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EE-517: Bio-Nano-Chip Design  

Lecture #7 
Checking Probes-layer quality 
(RM+SPR+SEM+AFM) 
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• Resonant Mirror 
• Surface Plasmon Resonance 
• Scanning Electron Microscopy 
• Atomic Force Microscopy 
• Scanning Tunneling Microscopy  

Lecture Outline 
(Book Bio/CMOS: Chapter’ paragraphs §5.2.1-2) 
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How to characterize  
the Probes Immobilization? 

We have seen what are the 
mechanisms of self-assembly! 
How to monitor the self-
assembly process? 
How to check the film quality? 
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Three-layers Reflection 
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Three-layers Reflection 
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The Reflection coefficient  
and the Electrical Field 
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The Fresnel Coefficients 
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Three-layers Reflection 
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IAsys plus Affinity Sensor  

Product 
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9 

Yield = Percentage of covered surface  

Yield Monitoring 

3 t [min.] 

Base Line 
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Three-layers Reflection 
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The Propagation along the interface 

n2 

n1 

Ei Er 

Et 

k 

tizikxik
ii

zxeEE ω−+= 0
tizikxik

rr
zxeEE ω−−= 0

tizikxik
tt

pzxeEE ω−+= 0

22
0 xppz kkk −= ε

( )
⎪
⎩

⎪
⎨

⎧

=

=

==

pp

px

n

kk
ck

µε

ϑε

λπω

2

0

0

sin
/2/



(c) S.Carrara 13 

The Evanescent wave 
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Negative Permeability of metals 
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Negative Permittivity in metallic clots 
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Negative dielectric constant 
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Electronic Waves 
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The Plasmon! 

Characteristic of the metal  

Characteristic of the evanescent wave  
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Simulation of  
Evanescent wave propagation 

410 nm for HeNe laser in glass 



Penetration of the Evanescent Wave 
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For an amplitude of 1/3 of the value in z=0, we have  

By extracting z: 

For gold, with relative magnetic permeability close to one and relative 
electric permittivity equal to 6.9, we obtain a thickness of  

For nickel, with permeability and permittivity equal to 100 and 10 
(respectively), we get: 
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Perturbation of the Evanescent Wave 

The Diminished Plasmon 

The Diminished Evanescent wave 

The Adsorbed Molecules 

The Increased Intensity  

≈50 nm 
Gold 
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BIACORE 3000 

A Plasmon Resonance 
based Biosensor 
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The sensing Area 
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The persence of the complexes onto the gold surface will change the angle 
of resonance for the formation of the Surface Plasmons. This shift is 

proportional to the ligands amount bonded onto the surface 

Working Principle 
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Shift in the resonant angle to sense IgG adsorption  

Characterization of Monoclonal antibodies  

Bo Liedberg, et al, Biosensors & Bioelectronics 10 (1995) i-iv  
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Kinetic Studies 
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The kinetics could is reached by means of the change 
of the reflected intensity at fixed angle 
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Molecular uptake as monitored by SPR 

Detection of Binding Events 
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DNA hybridization as monitored by SPR 

SPR on SAM 
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Thiols SAM formation as seen by SPR 

SPR on SAM 
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How to characterize  
the Probes Immobilization? 

We have seen what are the 
mechanisms of self-assembly! 
How to monitor the self-
assembly process? 
How to check the film quality? 
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Four different Microscopies 

1.  Transmission Electron Microscopy (TEM) 
2.  Scanning Electron Microscopy (SEM) 
3.  Atomic Force Microscopy (AFM) 
4.  Scanning Tunneling Microscopy (STM) 
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All are Scanning Microscopies 

It works for all the  
Scanning Microscopies 

The sample scanning generates an image visualized 
with computer graphic tools 



(c) S.Carrara 33 

SEM Microscopy 

1 m 0.01 nm 1 nm 1 µm 1 mm 

Cell 
Bacteria 

Chromosome fiber 

Virus 
Proteins 

Nanotubes 

DNA 

Nanoparticles 

Atoms 
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Electron Microscopies 
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Electron Microscopy Principle 
[ Emitted electrons from the 

same atom due to other 
electrons filling inner-shell 

vacancies created by 
scattered ones ] 
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Electron Microscopies 
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Cell of Cyanobacteria Microcystis by TEM 

TEM Imaging 
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Virus T4 Bacteriophages  

TEM Imaging 



(c) S.Carrara 39 

Gold nanoparticles made off gold core and a 
thiols-shell to stabilize the particle 

SEM Imaging 
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Antigens localized on the surface 
of bacteria cells 

SEM Imaging 
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Isolated Chromatin (DNA-macromolecules including hystons and 
not-histons proteins) of about 30 nm and with small filament 

SEM Imaging 
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End part of Nodularia  
(cyanobacteria in filament shape) 

3D effect on SEM 

SEM Imaging 
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Carbon Nanotubes with a metallic nanoparticels 
located at the apical part 

                                                         
                                                         

3D effect on SEM 

SEM Imaging 



AFM detection principle 

Detection principle is obtained by monitoring the 
bending of the cantiliver that host the tip  
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AFM Tip fabrication 

AFM tips are typically sculpted on silicon wafers 
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SEM on Silicon nitride probes 



(c) S.Carrara 47 

Optics versus AFM 

Fluorescent Nanoparticles with average size of about 40 nm 
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Gold nanoparticles made off gold core and a 
thiols-shell to stabilize the particle 

AFM Imaging 
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DNA 

AFM Imaging 
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A protein (Reaction 
Center) located 
in between a 
metallic nanogap 

AFM Imaging 
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Lateral resolution 
Lateral resolution is primarily determined by the radius of 
curvature of the tip end. 
Typical tip radii quoted by the manufacturers for tapping 
mode tips are around 5 – 15 nm 
 

The sidewall angles of the tip will also determine its ability to 
probe high aspect ratio features. 
 



(credit by Cambridge University) 52 

Errors in width measurements 
Assuming a hemispherical tip:   
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For densely packed features the tip size can also cause errors in determining 
the height of the islands, or the overall appearance of the surface   

Blunt tip Sharp tip 

200 nm 200 nm 

Dense nanostructure arrays 
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Special AFM tips 

Special tips are sometimes used to further 
increase the miscroscope resolution 

(images credit by University of Utah) 
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Terraced surfaces 

Single atom-high steps may be routinely imaged 
by AFM. 
However, as step-edges become closer together 
(e.g. on vicinal substrates) it may become 
impossible to see separate terraces.   
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Small pits 

When imaging small pits, such as pits associated with threading 
dislocation terminations, one is unlikely to see the true pit depth. 
The measured width will actually by more accurate than the measured 
depth, which will depend on the angle α, and the tip radius. 
The pit will not be visible if the measured depth is less than the noise 
level.   
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STM Microscopy 

The STM Microscopy is based on tunneling currents as 
established in between the tip and the sample 
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STM Microscopy 

The STM Microscopy is based on tunneling currents as 
established in between the tip and the sample 
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STM imaging 

Carbon atoms in the lattice structure of the highly oriented 
pyrolytic graphite. Image by STM in air. 

5.1 nm 
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STM imaging 

Organic molecules (thiols) self-assembled onto highly oriented 
pyrolytic graphite. Image by STM in air. 

2.5 nm 


