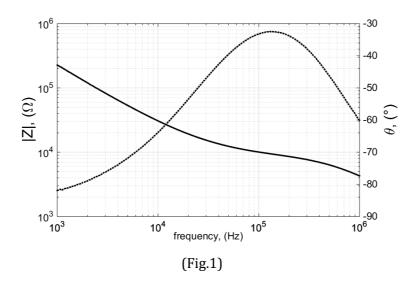
Fundamentals of Biosensors and Electronic Biochips

SESSION 7: SYSTEMS BASED ON MICROELECTRODES FOR LAB-ON-CHIP APPLICATIONS

Exercise 1.

Microelectrodes for impedance sensing:


Two parallel Pt electrodes sizing $30x30~\mu m^2$ and spaced $30~\mu m$ in a microfluidic channel on a silicon substrate. The microchannel is filled with PBS1X (conductivity $\sim 1.57x10^{-2}$ S/cm @ Room T°).

1.a Represent the electrical equivalent circuit in 1 kHz-10 MHz range of frequency in the hypothesis of absence of faradaic processes.

1.b Estimate the value of the resistance of the solution (R_{SOL}).

1.c Estimate the value of the double layer capacitance at the electrode/electrolyte interface (C_{DL}) (typical value of the capacitance per unit surface: $20 \mu F/cm^2$).

1.d Given the Bode plots in figure (Fig.1), evaluate the current at around 100 kHz when a 50 mV sinusoidal amplitude stimulus is applied.

Exercise 2.

Microelectrodes for cell stimulation:

Consider to stimulate neurons cultured in a microfluidic channel where a pair of facing electrodes are patterned on the sidewall of the channel (h = $50 \, \mu m$, L = $300 \, \mu m$, d = $500 \, \mu m$). A square voltage of amplitude 1 V, mean value 0 V and period 1s is applied. What is the value of the potential applied to the solution at t = $200 \, ms$?

(Consider: $C_{DL} = 1$ nF, $R_{sol} = 10$ K Ω placed in series)