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Lecture #7
Checking Probes-layer quality
(RM+SPR+SEM+AFM)
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Lecture Outline

(Book Bio/CMOS: Chapter’ paragraphs §5.2.1-2)

Resonant Mirror

Surface Plasmon Resonance
Scanning Electron Microscopy
Atomic Force Microscopy

Scanning Tunneling Microscopy

(c) S.Carrara



How to characterize
the Probes Immobilization?

We have seen what are the
mechanisms of self-assembly!

How to monitor the self-
assembly process?

How to check the film quality?

(c) S.Carrara



Three-layers Reflection
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Three-layers Reflection

R=Ru+TR:xT+ T12R23T21(R21R23) + T12R23T21(R21R23)2 +...

R=Ru+ ET12R23T21(R21R23)H
n=0

R=Ru+ T12R23T212 (Rlezs)n
n=0

By the geometric series
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The Reflection coefficient
and the Electrical Field
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The Fresnel Coefficients
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Three-layers Reflection
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Product

TIAsys plus Affinity Sensor
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Yield Monitoring
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Three-layers Reflection
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The Propagation along the interface
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The Evanescent wave
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Permittivity (&, )
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Negative Permeability of metals

Zhang et al. J. Opt. Soc. Am. B/Vol. 23, No. 3/March 2006 pag 434
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Negative Permittivity in metallic clots

Permeability ( £4)

New Journal of Physics 10 (2008) 115039 (15pp)
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Negative dielectric constant
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Electronic Waves
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Characteristic of the evanescent wave
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Simulation of
Evanescent wave propagation

410 nm for HeNe [ESERRIEIESS
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Penetration of the Evanescent Wave

For an amplitude of 1/3 of the value in z=0, we have
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For gold, with relative magnetic permeability close to one and relative
electric permittivity equal to 6.9, we obtain a thickness of

1 A 400 nm
bzl A/|u,6r] V691

For nickel, with permeability and permittivity equal to 100 and 10
(respectively), we get: 1 400 nm
Znickel — ~ 12 nm.
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Penetration of the Evanescent Wave

The Plasmon
T
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Perturbation of the Evanescent Wave

(c) S.Carrara 21



A Plasmon Resonance
based Biosensor

BIACORE 3000

(c) S.Carrara
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The sensing Area
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Working Principle
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The persence of the complexes onto the gold surface will change the angle
of resonance for the formation of the Surface Plasmons. This shift 1s
proportional to the ligands amount bonded onto the surface
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Characterization of Monoclonal antibodies
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Shift in the resonant angle to sense IgG adsorption

(c) S.Carrara



Kinetic Studies
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The kinetics could 1s reached by means of the change
of the reflected intensity at fixed angle
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Angle of Detector

Detection of Binding Events

Analyte Flow

—

Time

Molecular uptake as monitored by SPR
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SPR shift (nm)

SPR on SAM
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Figure 7. Comparison of the hybridization of a truncated comple-
ment (c-A 21) with the hybridization of the full-length complement
(c-A 24). The ssDNA/OEG surface was prepared from a solution

with a DNA mole fraction of 0.02.
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DNA hybridization as monitored by SPR
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Figure 2. Control experiment to test DNA specificity. Both c-A
and c-B were flowed over a sequence A ssDNA/OEG SAM, but

only the complementary DNA hybridized. The ssDNA/OEG surface
was prepared from a solution with a DNA mole fraction of 0.02.

Langmuir, Vol. 22, No. 10, 2006
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SPR on SAM

Langmuir, Vol. 14, No. 11, 1998
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Figure 7. Increase in SPR measured thickness of the mono-
layer of disulfide 1 upon treatment with 0.1 mM ethanol solution
of octadecanethiol.

Thiols SAM formation as seen by SPR
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How to characterize
the Probes Immobilization?

We have seen what are the
mechanisms of self-assembly!

How to monitor the self-
assembly process?

How to check the film quality?
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Four different Microscopies

Transmission Electron Microscopy (TEM)
Scanning Electron Microscopy (SEM)
Atomic Force Microscopy (AFM)

Scanning Tunneling Microscopy (STM)

(c) S.Carrara 31



All are Scanning Microscopies

It works for all the

Scanning Microscopies

The sample scanning generates an 1mage visualized
with computer graphic tools

(c) S.Carrara 32



SEM Microscopy

Nanoparticles Nanotubes Chromosome fiber

Proteins Bacteria

Atoms DNA | virus Cell
|

| | | | |
0.01 nm 1 nm 1 um 1 mm 1m
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Electron Microscopies

Scanning I
Electron oS
Microscopy * ~

Transmission
Electron
Miscroscopy
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Electron Microscopy Principle

[ Emitted electrons from the 0.1-40 KeV
same atom due to other
electrons filling inner-shell
vacancies created by
scattered ones ]

Incident
Electron Beam

Auger Electron '
& \ | Backscattered

Electron

SEM Microscopy

Characteristic Secondary
X-ray Electron
Specimen | — — — — s Absorption
l Electron
Transmission
Electron

TEM Microscopy
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Electron Microscopies

Fluo-screen Monitor Computer

(c) S.Carrara
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TEM Imaging

Cell of Cyanobacteria Microcystis by TEM

(c) S.Carrara 37



TEM Imaging
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SEM Imaging

Gold nanoparticles made off gold core and a
thiols-shell to stabilize the particle

(c) S.Carrara
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SEM Imaging

Antigens localized on the surface
of bacteria cells

(c) S.Carrara
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Isolated Chromatin (DNA-macromolecules including hystons and
not-histons proteins) of about 30 nm and with small filament
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End part of Nodularia
(cyanobacteria in filament shape)
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200nm 2008

Carbon Nanotubes with a metallic nanoparticels

located at the apical part
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AFM detection principle

: Laser Diode

Position-sensitive
Cantilever Spring

Photodetector
f/

Detection principle i1s obtained by monitoring the
bending of the cantiliver that host the tip
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3 major abilities:

1. force measurement
between probe-sample

2. imaging from forces that
sample imposes on probe
(3D, pseudocolor)

3. manipulation use forces
to change sample -
properties




AFM Tip fabrication

pyrz}midal pit
¢ silicon nitride L -~
cantilever
silicon wafer
Pit etching in Si SizN, coating Si underetching

AFM tips are typically sculpted on silicon wafers
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SEM on Silicon nitride probes
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Optics versus AFM

The fluorescence intensity image
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Fluorescent Nanoparticles with average size of about 40 nm
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AFM Imaging

TEM images

Gold nanoparticles made off gold core and a
thiols-shell to stabilize the particle

(c) S.Carrara
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F} Imaging

Fig. 1. Representative AFM images of plasmid DNA on the surface of newly cleaved mica at room temperature: open circular
structure (a) (2 pmx2 pm), supercoiled structure (b) (2.5 pmx2.5 pm) and relaxed supercoil (¢) (2 pmx2 pm).

Fig. 2. Representative AFM images of plasmid DNA on the surface of mica after heated at 80 °C (a), 84 °C (b) and 90 °C (c). In both
(a) and (b) circular structure disappear and formed globule structure with undenatured tail. (¢) Only globule structure appear, which
correspond to whole denaturation of DNA. Scale bar 500 nm for all images.

(c) S.Carrara
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AFM Imaging

dx.doi.org/10.1021/bm301063m | Biomacromolecules 2012, 13, 3503—-3509

A protein (Reaction ©
Center) located <,
in between a
metallic nanogap © 0
(c) S.Carrara 50



Lateral resolution

Lateral resolution is primarily determined by the radius of
curvature of the tip end.

Typical tip radii quoted by the manufacturers for tapping
mode tips are around 5 — 15 nm

The sidewall angles of the tip will also determine its ability to
probe high aspect ratio features.

(credit by Cambridge University) 51



Errors in width measurements

Assuming a hemispherical tip:
h > R(1-cosq)

R
A_W — Rtang
2 2

h < R(1-cosa)

R
d %W _ Jh(2R=h) - hcota

Not only the tip radius but the feature height and its likely shape
must be known to accurately determine the true width

(credit by Cambridge University) 52



Dense nanostructure arrays

or the overall appearance of the surface

For densely packed features the tip size can also cause errors in determining
the height of the islands,
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Special AFM tips

Diamond-coated tip FIB-sharpened tip Gold-coated Si;N, tip

Special tips are sometimes used to further

increase the miscroscope resolution
(images credit by University of Utah) 54



Terraced surfaces

hemispherical

. /tlp

w
h e

Single atom-high steps may be routinely imaged
by AFM.

However, as step-edges become closer together
(e.g. on vicinal substrates) it may become
Impossible to see separate terraces.

(credit by Cambridge University)
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Small pits

asured
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When imaging small pits, such as pits associated with threading
dislocation terminations, one is unlikely to see the true pit depth.

The measured width will actually by more accurate than the measured
depth, which will depend on the angle a, and the tip radius.

The pit will not be visible if the measured depth is less than the noise
level.

(credit by Cambridge University) 56



STM Microscopy

Control voltages for piezotube

Tunneling Distance control
current amplifier and scanning unit

Piezoelectric tube
with electrodes
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Data processing

and display

The STM Microscopy is based on tunneling currents as
established in between the tip and the sample
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STM Microscopy

== = Control voltages for piezotube
L
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inneling Distance control
jpt amplifier and scanning unit
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and display

Data processing

The STM Microscopy is based on tunneling currents as
established in between the tip and the sample

(c) S.Carrara
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STM imaging
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Carbon atoms in the lattice structure of the highly oriented
pyrolytic graphite. Image by STM in air.
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2.5 nm

v

Organic molecules (thiols) self-assembled onto highly oriented
pyrolytic graphite. Image by STM in air.
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