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An Electrochemical Sensor / An Electrochemical Cell
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The electrochemical Cell

RE

ey
N

The typical electrochemical cell needs 3 electrodes: the
working, the counter, and the reference
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How to measure a redox
reaction?
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The 4e Electrochemical Cell

2 Counter electrode Vg & V¢
have to be
Ge different
nerato
electrode
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Collecto Vf\
electrode T

1 Reference electrode Potentiostat

A 4-electrode Electrochemical Cell 1s here required
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Multiplexing several workings
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Different working electrodes are multiplexed
to a common current-to-frequency converter
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Control Amplifier @ RE

CONTROL
Vv AMPLIFIER
Vin +
+
0=
V- -
Vin: +

(c) S.Carrara



Risk of Saturation

CONTROL
AMPLIFIER

Vin >

1. The Control Amplifier is
obtained with a kind of
Voltage Follower BUT the
Cell is inserted in its
feedback loop

2. Thus, the Voltage Follower
might saturate if the design
(both Cell & Follower) are not
co-designed properly
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Risk of Saturation

CONTROL
AMPLIFIER + Vec

Vin >

C

0ut|CA in

Vin

= VCC -

V,=V,= vv/v

-
Virc=(RegRgo)ly ﬁ\\
1 =0 R W\kgk

d I i) [0

RCE = pCE Aﬂ’VCC

CE w
Are on the hands of the designer

(the size of the counter electrode
and/or the circuit powering) (c) S.Carrara

Ly

=V, +(Rep + Ry ) Iy

+(Rep + Ry ) Iy > Ve

l

The Control
Amplifier is then
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on the application
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are monitoring)
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Faradaic Current @ Fixed Bias
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Typical curve in chronoamperometry
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Faradaic Current in Voltage Scan
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observed in Cyclic Voltammetry (CV)
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Faradaic Current in Voltage Scan
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Transimpedance Amplifier @ WE
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Grounded Working
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Current-to-Voltage Conversion

CONTROL
AMPLIFIER

Vin >

A
\WT . —AYN"— TRANSIMPEDANCE

>
I

AMPLIFIER
V,.=RI, =-RI,--R, ”Fj‘_ De -L:
Tt C) Vout

B
I 1

(c) S.Carrara



Time-based Potentiostats
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Current-to-Frequency Conversion in reading a
Faradaic current
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Inside the Cell: Faradaic Currents

Redox Species in Solution
Vin h generate Faradic Currents
i at the working electrode

Ry

;>_
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Direct Redox

The hydrogen peroxide provides two possible redox reactions.

An oxidation:
(650 mi)
H,0,=0, + 2H"

And a reduction (of the oxygen):

700 mp>
O,+4H" 2o
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Redox mediated by oxidases

The typical redox involving an oxidase 1s as follows:

XOD/FAD + X — XOD/FADH, + X,

The FAD (Flavin Adenine Dinucleotide) 1s a functional part of
the protein that gains a hydrogen molecule after the reaction.
Therefore, the oxidase 1s not yet ready for another transformation
because the FAD has gained the H,. To return to its initial state,
the enzyme needs to release that hydrogen molecule:

XOD /FADH, + 0, . XOD /FAD
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Oxidases based detection

D-glucose 0, . D-gluconic
. Acid d-lactone
0,8 GOD/FAD
2H@®

Direct Amperometric
Detection | 28~
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Redox mediated by P450

The typical redox involving a cytochrome P450 1s as follows:

RH + 0, + NADPH + H*—*°_, ROH + NADP* + H,0

The coenzyme NADPH 1s mainly providing the need for two
electrons required by the drug transformation. Without NADPH,

the reaction occurs in water solution using hydrogen i1ons by
water but need two extra electrons:

RH + O, +2H™ +@ Y . ROH + H,0
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P450-based Detection
O

Drugs Oxidized drugs
o -

Oxygen Cytochrome P450
@ Amperometric
Detection !
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Indirect Detection: e.g., the ATP

D-glucose-6-P

D-gluconic
ATP  D-glucose  Acid 8-lactone

GHK GOD/FAD

Indirect amperometric k
Detection of ATPIl 2€
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Endogenous Metabolites in voltage-scan

Dopamine
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The use of carbon nanotubes shift the peaks potential
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Exogenous Metabolites in voltage-scan
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Inside the Cell: Faradaic Currents

Vin > Redox Species in Solution
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Detection Principle

» Sensitivity: definition
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Detection Principle

* Detection Limit: a graphic interpretation
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Nano- Blo-Sensors mtegratlon
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Randles-Sevcik effect on P450 3A4

COMPARISON BETWEEN CP DETECTION LIMIT AND SENSITIVITIES
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S. Carrara et al. / Biosensors and Bioelectronics 26 (2011) 3914-3919

Cyclophosphamide (CP), an anti-cancer agent,
1s detected by P450 3A4 1n 1ts therapeutic range
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Nano-aperture in the probes film

al. et S_.Carrara / [EEE SENSORS JOURNAL. VOL. 7, NO. 4, APRIL 2007

_______________________ 62‘.'?4 %
Hybridization reaction:

I specific bindings 34.74 %

Large Standard deviation 13,07 %

0 Non-Hybridization:
a-specific bindings
-18,46 %

40

Solution 10ns 1n free contact with electrodes surface

results in very large standard deviations
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Nano-scale Apertures

Mercapto-Hexanol
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Monolayer of ssDNA with blocking agents still
present deep groves crossing the film
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Film precursors below probes

No ways of direct access of the bare gold
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Highly packed thiols monolayer may be used
to improve the DNA detection capability
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Absence of Nano-scale Apertures

Ethylene-Glycol Film
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Monolayer of alkanethiols with ethylene-glycol chains
do not present deep groves crossing the film
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Capacitance detection of DNA

S. Carrara et al. / Biosensors and Bioelectronics 24 (2009) 3425-3429
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Highly —reproducible DNA detection based on ss-DNA-SH terminated
directly immobilized onto gold and ss-DNA-NH2 terminated

immobilized onto EG-Thiols
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Aim of the course
Bio/Nano/CMOS Co-Design!
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New paradigms for Nano-Bio-CMOS co-design
are required to succeed in chip bio-sensing
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New P ] aquired
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Excellent CMO
molecules are not doing their own job at the
Bio/CMOS interface!
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