EE-517: Bio-Nano-Chip Design

Exercises 10: Opamp-based circuits

November 17, 2020

Problem 1

Consider a sensing platform that outputs two signals $V_1(t)$ and $V_2(t)$. Design a circuit based on operational amplifiers that integrates the difference of these two signals. Make sure that the integrator does not saturate during operation.

The design specifications are listed hereunder:

- $-0.5 \text{ V} \le \text{V}_1(t) \le 0.5 \text{ V} \text{ and } -0.5 \text{ V} \le \text{V}_2(t) \le 0.5 \text{ V}$
- \bullet Operational amplifiers: ideal, rail-to-rail with symmetric supply voltages $V_{cc}=2.5\,V$
- Digital clock: $f_{clk} = 10 \, kHz$
- Resistances: $R_{min} = 10 k\Omega$

Problem 2

Design a circuit that takes two voltages V₁(t) and V₂(t) as inputs and computes the weighted sum

$$V_{out}(t) = \frac{3}{4}V_1(t) + \frac{5}{4}V_2(t)$$

Use ideal operational amplifiers and resistors.

Problem 3

Consider an electrochemical cell in a three-electrode configuration, involving a Working Electrode (WE), a Reference Electrode (RE), and a Counter Electrode (CE). Design a circuit that applies 650 mV between WE and RE while converting the faradaic current in the WE-CE path into a voltage.

Use ideal operational amplifiers and resistors.