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Chronoamperometry

Raw data from chronoamperometry
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Square wave voltammetry

In presence of increasing concentration of
the drug Acetaminophen (Acph)
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Calibration curves

A Is my calibration good enough?

A How can | use my calibration to estimate the
concentration of an unknown sample?



Sensor calibration

Instrument response

80
70
60
50
40
30
20
10

y=52357x + 0.6286
r =0.9997

\ 4

0.2 04

0.6

0.8

1 1.2 14

Concentration /mg L'

Typical calibration curve




The Calibration Process

A Plan the experiments;
A Make measurements;
A Plot the results;

A Carry out statistical (regression) analysis on the data
to obtain the calibration function;

A Evaluate the results of the regression analysis;

A Use the calibration function to estimate values for
test samples;

A Estimate the uncertainty associated with the values
obtained for test samples.



Planning the experiments

A The number of calibration standards;

A The concentration of each of the calibration
standards;

A The number of replicates at each concentration;
A Preparation of the calibration standards;



Plotting the resulis
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Scatter plot of instrument response data versus concentration




Evaluating the scatter plot

Points of influence:
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Regression analysis

A The aim of linear regression is to establish the equation that best describes
the linear relationship between instrument response (y) and analyte level
(X). The relationship is described by the equation of the line, i.e., y = mx +
c, where m is the gradient of the line and ¢ is its intercept with the y-axis.

A ‘least squares regression” > the line that gives the smallest sum of the
squared residuals best represents the linear relationship between the x
and y variables
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Least squares linear regression — calculating the best straight line
10
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Assumptions

A The error in the x values should be insignificant
compared with that of the y values.

A The error associated with the y values must be
normally distributed.

A The magnitude of the error in the y values
should also be constant across the range of
Interest, i.e. the standard deviation should be
constant.

A The general solution to this problem is to use
weighted regression, which takes account of
the variability in the y values.
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Evaluate the Regression analysis

A Plot of the residuals
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Evaluate the Regression analysis
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Evaluate the Regression analysis

A Confidence interval

It gives an indication of the range within which the
‘frue’ line might lie.
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Evaluate the Regression analysis

Regression Statistics

Multiple R 0.999955883
R Square 0.999911768 ‘|
Adjusted R Square | 0.999889709
Standard Error 0.005164622
Observations 6
ANOVA
df SS MS F Significance
| 2
Regression 1 1.2091 1.2091 |45330.79 | 2.93x10”
Residual 4 0.00010669 2.67x107
Total 5 1.2092
Coefficients | Standard Error t Stat P-value | Lower 95% | Upper 95%
Intercept 0.0021129 0.0037548 0.56270 | 0.60368 | -0.008312 | 0.012538
X Variable 1 0.10441 0.00049038 21291 [2.92x10°| 0.10304 0.10577

Typical output from a regression analysis using Excel
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1. Regression statistics

A The correlation coefficient, r

The correlation coefficient, r (and the
related parameters r2 and adjusted r?)
IS a measure of the strength of the
degree of correlation between the y

and x values. In Excel output it is

described as ‘Multiple R'. r can take
any value between +1 and -1; the
closeritis to 1, the stronger the

correlation.
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1. Regression statistics

A 12 and adjusted r2.

rZis often used to describe the fraction of the total variance in
the data which is conftributed by the line that has been fitted.
Ideally, if there is a good linear relation, the maijority of variability
can be accounted for by the fitted line. r?2 should therefore be
close to 1.

The adjusted r?2 value is interpreted in the same way as r? but is
always lower. It is useful for assessing the effect of adding
additional terms to the equation of the fitted line (e.q., if
quadratic fit is used instead of a linear fit).

Regression Statistics
Multiple R 0.999955883
R Square 0.999911768
Adjusted R Square J| 0.999889709
Standard Error 0.005164622
Observations 6
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1. Regression statistics

A Residual standard deviation (standard error)

The residual standard deviation (also known as the residual standard
error) is a statistical measure of the deviation of the data from the
fitted regression line. It is calculated using the equation:

where y; is the observed value of y for a given value of x;, y is the value
of y predicted by the equation of the calibration line for a given value
of x;, and n is the number of calibration points.

Note that there are (n-2) degrees of freedom in calculating s(r) One way
of understanding the degrees of freedom is to note that we are
estimating two parameters from the regression — the slope and the
intercept. Therefore, v =n — 2 and we need at least three points to
perform the regression analysis.
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2. ANOVA table

2. Anova table: analysis of variance

df SS MS F Significance F

Regression 1e=p 1490 1490 43.98 0.001
\
\
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Origin of sum of squares terms in regression analysis
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2. ANOVA table

A The sum of squares terms (SS) represent different sources of variability in the calibration
data. The regression term represents the variability in the data that can be accounted for
by the fitted regression line. Ideally this should be large; if there is a good linear
relationship, the fitted line will describe the majority of the variability in response with
concentration. The residual term is the sum of the squared residuals. This value should be

small compared to the regression sum of squares terms because if the regression line fits
the data well, the residuals will be small.

df SS MS F Significance F
Regression Te=§ 1490 14.90 43.98 0.001
A
v
Residual 5 169, 0.34
Total 6 |(\16.60"
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2

. ANOVA table

Response

The sum of squares terms (SS) represent different sources of variability in the calibration
data. The regression term represents the variability in the data that can be accounted for
by the fitted regression line. Ideally this should be large; if there is a good linear
relationship, the fitted line will describe the majority of the variability in response with
concentration. The residual term is the sum of the squared residuals. This value should be

small compared to the regression sum of squares terms because if the regression line fits
the data well, the residuals will be small.

df SS MS F Significance F

Regression Te=8 1490 14.90 43.98 0.
The mean square (MS)
Residual 5 \J 1691 034 term is the sum of squares
Total 6 [\t660° term divided by its degrees
U of freedom.
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2. ANOVA table

A The F value is the ratio of the regression MS term to the residual MS term. Ideally this ratio
should be very large; if there is a good linear relationship the regression MS term will be
much greater than the residual MS term.

df SS MS ( F  Significance F]

Regression Te=9 1490 14.90 L43.98 0.001
\

\
A

Residual 5 1.69* 0.34

A"

\ \
Total 6  '16.60 "
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A The significance F value represents the probability that there is no correlation between'y
and x values, i.e., obtaining the results by chance. For a calibration curve to be of any

use the significance F value should be extremely small. This value is also known as the p-
valuve.
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3. Regression coefficients

The table gives information about the slope and intercept

e —
Standard Error

Coefficients t Stat P-value | Lower 95% | Upper 95%
Intercept 0.0021129 0.0037548 0.56270 | 0.60368 | -0.008312 | 0.012538
X Variable 1 0.10441 0.00049038 21291 [2.92x10°| 0.10304 0.10577

A The standard errors (also know as the standard deviations) for each coefficient. These
values give an indication of the ranges within which the values for the gradient and

intercept could lie:

S, = s(r K

1
2

Where s(r) is the residual standard deviation (residual error in slide 15).
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3. Regression coefficients

Coefficients | Standard Error t Stat P-value || Lower 95% | Upper 95%
Intercept 0.0021129 0.0037548 0.56270 | 0.60368 || -0.008312 | 0.012538
X Variable 1 0.10441 0.00049038 21291 [2.92x10”)| 0.10304 0.10577

A The t-stat and p-value relate to the significance of the coefficients, i.e. whether or not
they are statistically significantly different from zero.

For the slope: In a calibration experiment we would expect the gradient of the line to be very
significantly different from zero. The t-value should therefore be a large number (for a
calibration with 7 data points the t-value should be much greater than 2.6, the 2-tailed
Student t value for 5 degrees of freedom at the 95% confidence level) and the p-value
should be small (much less than 0.05 if the regression analysis has been carried out at the 5%
confidence level).

For the intercept: Ideally, we would like the calibration line fo pass through the origin. If this is
the case then the intercept should not be significantly different from zero. In the regression
output we would expect to see a small value for t (less than 2.6 for a calibration with 7 data
points) and a p-value greater than 0.05 (for regression at the 925% confidence level). Whether
the calibration line can reasonably be assumed to pass through zero can also be judged by
inspecting the confidence interval for the intercept. If this spans zero, then the intercept is not
statistically different from zero, as in the example.



3. Regression coefficients

Coefficients | Standard Error t Stat P-value | Lower 95% | Upper 95%
Intercept 0.0021129 0.0037548 0.56270 | 0.60368 | -0.008312 [ 0.012538
X Variable 1 0.10441 0.00049038 212.91 [2.92x10° ] 0.10304 0.10577

A The lower and upper confidence limits for the gradient and intercept.
These represent the extremes of the values that the gradient and intercept could take, at the
chosen level of confidence (usually 95%). The confidence limits can then be calculated from

the f-statistic for n—-2 degrees of freedom, as:
C m A - C = ISF_

Where t is the 2-tailed Student’s t value for n-2 degrees of freedom, and s, is the standard error
for the slope (s. for the intercept).

How to represent the values for the slope and intercept:

slope=m+t-s,

intercept =cxt-s,



Using the calibration function to estimate
values for test samples
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Prediction interval

In addition, it is possible to calculate a confidence interval for values predicted using the
calibration function. This is sometimes referred to as the ‘standard error of prediction’ and is
illustrated in the Figure. The prediction interval gives an estimate of the uncertainty
associated with predicted values of x.
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Using the calibration function to estimate
values for test samples

We can calculate the prediction interval for predicted values, as:

Is the difference between the
mean of N repeat measurements
for the sample and the mean of
the y values for the calibration
standards

where

s(r) is the residual standard deviation
n is the number of paired calibration points (xy;)
m is the calculated best-fit slope of the calibration curve

N is the number of repeat measurements made on the sample (this can vary from sample
to sample and can equal 1)

A confidence interval is obtained by multiplying x, s by the 2-tailed Student t value for the
appropriate level of confidence and n-2 degrees of freedom.

c :rsxﬂ

x
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Limit of detection (LOD)

There is always some error associated with any instrumental measurement. This also applies to
the baseline (or background or blank) measurement, i.e. the signal obtained when no
analyte is present. One very important determination that must therefore be made is how
large a signal needs to be before it can be distinguished from the background noise
associated with the instrumental measurement.

Formally, then, the Limit-of-Detection (LOD) is defined as the concentration of analyte
required to give a signal equal to the background (blank) plus three times the standard
deviation of the blank. That is, we first calculate the instrument response obtained with no
analyte:

Y1 = Yprang + 3 STDEVpank

We convert it to the concentration LOD from linear regression analysis of the calibration datal




Limit of detection (LOD)

A Obtaining the LOD from the Regression Line:

In defining the LOD, IUPAC states that
Y. =Yg+ ksp

Where y, is the smallest detectable signal, yp is the mean value of the blank responses, k is a
numerical factor chosen in accordance with the confidence level desired, and S; is the
standard deviation of the blank signal. The LOD is a function of y, and therefore

(Y. — Vs)
m

LOD =

where m is the analytical sensitivity (the slope of the regression line). Because the mean
blank reading, yg, is not always 0, the signal must be background corrected. By combining
the equations we obtain:

S
LOD = k-2
m

Where §; is the standard deviation of the blank signal and k = 3 allows a confidence level of
99.86% that y = (yg + 3S;)
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Limit of detection (LOD)

LOD X

Figure 3. Analytical calibration curve
of signal, x, vs. concentration, ¢, show-
ing the relationship of ksg to the limit of
detection, ¢



