
EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Lab 4: Interfacing Android Wear devices

In case you found something to improve, please tell us!
https://forms.gle/3U6WrZNyNx2nBXQ38

In this lab, we will employ the WearAPI to synchronise data across devices. In particular,
we will code a distributed application that, upon user login, will send the username and
profile from an Android tablet to an Android smartwatch.

1 Android Studio Tricks

Here are very useful Android Studio tricks you should always use (check Section 5 of
Lab1 for more detailed explanation on how to use Android Studio debug tools):

1. Use Alt+Enter (Option+Enter for Mac users) when you have an error in your code:
put the cursor on the error and click Alt+Enter. You can also use it to update the
gradle dependencies to the latest version.

2. Use Ctrl+Space to check the documentation of a View, method or attribute: put the
cursor on the object and do Ctrl+Space. You can also use it to complete the typing
of these objects. Otherwise Android Studio always gives a list of suggestions where
you can choose the object you need.

3. ALWAYSCHECKTHECOMPILATIONERRORS! They are usually quite self-explanatory.
4. ALWAYS DEBUG AND CHECK THE ERRORS IN LOGCAT! Read the usually self-

explanatory errors and click on the underlined blue line to go in the position of the
code where the error is.

For more useful keyboard shortcuts, please check this LINK1

2 Sending Login credentials to the wearable device

The overview of the intended app functionality on tablet and watch is described in Fig. 1.
As in the previous lab, on the tablet the user can select his profile image and enter his
username and password. In the LoginProfile screen, when the user presses the ”ENTER”
button, the tablet app sends the image and username to the watch, which displays it. To
this end, the tablet and watch should be paired via Bluetooth. This can be done via the
WearOS app on your tablet/smartphone. If not present on your device, this can be installed
from the googlePlay store. Also keep into account that the wear and tablet modules should
be compiled on the same computer for the connection to work.

1https://developer.android.com/studio/intro/keyboard-shortcuts

1

https://forms.gle/3U6WrZNyNx2nBXQ38
https://developer.android.com/studio/intro/keyboard-shortcuts

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Figure 1: App structure for lab 4

3 Communicating between tablet and watch

Let’s continue building our sport tracking app, from the structure described in Lab 3,
adding some more features. Open the Lab 3 project, which you can take from Moodle.
Alternatively, you can use your own implementation.

In this lab, we will use the Data API to establish a communication between watch and
tablet. To this end, first we need to register the service in the mobile’s and wear’s buil ⌋

d.gradle files, adding the following lines to both:

dependencies {
...
implementation("com.google.android.gms:play-services-wearable:18.1.0")
...

}

In the communication we want to implement between tablet and watch there will be two
sides: the ’sending side’ and the ’receiving side’. On the sending side (the tablet in this
lab), a dataClient object is used to interface with the Data API. On the receiving side
(the watch in this lab), OnDataChangedListener() callbacks are executed when receiving
data.

2

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

4 Using the Wear Data API

4.1 Mobile module: MainActivity class

Wewant to send the profile data from the LoginProfile screen. Let’s start with the declara-
tion and initialization of the dataClient object inside the Kotlin Activity class, but outside
any method. We declare it as lateinit since the object will be initialized in the onCreate()
method. The dataClient will allow us to send items using the Wear Data API. In particular,
we will use the ’dataClient.putDataItem’ method in a few steps.

private lateinit var dataClient: DataClient

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

dataClient = Wearable.getDataClient(this)

setContent {
...
}

}

Since we want to send the data once the user presses the ”ENTER” button, we call a
custom function (sendDataToWear()) inside the onEnterButtonClicked:

composable("login") {
LoginProfileScreen(

onEnterButtonClicked = {
shouldShowBottomMenu = true

sendDataToWear(username, imageUri)
...

}
)

}

You may notice that username and imageUri are unavailable, and we will need to receive
them from the LoginProfileScreen. Let’s create a data class in a new data class file called
LoginInfo that will store the login information, the username, and the imageUri.

data class LoginInfo(val username: String, val imageUri: Uri?)

3

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Now we will have to modify the signature of the onEnterButtonClicked callback method,
because will have to pass a LoginInfo object when we call this callback in the onClick
method of our ”Enter” button. The parameters of LoginProfileContentDisplay and Lo ⌋

ginProfileScreen should be modified accordingly.

fun LoginProfileContentDisplay(
onEnterButtonClicked: ((LoginInfo) -> Unit),
modifier: Modifier = Modifier

) {
...
Button(

onClick = {
val loginInfo = LoginInfo(username, imageUri)
onEnterButtonClicked(loginInfo)

},
modifier = Modifier.weight(1f)

) {
Text(text = stringResource(R.string.enter_button_text))

}
...

}

Now we can go back to the MainActivity class, where we can use the login info that were
passed from the LoginProfileScreen.

composable("login") {
LoginProfileScreen(

onEnterButtonClicked = { loginInfo ->
shouldShowBottomMenu = true

val username = loginInfo.username
val imageUri = loginInfo.imageUri

sendDataToWear(username, imageUri)
...

}
)

}

We are now ready to implement the sendDataToWear(username: String, imageUri: ⌋

Uri?) function, as function inside the Activity class. In it, the data items (image and

4

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

username) are embedded in a PutDataMapRequest object, and in particular in its dataMap
(i.e. payload), and then send using the DataAPI.

As a first step, wemanipulate the image to the proper size and format, using somemethods
from the Mediastore, Bitmap, and Matrix classes. The complete documentation of these
classes is available on the Android developer website.

We grab the image content from its URI (point 1 in the code below). Then, to minimize the
communication bandwidth between the tablet and watch, we scale it (point 2 in the code)
using createScaledBitmap(...). We also rotate the image (3) to the proper orientation
to be displayed on the watch. Finally, convert it from the Bitmap to the ByteArray format
(4).

private fun sendDataToWear(username: String, imageUri: Uri?)
{

//1
var imageBitmap = MediaStore.Images.Media.getBitmap(

this.contentResolver, imageUri)

//2
var ratio:Float = 13F

val imageBitmapScaled = Bitmap.createScaledBitmap(imageBitmap,
(imageBitmap.width / ratio).toInt(),
(imageBitmap.height / ratio).toInt(),
false)

//3
val matrix = Matrix()

imageBitmap = Bitmap.createBitmap(imageBitmapScaled, 0, 0,
(imageBitmap.width / ratio).toInt(),
(imageBitmap.height / ratio).toInt(), matrix, true)

//4
val stream = ByteArrayOutputStream()
imageBitmap.compress(Bitmap.CompressFormat.PNG, 100, stream)
val imageByteArray = stream.toByteArray()
...

}

5

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

The created imageByteArray can then be used as a field in a dataMap object (see code, be-
low). Each dataMap field is defined as a key/value pair, e.g. ”profileImage”/imageByteArray.

The dataMap is then encapsulated in an object of type PutDataRequest, which must also
specify the path at which the data must be sent to the connected device (e.g.: ”/userInfo”).

Finally, the PutDataRequest object (named request in the code below), can be sent using
the Wear API with the data client we initialized at the beginning of this Section. Before
that, we set the request as ”urgent” to ask for its delivery as soon as possible. Otherwise,
the OS may decide to delay transmission until enough data is collected to save energy.

private fun sendDataToWear(username: String, imageUri: Uri?)
{

...
val request: PutDataRequest = PutDataMapRequest.create("/userInfo").run {

dataMap.putByteArray("profileImage", imageByteArray)
dataMap.putString("username", username)
asPutDataRequest()

}

request.setUrgent()
val putTask: Task<DataItem> = dataClient.putDataItem(request)

}

As you can see, we defined ”/userInfo” as the path, and ”profileImage” and ”username” as
the labels for the username and image respectively. This information will be used on the
receiving side i.e. the wear module.

We have to receive the variable username used in sendDataToWear() from the LoginProf ⌋

ileScreen, initially an empty string, when the user presses the EnterButton. Additionally,
a crash may occur if we attempt to send a profileImage to the watch if the user has not
yet picked one. To avoid that, we should check if the imageUri has a valid value before
navigating to the NewRecordingScreen and sending the data to the watch. In this regard,
it might be useful to use the Toast2 methods for showing errors, in the following way:

val context = LocalContext.current
...
Toast.makeText(context, "Error message", Toast.LENGTH_SHORT).show()

2https://developer.android.com/guide/topics/ui/notifiers/toasts

6

https://developer.android.com/guide/topics/ui/notifiers/toasts

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

4.2 Wear module: the MainActivity class

This section focuses on the receiving side of the Data connection: the Wear module. Here,
we want to listen, in the Wear activity, for data events. Keep in mind that in different
communication patterns, such as streaming heart rate data from watch to tablet, the role
of sender and receiver could be reversed.

In the Wear module, we first override the onResume() and onPause() methods in the Ac-
tivity class, which are called every time the activity goes in the foreground or is pushed to
the background, respectively.

Inside those methods, we call Wearable.getDataClient(this).addListener(this) and
Wearable.getDataClient(this).removeListener(this). In this way, we notify that our
activity is interested in listening for data layer events when in the foreground.

override fun onResume() {
super.onResume()
Wearable.getDataClient(this).addListener(this)

}

override fun onPause() {
super.onPause()
Wearable.getDataClient(this).removeListener(this)

}

To be notified of data changes, the wear app must override the onDataChanged callback,
available by implementing the DataClient.OnDataChangedListener interface in its Ac-
tivity class definition. We need two class-level variables, username and bitmap, so that we
can pass them to our HomeScreen composable in the onCreate method. We also need to
update them appropriately in the onDataChanged callback, so that we can see the latest
changes on the UI.

class MainActivity : ComponentActivity(), DataClient.OnDataChangedListener {
private var bitmap by mutableStateOf<Bitmap?>(null)
private var username by mutableStateOf("")
...

}

Whenever a data item object is created, deleted, or changed, the system triggers the on ⌋

DataChanged() callback on all connected nodes. Inside this function, we look at pending
dataEvents, check if the path and key match, and retrieve the data.

7

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Notice that there may be multiple data events notified by the APIs. Therefore, we cy-
cle through them and get, from each event dataMap, the payload corresponding to the
dataMap fields.

Once the payload is extracted, it can be converted to the appropriate format (e.g. from
ByteArray to Bitmap in the case of the profile picture). More information on .filter and
scope functions in Kotlin (including .let) is available here3 and here4.

override fun onDataChanged(dataEvents: DataEventBuffer) {
dataEvents.filter { it.type == DataEvent.TYPE_CHANGED &&

it.dataItem.uri.path == "/userInfo" }
.forEach { event ->

val receivedImageBytes: ByteArray? =
DataMapItem.fromDataItem(event.dataItem).dataMap.

getByteArray("profileImage")

receivedImageBytes?.let {
bitmap = BitmapFactory.decodeByteArray(

receivedImageBytes, 0,
receivedImageBytes.size)

}

username = DataMapItem.fromDataItem(event.dataItem)
.dataMap.getString("username") ?: ""

}
}

To show the received items on the smartwatch, we set the bitmap to the received image
and set the value of Text to the received username. To do this, we need to update the
HomeScreen composable, adding username and bitmap as parameters. We also need to
modify the logic for displaying the bitmap, as it should show a default picture if nothing
has been received yet, otherwise the received image.

@Composable
fun HomeScreen(username: String, bitmap: Bitmap?,

modifier: Modifier = Modifier) {

ConstraintLayout(modifier = modifier.fillMaxSize()) {
val (image, text) = createRefs()

3https://kotlinlang.org/docs/collection-filtering.html
4https://kotlinlang.org/docs/scope-functions.html

8

https://kotlinlang.org/docs/collection-filtering.html
https://kotlinlang.org/docs/scope-functions.html

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

val context = LocalContext.current

val displayBitmap = if (bitmap == null) {
ImageBitmap.Companion.imageResource(

context.resources, R.drawable.ic_logo)
} else {

bitmap.asImageBitmap()
}

Image(
bitmap = displayBitmap,

...

}
}

The dislayBitmap variable assignment can be refactored to follow the Kotlin syntax more
closely with the following code:

val displayBitmap = bitmap?.asImageBitmap()
?: ImageBitmap.Companion.imageResource(context.resources, R.drawable.ic_logo)

Now that we can finally show the profile picture and username on the watch!

5 Navigation arguments

In addition to sending the login credentials to the watch, we would also like to share them
among Screens on the tablet, in particular from LoginProfileScreen to the NewRecord ⌋

ingScreen.

5.1 Send username to the NewRecordingScreen

As you may recall from the lecture, data can be passed between screens as part of a route.
So, first, inside NavHost in the MainActivity we will have to modify the composable with
route ”newRecording” to ”newRecording/username” and we retrieve the username from
the backStackEntry object. Now that we have the username, we can pass it to NewRecor ⌋

dingScreen as a parameter, and update the Welcome text appropriately.

9

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

composable("newRecording/{username}") { backStackEntry ->
val username = backStackEntry.arguments?.getString("username") ?: ""

NewRecordingScreen(username,
onLogoutClicked{...}

)
}

The only missing part is passing the username when we navigate to the NewRecordingSc ⌋

reen from the LoginProfileScreen. So inside the onEnterButtonClicked callback pass
the username as part of the route.

composable("login") {
LoginProfileScreen(

onEnterButtonClicked = { loginInfo ->
...
navController.navigate("newRecording/$username")
...

5.2 Send the imageUri to the NewRecordingScreen

We would also need to pass the imageUri as part of the route, but if you recall from the
lecture, we can also pass a primitive type as a navigation parameter, and imageUri is
of type Uri, which is not a primitive type. For this reason, we will need to encode the
imageUri as a String and pass it in the route.

composable("login") {
LoginProfileScreen(

onEnterButtonClicked = { loginInfo ->
...
val imageUri = loginInfo.imageUri

val uriString = URLEncoder.encode(
imageUri.toString(),
StandardCharsets.UTF_8.toString()

)

navController.navigate("newRecording/$username/${uriString}") {
...

10

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

We need to receive the imageUri as a String in the composable of the NavHost of ne ⌋

wRecording we need to parse the String back to a Uri object and we can do that with
Uri.parse(imageUriString) and pass it as a parameter to the NewRecordingScreen.

composable("newRecording/{username}/{imageUriString}") { backStackEntry ->
val username = backStackEntry.arguments?.getString("username") ?: ""

val imageUriString =
backStackEntry.arguments?.getString("imageUriString")

val uri = if (!imageUriString.isNullOrEmpty()) {
Uri.parse(imageUriString)

} else {
null

}

NewRecordingScreen(
username,
uri,
...

)
}

Inside the NewRecordingScreen we will need to do a similar logic as we did in LoginPr ⌋

ofileScreen. We should the default initial image when the passed imageUri is null, and
when it is not null, we show the image from the imageUri.

...
if (imageUri == null) {

Image(
painter = painterResource(id = R.drawable.user_image),
...

)
} else {

AsyncImage(
model = imageUri,
...

)
}

Run the application and check if the image and the username are passed correctly. If that
works, try navigating on the screen in the bottom navigation bar.

11

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Our application crashed because we didn’t modify the code for navigation to the newRec ⌋

ordingScreen from the bottom navigation bar. We currently have access to the username
and the imageUri inside the onEnterButtonClicked callback. To change that we need to
introduce activity-level variables for the username, the imageUri, and the uriString.

class MainActivity : ComponentActivity() {

private lateinit var dataClient: DataClient
private var username by mutableStateOf("")
private var imageUri by mutableStateOf<Uri?>(null)
private var uriString by mutableStateOf("")
...

}

Inside the onEnterButtonClicked callback we just need to remove the val keywords for
username, imageUri and uriString, so that we can access the activity-level variables we
just defined. Now let’s go and fix the NavigationBarItem that displays the NewRecordi ⌋

ngScreen. First, we need to modify the selected parameter, since the route is no longer
”newRecording”, but instead newRecording/$username/$uriString. Hence, we will set it
to ”false” if it does not match the beginning of the route name. The final step is to assign
the correct route in the onClick block, which has to he the same as in the onEnterBut-
tonClicked callback.

NavigationBarItem(
selected = currentRoute?.startsWith("newRecording") ?: false,
onClick = {

navController.navigate("newRecording/$username/$uriString")
},
...

.

12

	Android Studio Tricks
	Sending Login credentials to the wearable device
	Communicating between tablet and watch
	Using the Wear Data API
	Mobile module: MainActivity class
	Wear module: the MainActivity class

	Navigation arguments
	Send username to the NewRecordingScreen
	Send the imageUri to the NewRecordingScreen

