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Chronoamperometry

Injections 
glucose 3mM

R2=0.995

Raw data from chronoamperometry Calibration curve
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Square wave voltammetry

In presence of increasing concentration of 

the drug Acetaminophen (Acph)
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▲Is my calibration good enough?

▲How can I use my calibration to estimate the 
concentration of an unknown sample?

Calibration curves
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Sensor calibration

Typical calibration curve
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▲ Plan the experiments;

▲ Make measurements;

▲ Plot the results;

▲ Carry out statistical (regression) analysis on the data 

to obtain the calibration function;

▲ Evaluate the results of the regression analysis;

▲ Use the calibration function to estimate values for 

test samples;

▲ Estimate the uncertainty associated with the values 

obtained for test samples.

The Calibration Process
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▲ The number of calibration standards;

▲ The concentration of each of the calibration 

standards;

▲ The number of replicates at each concentration;

▲ Preparation of the calibration standards;

Planning the experiments
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Plotting the results

Scatter plot of instrument response data versus concentration
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Evaluating the scatter plot

1) Leverage

2) Bias

Points of influence:
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▲ The aim of linear regression is to establish the equation that best describes 
the linear relationship between instrument response (y) and analyte level 
(x). The relationship is described by the equation of the line, i.e., y = mx + 
c, where m is the gradient of the line and c is its intercept with the y-axis.

▲ “least squares regression” the line that gives the smallest sum of the 
squared residuals best represents the linear relationship between the x 
and y variables

Regression analysis

Least squares linear regression – calculating the best straight line
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Assumptions

▲ The error in the x values should be insignificant 
compared with that of the y values. 

▲ The error associated with the y values must be 
normally distributed.

▲ The magnitude of the error in the y values 
should also be constant across the range of 
interest, i.e. the standard deviation should be 
constant.

▲ The general solution to this problem is to use 
weighted regression, which takes account of 
the variability in the y values.
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▲ Plot of the residuals

Evaluate the Regression analysis
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Evaluate the Regression analysis

Examples of residuals plots
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▲ Confidence interval

It gives an indication of the range within which the 

‘true’ line might lie.

Evaluate the Regression analysis

95% confidence interval for the line
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Evaluate the Regression analysis

Typical output from a regression analysis using Excel

1

2

3
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▲ The correlation coefficient, r

The correlation coefficient, r (and the 

related parameters r2 and adjusted r2) 

is a measure of the strength of the 

degree of correlation between the y 

and x values. In Excel output it is 

described as ‘Multiple R’. r can take 

any value between +1 and –1; the 

closer it is to 1, the stronger the 

correlation.

1. Regression statistics
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▲ r2 and adjusted r2. 

r2 is often used to describe the fraction of the total variance in 

the data which is contributed by the line that has been fitted. 

Ideally, if there is a good linear relation, the majority of variability 

can be accounted for by the fitted line. r2 should therefore be 

close to 1.

The adjusted r2 value is interpreted in the same way as r2 but is 

always lower. It is useful for assessing the effect of adding 

additional terms to the equation of the fitted line (e.g., if a 

quadratic fit is used instead of a linear fit).

1. Regression statistics
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▲ Residual standard deviation (standard error)

The residual standard deviation (also known as the residual standard 

error) is a statistical measure of the deviation of the data from the 

fitted regression line. It is calculated using the equation:

1. Regression statistics

where yi is the observed value of y for a given value of xi,  𝑦 is the value 

of y predicted by the equation of the calibration line for a given value 

of xi, and n is the number of calibration points.

Note that there are (n-2) degrees of freedom in calculating s(r) One way 

of understanding the degrees of freedom is to note that we are 

estimating two parameters from the regression – the slope and the 

intercept. Therefore, ν = n − 2 and we need at least three points to 

perform the regression analysis.
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2. Anova table: analysis of variance 

2. ANOVA table

Origin of sum of squares terms in regression analysis
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▲ The sum of squares terms (SS) represent different sources of variability in the calibration 
data. The regression term represents the variability in the data that can be accounted for 

by the fitted regression line. Ideally this should be large; if there is a good linear 
relationship, the fitted line will describe the majority of the variability in response with 
concentration. The residual term is the sum of the squared residuals. This value should be 
small compared to the regression sum of squares terms because if the regression line fits 
the data well, the residuals will be small.

2. ANOVA table
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▲ The sum of squares terms (SS) represent different sources of variability in the calibration 
data. The regression term represents the variability in the data that can be accounted for 

by the fitted regression line. Ideally this should be large; if  there is a good linear 
relationship, the fitted line will describe the majority of the variability in response with 
concentration. The residual term is the sum of the squared residuals. This value should be 
small compared to the regression sum of squares terms because if the regression line fits 
the data well, the residuals will be small.

2. ANOVA table

The mean square (MS) 
term is the sum of squares 
term divided by its degrees 
of freedom.
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▲ The F value is the ratio of the regression MS term to the residual MS term. Ideally this ratio 
should be very large; if there is a good linear relationship the regression MS term will be 

much greater than the residual MS term.

2. ANOVA table

▲ The significance F value represents the probability that there is no correlation between y 
and x values, i.e., obtaining the results by chance. For a calibration curve to be of any 
use the significance F value should be extremely small. This value is also known as the p-
value.
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The table gives information about the slope and intercept

3. Regression coefficients

▲ The standard errors (also know as the standard deviations) for each coefficient. These 
values give an indication of the ranges within which the values for the gradient and 
intercept could lie:

Where s(r) is the residual standard deviation (residual error in slide 15). 
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3. Regression coefficients

▲ The t-stat and p-value relate to the significance of the coefficients, i.e. whether or not 
they are statistically significantly different from zero. 

For the slope: In a calibration experiment we would expect the gradient of the line to be very 
significantly different from zero. The t-value should therefore be a large number (for a 

calibration with 7 data points the t-value should be much greater than 2.6, the 2-tailed 
Student t value for 5 degrees of freedom at the 95% confidence level) and the p-value 
should be small (much less than 0.05 if the regression analysis has been carried out at the 95% 
confidence level). 

For the intercept: Ideally, we would like the calibration line to pass through the origin. If this is 
the case then the intercept should not be significantly different from zero. In the regression 

output we would expect to see a small value for t (less than 2.6 for a calibration with 7 data 
points) and a p-value greater than 0.05 (for regression at the 95% confidence level). Whether 
the calibration line can reasonably be assumed to pass through zero can also be judged by
inspecting the confidence interval for the intercept. If this spans zero, then the intercept is not
statistically different from zero, as in the example.
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3. Regression coefficients

▲ The lower and upper confidence limits for the gradient and intercept. 
These represent the extremes of the values that the gradient and intercept could take, at the 
chosen level of confidence (usually 95%). The confidence limits can then be calculated from 
the t-statistic for n–2 degrees of freedom, as:

Where t is the 2-tailed Student’s t value for n-2 degrees of freedom, and sm is the standard error 
for the slope (sc for the intercept). 

How to represent the values for the slope and intercept:
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Using the calibration function to estimate 

values for test samples

In addition, it is possible to calculate a confidence interval for values predicted using the 
calibration function. This is sometimes referred to as the ‘standard error of prediction’ and is 
illustrated in the Figure. The prediction interval gives an estimate of the uncertainty 
associated with predicted values of x.

Prediction interval
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Using the calibration function to estimate 

values for test samples

where

s(r) is the residual standard deviation 
n is the number of paired calibration points (xi,yi)
m is the calculated best-fit slope of the calibration curve
N is the number of repeat measurements made on the sample (this can vary from sample
to sample and can equal 1)

A confidence interval is obtained by multiplying x0 s by the 2-tailed Student t value for the
appropriate level of confidence and n-2 degrees of freedom.

We can calculate the prediction interval for predicted values, as: 

Is the difference between the 
mean of N repeat measurements 
for the sample and the mean of 
the y values for the calibration 
standards
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There is always some error associated with any instrumental measurement. This also applies to 
the baseline (or background or blank) measurement, i.e. the signal obtained when no 

analyte is present. One very important determination that must therefore be made is how 
large a signal needs to be before it can be distinguished from the background noise 
associated with the instrumental measurement.

Formally, then, the Limit-of-Detection (LOD) is defined as the concentration of analyte 
required to give a signal equal to the background (blank) plus three times the standard 
deviation of the blank. That is, we first calculate the instrument response obtained with no 
analyte:

We convert it to the concentration LOD from linear regression analysis of the calibration data!

Limit of detection (LOD)

𝑦𝐿 = 𝑦𝐵𝐿𝐴𝑁𝐾 + 3 ∙ 𝑆𝑇𝐷𝐸𝑉𝐵𝐿𝐴𝑁𝐾  
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▲ Obtaining the LOD from the Regression Line:

Limit of detection (LOD)

In defining the LOD, IUPAC states that 

𝑦𝐿 =  𝑦𝐵 + 𝑘𝑠𝐵

Where yL is the  smallest detectable signal,  𝑦𝐵 is the mean value of the blank responses, k is a 
numerical factor chosen in accordance with the confidence level desired, and SB is the 
standard deviation of the blank signal. The LOD is a function of yL and therefore

𝐿𝑂𝐷 =
(𝑦𝐿 −  𝑦𝐵)

𝑚

where m is the analytical sensitivity (the slope of the regression line).  Because the mean 
blank reading,  𝑦𝐵, is not always 0, the signal must be background corrected. By combining 
the equations we obtain:

𝐿𝑂𝐷 = 𝑘
𝑠𝐵
𝑚

Where SB is the standard deviation of the blank signal and k = 3 allows a confidence level of 
99.86% that yL ≥ (yB + 3SB) 
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Limit of detection (LOD)

y

yL

ksB

LOD

 𝑦𝐵

x


