
EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Lab 1: Hello Android

In case you found something to improve, please tell us!
https://forms.gle/3U6WrZNyNx2nBXQ38

1 Introduction

This lab teaches you how to build your first Android app with Jetpack Compose. You will
learn how to create an Android project and display composables on Android tablets/phones
and smarwatches. It will be the first step towards building a complete sport tracking
application, which you will develop step by step during the upcoming lab sessions.

Note: The watch cannot connect to the WiFi directly. We present a workaround in the last
page, using of a small custom app.

2 Creating an Android project

An Android project contains all the files that comprise the source code for your Android
app. The Android SDK tools are included in Android Studio. They make it easy to start a
new Android project with a set of default project directories and files.

1. Start Android Studio from the class computer or from your own. In case you want to
use your own computer, you can download and install Android Studio here1. Com-
puters in class have the version 2022.3.1 Patch 2 pre-installed. Please always use
this version to avoid compatibility issues.

2. Click on New Project.

3. Now you can select a device and an activity template, from which you begin building
your app (Figure 1):

1. Select Phone and Tablet from the options on the left, and Empty Activity from
the list of items on the right. Click on Next.

4. Fill in the form that appears (Figure 2):

1. Name is the app name, as shown to users. You can use Sports Tracker as your
app name.

2. Package name is the package name for your app. Your package name must be
unique across all packages installed on an Android system.

1https://developer.android.com/studio/archive

1

https://forms.gle/3U6WrZNyNx2nBXQ38

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

3. Save location is the directory where all the files will be stored for this Android
Studio project. It is common practice to group all related apps e.g. all the apps
created for this course, in a unique Workspace directory.

4. Language is the language used for App programming. Make sure you select
Kotlin.

5. Minimum SDK is the lowest version of Android that your app supports. We
recommend using the API 23: Android 6.0 (Marshmallow) or superior.

5. Leave all the details for the activity in their default state and click Finish.

Figure 1: Wizard for creating a new project with Android Studio - choosing a template.

2

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Figure 2: Wizard for creating a new project with Android Studio - configuring your project.

3 Fundamental notions

Before you run your app, you should be aware of a few directories and files in the Android
project:

• app/manifests/AndroidManifest.xml The manifest file describes the fundamental
characteristics of the app and defines each of its components. It also contains the
access that your app requires to be used on a device such as body sensors (heart-
rate), microphone, GPS, etc. You will learn about the various elements of this file in
the next lab sessions.

• app/java/ This directory is for your app’s main source files. By default, it includes an
Activity class that runs when your app is launched, as well as a directory (ui.theme)
containing the definition of the UI look and feel, such as the employed colors.

• app/res/ Contains several sub-directories for app resources. For example:

– drawable/ Directory for drawable objects used in the UI of your app such as
bitmap images. They should be stored in different folders depending on the res-
olution they are meant for (hdpi, mdpi, xhdpi…).
Note: You might not see the different folders yet. In the future, you can create
them when needed by right-clicking on the res/ directory and then New > An-
droid resource directory. In the menu, select drawable as the Resource type

3

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

and Density as the Available qualifier. You can choose the desired density and
click Ok.

– values/ This directory is for other various XML files that contain a collection of
resources, such as string or color definitions.

• Gradle scripts/ This directory contains the scripts used by the build system to com-
pile the app. This is the place where the project’s dependencies are defined and
where the Android API level is specified. We will not go further than that use in our
labs.

When you build and run the default Android app, the Activity class starts and loads a layout
file that says ”Hello Android!”. The result is nothing exciting, but it’s important that you
understand how to run your app before you start developing.

4 Running your app

You can run your app on a real device or an emulated one. This section shows you how to
install and run your app on a real device and on the Android emulator. Note that using an
emulator may not provide all the features of a real device (camera, sensors, etc.). For this
reason, it is always better to test your app on a real device.

4.1 Run on a real device

If you have a real Android-powered device, here is how you can install and run your app:

1. Plug in your device to your development machine with a USB cable.

2. Enable USB debugging on your device:

1. On Android 4.0 and newer, it’s in Settings > Developer options.
2. Developer options are hidden by default. To make them available, go to Settings

> About phone/tablet and tap Build number at least seven times. Return to
the previous screen to find Developer options. On a smartwatch, the build
number is available going to Settings > System > About.

3. Access Developer options and enable USB debugging.

3. From the Android Studio toolbar, select the app configuration, then, select your de-
vice clicking the Device Manager button in the contextual menu that appear aside
the App configuration button.

4

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Figure 3: Structure of an Android project

4. In the device manager menu, first, select Physical and then search for your device.
In the future, if this device was successfully paired, it will be automatically detected
and used a default target device.

5. Now click the Run button (green arrow in Figure 4). Android Studio installs the app
on your connected device you choose and starts it.

5

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Figure 4: “Run” options in the android run menu

When creating a project targeting a smartphone and a smartwatch, both show up in the
Run configuration dropdown menu as Application and Wearable, respectively.

That’s how you build and run your Android app on a device!

4.2 Run on the emulator

An Android Virtual Device (AVD) is a device configuration for the Android emulator that
allows you to model different devices. To run your app on the emulator you need to first
create an Android Virtual Device (AVD).

To create an AVD:

1. Launch the Android Device Manager by clicking on the Device Manager from the
Android Studio toolbar (note that this is the same device manager we opened before
to connect to our physical device).

2. Device manager lists the details of all available devices (Virtual and Physical).
3. A device might already be present by default in the list. If needed, in the Android

Virtual Device Manager panel, click Create Device. You can either fill in the details
for the AVD or select an existing hardware model from the list. This way, it is easier
to try the app on a device with a different form factor.

Figure 5: The Android Device Manager

Running the app on emulated devices is the same as using a real device. Available emu-
lated devices are shown in the ”Run” drop-down menu.

6

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

5 Create a Hello world app

Android Studio is a development environment that provides many useful tools. Here we
show a few of them, but feel free to explore around!

First, from the app/java/(my.package.name) folder, open
the MainActivity file. This is the file describing our app’s
user interface (UI) and functionality. You can see that there is
a class called MainActivity with one method, a Greeting com-
posable function outside of the class, and a preview function
for the Greeting composable, which allows you to see a live
preview of the composable without running the application.

Now select the Split tab from the top of the window, to be
able to see the code and the live previews at the same time.
Since this is the first time, you will first have to build the
application. Click on Build refresh and wait until it finishes. Let’s check the live preview
in action by changing the text in the Greeting composable to the following:

@Composable
fun Greeting(name: String, modifier: Modifier = Modifier) {

Text(
text = "This is my first app in $name!",
modifier = modifier

)
}

5.1 Tidying up the code style

Editing after editing, especially with multiple programmers, the code can become messy
(irregular bracket position, spaces, unclean indentation). This can be fixed using Code >
Reformat code. You will soon know the shortcut Ctrl+Alt+L by heart!

5.2 Renaming variables (the smart way)

The last problem one can find in our code is that the namewe gave to the String resource
variable is objectively terrible. It is so generic that it becomes unhelpful as we add more
string resources in the future. One can manually rename all usages with a better name,
or use a ”find and replace” but can be error-prone. Let’s use Android Studio refactoring
abilities to rename it. To do so, right-click on it and select Refactor > Rename, which

7

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

can be done with the shortcut Shift+F6. Let’s rename it to ”greeting_message”.

5.3 The poor man’s debug: outputting messages into Logcat

Even if outputting text is not the best way to debug, it’s easy to do and is efficient to have
an idea of the execution flow in the app. Using the Log library, it’s easy to output text,
which can be colorized depending on its importance:

// It's common to create class member named TAG of type String
// Class fields usually at the top of the class in a companion object
companion object {

private const val TAG = "MainActivity"
}

// A function printing to logcat
private fun demoLogcat() {

Log.v(TAG, "Verbose")
Log.d(TAG, "Debug")
Log.i(TAG, "Information")
Log.w(TAG, "Warning")
Log.e(TAG, "Error")

}

Add the object2 TAG to our Main ⌋

Activity class, along with the ⌋

demoLogcat() method. Create
a new demoLogcat() method call
(for example in onCreate(...),
but outside the setContent block). Run the application again and open Logcat at the
bottom toolbar of Android Studio, and filter messages for the keyword ”MainActivity”.
You will see something similar to the figure on the right side of this page.

Depending on the importance of the output, different verbosity level is used. An error
happens only once in a while, as it should be used for a critical failure. A warning is for a
failure, which does not prevent the execution to continue, and therefore it could happen
more frequently. An informationmessage can be displayed for example when going from
one state to another, which may happen anytime. A debug-level message gives usually
more details about what is happening. Finally, verbose is expected to output a lot of text,
very likely that most of it is useless but still interesting to have a detailed vision of the

2https://kotlinlang.org/docs/object-declarations.html#companion-objects

8

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

execution. Android Studio can hide messages below a given importance in the Logcat
viewer e.g. by filtering for ”level:error”.

5.4 Proper debugging

To find out what is precisely happening without having to log everything, it’s best to use
breakpoints. Click near the line number to set a break-point:

Figure 6: Debug window

Now, running the app in debug mode is done with the button. When the execution hits
the break-point, it will pause the execution and you will be able to continue step-by-step,
explore each variable internal value, execute an arbitrary expression, etc.

Now, you have the additional knowledge that makes Android programming a pleasant (or
at least, efficient) experience. Feel free to explore the other features available, such as
the Profiler in case of performance problems, as you may have some in the future.

6 Create a static User Interface

We will build (UI) for an Android apps using hierarchies of composable layouts and com-
posables, as shown in Fig. 7. Non-layout composables include Texts, Images, and Buttons.
Layouts objects are invisible containers that define how the child composables are laid
out, such as in a grid or a vertical list.

9

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Figure 7: Standard composable layouts

6.1 Create a Column

There are several kinds of composable layouts, each with a different purpose. The Figure
below presents some of the available layouts:

1. Column, Row and Box organize their childrens into a single vertical column, horizontal
row, or on top of each other in a box. (Fig. 7).

2. ConstraintLayout allows you to specify the location of child objects relative to each
other, or to their parent (Fig. 8).

Figure 8: Constraint layout: B is constrained to always be to the right of A, and C is
constrained below A.

10

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

You will be using a Column composable for this part of the lab. Open the layout file in a ⌋

pp/java+kotlin/com.epfl.esl.sportstracker/MainActivity.kt. Switch to the Code
or Split tab at the top right of the editor’s window, and replace all the content with the
following:

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {

SportsTrackerTheme {

}
}

}
}

Now let’s create a new composable that we will call ”HomeScreen” outside of the MainAc-
tivity class. Type ”comp” and press TAB, this will automatically generate a @Composable
function, where you will have to add the name. Add a function call in the blank space that
we left inside the SportsTrackerTheme with our new Composable, HomeScreen(). Let’s
add a function parameter to our composable, modifier: Modifier = Modifier. Also,
let’s add a Surface composable inside of our new composable with parameters modifi ⌋

er = modifier.fillMaxSize() and color = MaterialTheme.colorScheme.backgroun ⌋

d. Surface is used mainly to assist with material theming (Google’s design approach) and
with better light/night mode integration. modifier = modifier.fillMaxSize() fill the
whole available screen, both height, and width, to be used by our composable. Finally,
let’s add a Preview, so we can see live updates without running our app. Type ”prev”
and press TAB, this will generate a Preview, while you have to add a name. Name it
”HomeScreenPreview”. Add a SportsTrackerTheme block and inside the block call the
HomeScreen function.

Below is the resulting code.

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {

SportsTrackerTheme {
HomeScreen()

11

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

}
}

}
}

@Composable
fun HomeScreen(modifier: Modifier = Modifier) {

Surface(
modifier = modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background

) {

}
}

@Preview
@Composable
fun HomeScreenPreview() {

SportsTrackerTheme {
HomeScreen()

}
}

Now we can add GUI elements to your HomeScreen composable!

6.2 Add elements to a Composable

Let’s start with adding a Column inside the Surface block. If you see that the ”Col-
umn” keyword becomes red, press ALT+ENTER and import the approriate function (an-
droidx.compose.foundation.layout.Column).

In order to have the element children of Column centered, we need to add verticalAr-
rangment and horizontalAlignment as parameters (see code below).

Now let’s add an Image. First, you will have to download it from Moodle (ic_logo. ⌋

png). Then, open the Resource Manager tab in the project navigation pane on the left
side of the screen, and click on the ’+’ sign to open a drop-down menu. Select ”Import
Drawables”. Type ”Image” inside the Column composable and you will see a popup with
3 Image constructors. In our case, we are going to use the one with the painter function
parameter.

12

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Column(
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally

) {
Image(

painter = painterResource(id = R.drawable.ic_logo),
contentDescription = "Logo Sports Tracker"

)
}

Let’s add a Text after the image, with the text ”This is my first app!”.

Text(text = "This is my first app!")

The result is shown in Fig. 9.

Figure 9: View of the initial Layout

13

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

6.3 Customizing the Views sizes

As you can see in Fig. 9, the text size is too small comparing to the Image’s size. You can
easily change the text size by adding the following line as an extra parameter in the Text
composable.

style = TextStyle(fontSize = 36.sp)

Here, sp stands for scale-independent pixels. It is recommended to use this unit for every
specified text size in the layout; because it allows the application to adjust the text size
based on the user’s font size preference.

The second problem with the appearance of our app is that the Text is too close to the
Image. To increase the distance between these two views, you can add padding to the
Text or add a Spacer composable between them. This line of code Spacer(modifier =
modifier.size(16.dp)) between the Image and the Text, adds an empty space of 16dp
between them.

You can use padding instead of a Spacer. Insert this code as a parameter to the Text
composable: modifier = modifier.padding(16.dp). Padding pushes the boundaries of
the Text in all directions with the specified amount. You can also use padding in one
direction only, for example, top padding, which is needed in our case: modifier = modi ⌋

fier.padding(top = 16.dp). You can see the differences between padding and Spacer
by adding background color to the Text, applying .background(color = Color.Green)
to the modifier. Check out the difference in Fig. 10.

dp stands for density-independent pixels. The Android system converts this unit to an
actual density based on the screen device. Except for the text sizes, it is recommended to
use dp for specifying any size to the layout elements.

Relying on the fillMaxSize() is not really flexible to create the layout we aim for. You
can set a fixed size for each element in the layout. Particularly, in this layout, you can limit
the Image’s size by setting 256dp as the size of the height: modifier = modifier.heig ⌋

ht(256.dp).

7 Create a new module for a smartwatch

You will make this project work with both a mobile and a wear module, which simplify
future applications. To create a new module, from File -> New, select New Module….
Then, on the new window, select Wear OS. Then, name the Application/Library name
as same as the name you chose for the application. For Module name enter wear, edit

14

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

(a) Spacer (b) Top padding

Figure 10: Difference between Spacer and padding

the Package name to set the package name exactly as same as the application (ex. c ⌋

om.epfl.esl.sportstracker). Set the minimum API level as 25. Click ”Next”, then
select ”Empty Wear App”, and ”Finish”. In the new wear’s module build.gradle file
update all the dependencies to their latest version (you can get help from Alt+Enter).

Now, in this project, we have two different modules for the different devices. To make
the names more meaningful, please change the app module’s name into mobile. For this
purpose, you need to right-click on the app -> Refactor -> Rename. Then, in the Select
Refactoring window, choose Rename module. Press OK, entermobile as the new name,
and now you have two modules: mobile and wear.

15

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

7.1 Building the Android Wear layout

For the Android Wear App, you will use a new type of layouts: the constraint layout. The
constraint layout allows you to position your widgets relative to one another and to their
parents in the horizontal and vertical axis. The general concept is to constrain a given
side of a widget to another side of any other widget or the parent.

You will notice that Android Studio has automatically created a layout for you based on
the template from the App Creation Wizard.

In the wear’s module build.gradle file, add the following line to dependencies to guar-
antee the compatibility with the constraint layout.

implementation("androidx.constraintlayout:constraintlayout-compose:1.0.1")

Delete the content of wear/java/com.epfl.esl.sportstracker.presentation/MainAc ⌋

tivity.kt and replace it with the following Kotlin code to define our ConstraintLayout:

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContent {

SportsTrackerTheme {
HomeScreen()

}
}

}
}

@Composable
fun HomeScreen(modifier: Modifier = Modifier) {

ConstraintLayout {

}
}

@Preview(device = Devices.WEAR_OS_LARGE_ROUND, showSystemUi = true)
@Composable
fun HomeScreenPreview() {

HomeScreen()
}

16

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

This defines a white container that takes the full available space in the screen. Next, you
will add an Image and a Text inside the empty ConstraintLayout block. To do so, first,
import the same ic_logo.png image as before in the Android Wear module.

Then, copy the code of the Image and Text in the app (mobile) module, and paste in the
ConstraintLayout block.

We would like the image and the text to be centered in the layout, with the image at the
top of the text. To achieve this, set the layout constraints as follows:

val (image, text) = createRefs()

Image(
painter = painterResource(id = R.drawable.ic_logo),
contentDescription = "Logo Sports Tracker",
modifier = modifier

.size(100.dp)

.constrainAs(image) {
top.linkTo(parent.top, margin=32.dp)
start.linkTo(parent.start, margin=32.dp)
end.linkTo(parent.end, margin=32.dp)
bottom.linkTo(text.top)

}
)
Text(

text = "Hello World!",
style = TextStyle(fontSize = 24.sp),
modifier = modifier

.constrainAs(text) {
top.linkTo(image.bottom)
start.linkTo(parent.start, margin=32.dp)
end.linkTo(parent.end, margin=32.dp)
bottom.linkTo(parent.bottom, margin=32.dp)

}
)

start.linkTo() and end.linkTo allow to define how the elements are positioned hori-
zontally. In this case, you constrained them to be aligned to the parent container in the
left and right side, with some margins.

We define how the elements are positioned vertically using similar definitions. In this case,
you set the image and the text to be aligned vertically, in the center of the container, with

17

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

the bottom of the image linked to the top of the text and vice-versa.

Notice that you also set the size(width and height) of the Image to 100dp, this is because
the image appears too big when the height and width are without modifier.

The resulting Android Wear layout should look like in Fig. 11.

Figure 11: Android Wear Layout

8 Using a custom watch app to connect to EPFL’s WiFi

From the user interface of the watch, it is impossible to connect to EPFL’s wifi. To do
so, we created a small app that asks for the login (gaspar) and password to register both
EPFL and eduroam networks. You can open the Connect2Wifi app sources in Android
Studio, compile and run it on the watch.

18

	Introduction
	Creating an Android project
	Fundamental notions
	Running your app
	Run on a real device
	Run on the emulator

	Create a Hello world app
	Tidying up the code style
	Renaming variables (the smart way)
	The poor man's debug: outputting messages into Logcat
	Proper debugging

	Create a static User Interface
	Create a Column
	Add elements to a Composable
	Customizing the Views sizes

	Create a new module for a smartwatch
	Building the Android Wear layout

	Using a custom watch app to connect to EPFL's WiFi

