1} - V_t}{nU_t}\right) \\ \mathrm{M2:} & \quad I_{D2} = I_{S2} \exp\left(\frac{V_{g2} - nV_{ref} - V_t}{nU_t}\right) \end{split}$$

where

- MOS transistor specific current: $I_S = 2 \frac{W}{L} \mu C_{ox} n U_t^2$
- MOS threshold voltage: V_t
- MOS slope factor: n
- Thermal voltage: $U_t = \frac{k_B T}{q} = 26 \,\mathrm{mV}$ at 25 °C

Defining the ratio factor k between M1 and M2 as $\mathbf{I_{S2}} = \mathbf{kI_{S1}}$, and considering that $I_{D1} = I_{ref}$ is mirrored in the second branch, $I_{D1} = I_{D2} = \frac{V_{ref}}{R_s}$, the final expression is

$$k = \exp\left(\frac{I_{ref}R_s}{U_t}\right) = 47$$

Eventually, $\frac{W}{L}\Big|_{M2} = 47\frac{W}{L}\Big|_{M1}$, and $\frac{W}{L}\Big|_{M3} = \frac{W}{L}\Big|_{M4} = 2\frac{W}{L}\Big|_{M1}$ is chosen, where the factor 2 accounts for charge carriers mobility compensation between nMOS and pMOS transistors.

Reference books

- P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits (5th edition), Wiley, 2009
- D. Stefanovic and M. Kayal, Structured Analog CMOS Design, Springer, 2008

