Fundamentals of Biosensors and Electronic Biochips. EE515 EPFL Master

Prof. Carlotta Guiducci Institute of Bioengineering and Institute of Electrical Engineering Ecole polytechnique fédérale de Lausanne

Bioanalytics. Key issues 1/2

Continuous demand for higher throughput

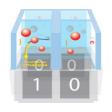
Large number of sequences to be read Eg DNA/RNA sequencing NEWS X

Next generation sequencing

Ion Proton, Life Technologies

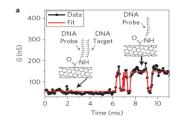
Extreme parcellization of samples Eq Digital PCR

Digital PCR

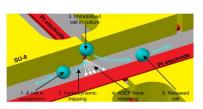

=luidigm

In-flow manipulation of biological elements Eq Cell separation, droplet formation

Bioanalytics. Key issues 2/2


Targeting ultimate sensitivity/resolution in analytical samples

Single-copy detection in nanoliter wells *Eg: Digital PCR*


C. Guiducci, et al. Nature Methods

Single-molecule kinetics observation Eg: DNA hybridization on a nanodevice

Sorgenfrei et al., Nature Nanotechnology

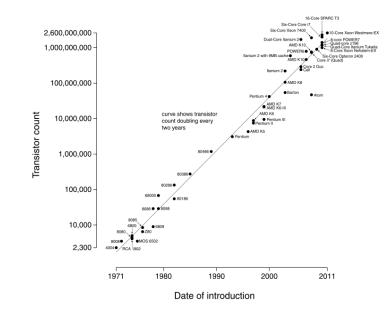
Precise manipulation and measurement of single cells *Eg: Single-cell level analysis*

A. Hierlemann, ETH, Lab on a Chip

Drivers for the development of Biosensors and electronic biochips

Multi-target/screening systems

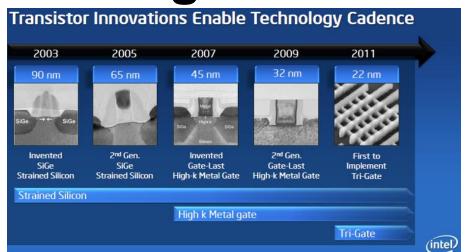
Sensitivity and robustness to interfering agents


 Miniaturization and adapted packaging for wearable and portable applications

Integration and complexity from electronic chips to biochips

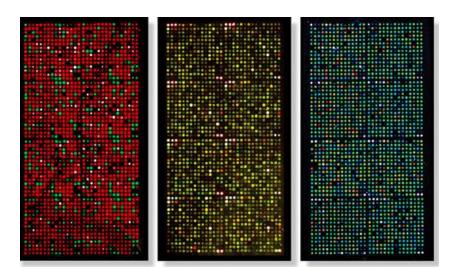
Genesis. Electronic chips

 Gordon E. Moore. "Cramming more components onto integrated circuits". Electronics, 1965

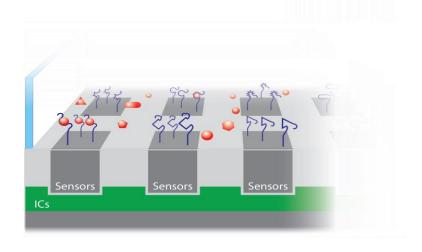

The Moore's law is a prediction on Complexity (number of transistors per IC), foreseeing it would have increased of a factor of 2 approx. every 18 months.

1950, first planar transistor

Scaling

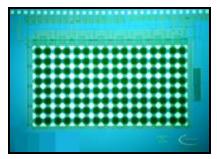


Advantages of increasing integration/complexity in electronics

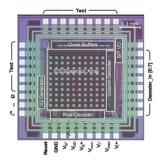

- 1. Improving <u>complexity</u> through integration by keeping costs steady
- 2. Reducing <u>size</u> of transducer without scaling the <u>signal</u>
- 3. Integration grants lower noise and parasitics

Complexity in biochips

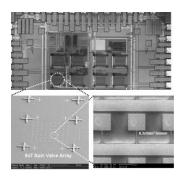
DNA microarrays on glass or silicon substrates.


External readout systems (optical)

Molecular affinity arrays on sensing arrays


Integrated readout systems

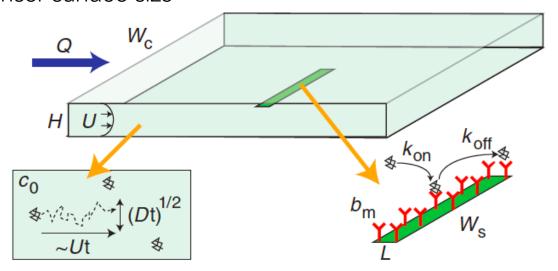
Examples of Molecular affinity arrays on sensing arrays

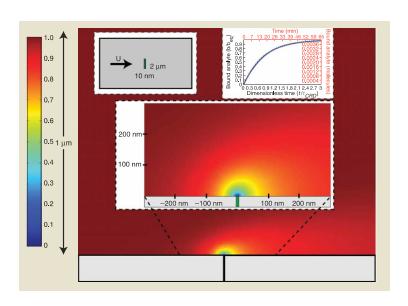


Infineon Technologies

CAPACITIVE

Austin U **ELECTROCHEMICAL**


Stanford U. **MAGNETIC**


ELECTROCHEMICAL i-Stat. Abbott

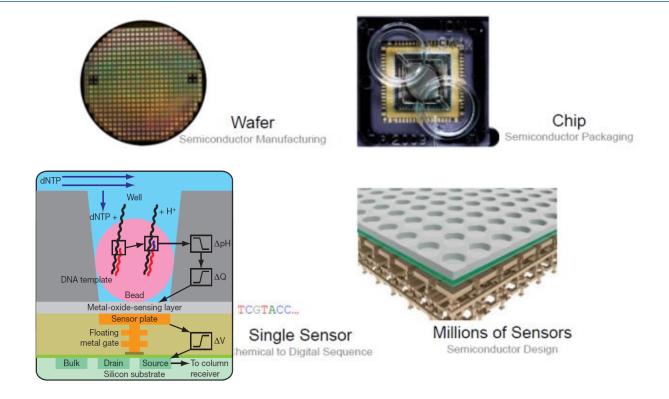
Biochips. Discussion on the Intrinsic limitations to complexity

Surface sensor, in flow injection of sample.
Role of the sensor surface size

Surface sensor, in flow injection of sample. Role of the sensor surface size

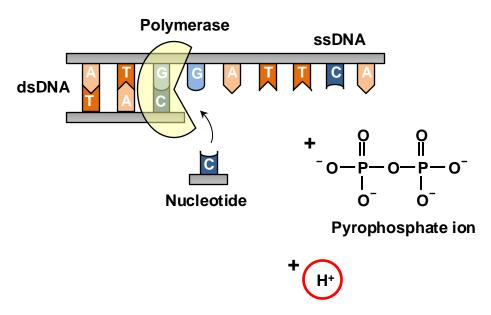
Collection rate: $J_D = D C W_S L/\delta$

1/J_D ≈ 208 min

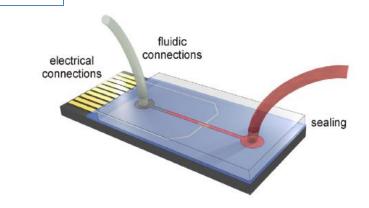

Collection is a rare event!

 $1/k_{off} \approx 17 \text{ min } !!!$

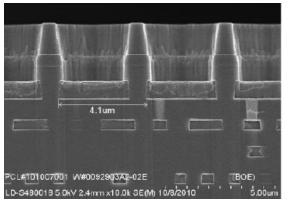
D diffusion constant 10 μ m²/s C concentration 10 fM W_s width of sensor 2 μ m L length of sensor 10 nm δ depletion region J_D collection rate 8 \times 10⁻⁵ s


Mass transport issue!

DNA sequencing: large-scale pH-based systems. Overcoming mass transport issues


Biochemical Readout of strand elongation

Electrical readout (by-product)



Translation of lab-on-chip technologies. Cost drivers

interfacing, robustness and user friendliness

Increased costs when deviating from standard microfabrication processes

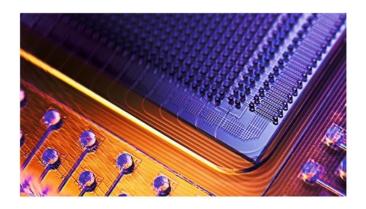
Ion Torrent

System configuration and Sample manipulation strategies

Example: Impedance-based cytometry

Multiple wells

Flow cytometry, single cells through a channel


Fluigent

Sample isolation/parcellization

Sample parcellization down to nliter volume per chamber.

Issues of

- -evaporation
- complex microfluidics

FLUIDIGM Quake lab

Cell isolation in flow. Challenges to retrieve single cells

Hydrodynamic traps

18