E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“R““HY

Tablets, Smartphones And Smartwatches

Lab 0: Kotlin basics

In case you found something to improve, please tell us!
https://forms.gle/3U6WrZNyNx2nBXQ38

1 Introduction

Today’s lab will introduce the main concepts of the Kotlin programming language. If you
are familiar with C, some of the features of Kotlin will be familiar. If you are familiar
primarily with the Java programming language, you may be amazed at how much more
concise and readable your code can be. Kotlin is focused on clarity, conciseness, and code
safety. Kotlin has been around since 2011, and was released as open source in 2012.
It reached version 1.0 in 2016, and since 2017 Kotlin has been an officially supported
language for building Android apps.

Kotlin allows for both functional and object-oriented programming styles. Herein, we will
cover aspects from both with code samples. We will only scratch the surface of what Kotlin
has to offer, as a stepping stone towards implementing modern Android apps. Much more
can be found in the official Kotlin documentation?.

2 Today’s lab

If not already done yet, install Android Studio. Computers in class have the version
2022.3.1 Patch 2 pre-installed. It is available for download at the Android Studio web-
site?. If you want to install Android Studio on your own computer, please select this same
version in order to avoid compatibility issues. In this lab, you learn the basics of the
Kotlin programming language, including data types, operators, variables, control struc-
tures, classes, and nullable versus non-nullable variables.

T https://kotlinlang.org/docs/home.html
2https://developer.android.com/studio/archive

https://forms.gle/3U6WrZNyNx2nBXQ38

E P F L EE-490g - Lab On Apps Development For $§¥SII[[IL||]S[H.AH“RM[|“Y

Tablets, Smartphones And Smartwatches

3 Kotlin as a functional language

3.1 First Kotlin Code

[JON] New Project

RN

Fo===s

Phone and Tablet H]

(]

Wear 0S :]

]

]
Android7v. | eeeces)
¥
Automotive .
Basic Activity Basic Activity (Material3)

< Q]

Bottom Navigation Activity Empty Compose Activity Empty Compose Activity (Mat...

[—1
Cancel Previous m Finish

Figure 1: Creating an Empty project in Android Studio

For this lab, open Android Studio and click on New Project, and choose No Activity in
the Phone and Tablet tab, as shown in Figure 1. Then, click on the Next button to go to
Configure Your Project. Fill the configuration with a name Lab0, package name com.ep
fl.esl.1lab0, and an appropriate save location. Choose the Language as Kotlin. Then,
click on Finish to start the new project.

In the directory list in the left hand side window, go to app -> Kotlin+java-> com.epfl.e
sl.lab0. Right-click on the package name directory and then, New -> Kotlin Class/File.
Select File in the pop-up window, and give as a file name TestFile.

You will use this file to execute some Kotlin code, which we present in the following. For
now, simply add the following lines to the file:

fun main() {
println("Hello World!")

To run the main() function, right-click on the file name on the left and choose Run ’Test-
FileKt’. The code should show HelloWorld! in the output window (select the Run tab, at

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

the bottom).

Now, follow the following sections step by step, and try to use the code to understand
better the Kotlin language and concepts.

3.2 Variables

As with other languages, Kotlin uses +, -, * and / for plus, minus, times and division. Kotlin
also supports different number types, such as Int, Long, Double, and Float. For strings, +
is used for concatenation. Here are few examples:

fun main() {
val i: Int = 6
val b0O: Double = i.toFloat()*50.0
val b2: String b0.toString()
println("Hello " + b2 + " Worlds!")

Kotlin supports two types of variables: changeable and unchangeable. With val, you can
assign a value once. If you try to assign something again, you get an error. With var, you
can assign a value, then change the value later in the program. Try copy-pasting these
statements inside the main() function:

var fish =1
fish = 2

val aquarium = 1
aquarium = 2

If you try to build the resulting code, you will see in the Build tab in the bottom window
an error such as “val cannot be reassigned”.

Strings in Kotlin work pretty much like strings in any other programming language, using
" for strings and ﬂ for single characters. You can create string templates by combining
them with values; the $variable name is replaced with the text representing the value.
This is called variable interpolation.

val numberOfFish =5
val numberOfPlants = 12
println("I have $numberOfFish fish" + " and $numberOfPlants plants")

Like other languages, Kotlin has booleans and boolean operators such as less than, equal
to, greater than, and so on (<, ==, >, I=, <=, >=).

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

val numberOfFish = 50

val numberOfPlants = 23

if (numberOfFish > numberOfPlants) {
println("Good ratio!")

} else {
println("Unhealthy ratio")

val fish = 50
if (fish in 1..100) {
println(fish)

For more complicated conditions, there’s a nicer way to write that series of if/else if/else
statements in Kotlin, using the when statement, which is like the switch statement in
other languages. Conditions in a when statement can use ranges, too. Note that when
automatically breaks at the end of each branch.

when (numberOfFish) {
0 -> println("Empty tank")
in 1..39 -> println("Got fish!")
else -> println("That's a lot of fish!")

3.3 Lists and loops

Lists are a fundamental type in Kotlin, and are similar to lists in other languages. You can
use ListOf to declare a list. This list cannot be changed. A list that can be changed should
be declared using mutableListOf.

listOf("mackerel", "trout", "halibut")
val myList mutablelListOf("tuna", "salmon", "shark")
school.remove("trout") // Error
myList.remove("shark")

val school

Like other languages, Kotlin has arrays. Unlike lists in Kotlin, which have mutable and
immutable versions, there is no mutable version of an Array. Once you create an array,
the size is fixed. You can’t add or remove elements, except by copying to a new array. The
rules about using val and var are the same with arrays as with lists.

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

val school array = arrayOf("shark", "salmon", "minnow")
val mix = array0f("fish", 2)
val numbers = intArray0f(1,2,3)

One nice feature of Kotlin is that you can initialize arrays with code instead of initializing
them to 0. Look at this example:

val array = Array (5) { it * 2 }

The initialization code is between the curly braces, {}. In the code, it refers to the array
index, starting with 0.

Now that you have lists and arrays, looping through the elements works as you might
expect.

for (element in school) {
print(element + " \n")

for ((index, element) in school.withIndex()) {
println("Item at $index is $element\n")

You can specify ranges of numbers or of characters, alphabetically. And as in other lan-

guages, you don’t have to step forward by 1. You can step backward using downTo.

for (i in 1..5) print(i)
-> 12345

for (1 in 5 downTo 1) print(i)
-> 54321

for (i in 3..6 step 2) print(i)
-> 35

for (i in 'd'..'g"') print (i)
-> defg

Like other languages, Kotlin has while loops, do...while loops, and ++ and - - operators.
Kotlin also has repeat loops.

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

var bubbles = 0
while (bubbles < 50) {
bubbles++

}
println("$bubbles bubbles in the water\n")

do {
bubbles- -
} while (bubbles > 50)
println("$bubbles bubbles in the water\n")

repeat(2) {
println("A fish is swimming")

Kotlin has several ways of controlling flow. As the name implies, return returns from a
function to its enclosing function. Using a break is like return, but for loops. Kotlin gives
you additional control over loops with what’s called a labeled break. A break qualified
with a label jumps to the execution point right after the loop marked with that label. This
is particularly useful when dealing with nested loops. Any expression in Kotlin may be
marked with a label. Labels have the form of an identifier followed by the @ sign.

outerLoop@d for (i in 1..100) {
print("$i ")
for (j in 1..100) {
if (i > 10) break@outerLoop // breaks to after outer loop

3.4 Nullability

Programming errors involving nulls have been the source of countless bugs. Kotlin seeks
to reduce bugs by introducing non-nullable variables. In Kotlin, by default, variables can-
not be null. Use the question mark operator, ?, after the type to indicate that a variable
can be null.

var fishFoodTreats: Int? = null

You can test for null with the ? operator, saving you the pain of writing many if/else
statements.

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM|]HY

Tablets, Smartphones And Smartwatches

if (fishFoodTreats != null) {
fishFoodTreats = fishFoodTreats.dec()

Now look at the Kotlin way of writing it, using the ? operator.

fishFoodTreats = fishFoodTreats?.dec()

You can also perform nullability tests with the ?: operator. Look at this example:
fishFoodTreats = fishFoodTreats?.dec() ?: ©

It’s shorthand for ”if fishFoodTreats is not null, decrement and use it; otherwise use the
value after the ?:, which is 0.” If fishFoodTreats is null, evaluation is stopped, and the dec()
method is not called. The ?: operator is sometimes called the ”Elvis operator,” because
it’s like a smiley on its side with a pompadour hairstyle, the way Elvis Presley styled his
hair.

If you really love NullPointerExceptions, Kotlin lets you keep having them. The not-null
assertion operator, !! (double-bang), converts any value to a non-null type and throws an
exception at run-time if the value is null.

val len = s!!.length // throws NullPointerException if s is null

3.5 Functions

Look at this printHello() function. Functions are defined using the fun keyword, fol-
lowed by the name of the function. As with other programming languages, the parenthe-
ses () are for function arguments, if any. Curly braces {} frame the code for the function.
There is no return type for this function, because it doesn’t return anything.

fun printHello() {
println ("Hello World")

Copy-paste this function in TextFile.kt, and invoke it from the main () to print “Hello World”
in the output (Run) window.

Functions can accept inputs and return outputs. The input parameters list is specified
inside the parenthesis after the function name, while return type should be indicated after
the parameters list and the semicolumn (:):

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

fun fishFood (day : String) : String {

val food : String

when (day) {
"Monday" -> food = "flakes"
"Wednesday" -> food = "redworms"
"Thursday" -> food = "granules"
"Friday" -> food = "mosquitoes"
"Sunday" -> food = "plankton"
else -> food = "nothing"

}

return food

Call fishFood() from main() and println the returned string.

In Kotlin, you can pass arguments by parameter name. You can also specify default values
for parameters: if an argument isn’t supplied by the caller, the default value is used. Here
is an example:

fun shouldChangeWater (day: String, temperature: Int = 22,
dirty: Int = 20): Boolean {
return when {
temperature > 30 -> true
dirty > 30 -> true
day == "Sunday" -> true
else -> false

Compact functions, or single-expression functions, are a common pattern in Kotlin. When
a function returns the results of a single expression, you can specify the body of the func-
tion after an = symbol, omit the curly braces {}, and omit the return.

fun isTooHot(temperature: Int) = temperature > 30
fun isDirty(dirty: Int) = dirty > 30
fun isSunday(day: String) = day == "Sunday"

In addition to traditional named functions, Kotlin supports lambdas. A lambda is an ex-
pression that makes a function. But instead of declaring a named function, you declare a

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM|]HY

Tablets, Smartphones And Smartwatches

function that has no name. Part of what makes this useful is that the lambda expression
can now be passed as data. In other languages, lambdas are called anonymous func-
tions, function literals, or similar names.

Like named functions, lambdas can have parameters. For lambdas, the parameters (and
their types, if needed) go on the left of what is called a function arrow ->. The code to
execute goes to the right of the function arrow. Once the lambda is assigned to a variable,
you can call it just like a function.

val waterFilter = { dirty : Int -> dirty / 2}

In this example, the lambda takes an Int named dirty, and returns dirty / 2.

Kotlin’s syntax for function types is closely related to its syntax for lambdas. Use this
syntax to cleanly declare a variable that holds a function:

val waterFilter: (Int) -> Int = { dirty -> dirty / 2 }

Here’s what the code says:

* Make a variable called waterFilter.

» waterFilter can be any function that takes an Int and returns an Int.
* Assign a lambda to waterFilter.

* The lambda returns the value of the argument dirty divided by 2.

Note that you don’t have to specify the type of the lambda argument. If this is the case,
the type is calculated by type inference.

3.6 Higher order functions

Now, let’s see a useful use-case for lambdas. They can be used in higher-order functions.
A higher-order function is a function that takes functions as parameters and/or returns a
function. We are going to use the waterFilter lambda from the previous example:

fun updateDirty(dirtyLevel: Int, operation: (Int) -> Int): Int {
return operation(dirtyLevel)

Higher-order functions can be called just like any other functions, by providing a lamda
or function parameter. Here is an example using the waterFilter lambda

fun main(){
var dirtyLevel = 4

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM|]HY

Tablets, Smartphones And Smartwatches

dirtyLevel = updateDirty(dirtyLevel, waterFilter)
println("Water pollution level is " + dirtylLevel.toString())

Here operation is a function that is passed as a parameter to the function updateDirty,
which uses operation and returns its result.

What if waterFilter is defined as a function, and not a lambda? In this case, we will need to
use the :: operator, which provides a method reference when we are calling the function.

fun waterFilterFun(dirty: Int): Int {
return dirty / 2

fun main(){
dirtyLevel = updateDirty(dirtyLevel, ::waterFilterFun)

4 Kotlin as an object oriented language

4.1 Classes

The following programming terms should already be familiar to you:

* Classes are blueprints for objects. For example, an Aquarium class is the blueprint
for making an aquarium object.

* Objects are instances of classes; an aquarium object is one actual Aquarium.

* Properties are characteristics of classes, such as the length, width, and height of an
Aquarium.

* Methods, also called member functions, are the functionality of the class. Methods
are what you can "do” with the object. For example, you can fillWithWater() an
Aquarium object.

Let’s take an example of an object, for instance a bicycle. Bicycles have a state, repre-
sented by the current gear, pedal cadence and speed, and a behavior, such as changing
gear, changing pedal cadence, speed up, applying brakes, and so on.

Identifying the state and behavior for real-world objects is a great way to begin thinking
in terms of object-oriented programming. Software objects are conceptually similar to
real-world objects: they consist of state and related behavior. An object stores its state in
fields (properties) and describes its behavior through member functions (methods).

10

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

With respect to our previous example, each bicycle is built from the same set of blueprints
and therefore contains the same main components that describe them as bicycles, but
each bicycle is physically different from each other. In object-oriented terms, we say that
aBicycle and anotherBicycle are two instances of the class of objects known as Bicycle.
Therefore, a class is the blueprint from which individual objects are created (instantiated).

An implementation of the Bicycle class may look as follows. Notice that the Bicycle
class does not contain a main(...) method. This is due to the fact that this class is not
a complete application, it just represents the category of bicycles from which different
objects (specific bicycles) can be instantiated.

class Bicycle {
var cadence = 0
var speed = 0
var gear =1
fun changeCadence(newValue: Int) {
cadence = newValue

fun changeGear(newValue: Int) {
gear = newValue

fun speedUp(increment: Int) {
speed = speed + increment

fun applyBrakes(decrement: Int) {
speed = speed - decrement

fun printStates() {
println("cadence:$cadence")
println("speed:$speed")
println("gear:$gear")

(Public) class methods can be called from other objects or from functions:
fun main() {

11

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM|]HY

Tablets, Smartphones And Smartwatches

var aBycicle = Bicycle()
aBycicle.speedUp(3)
aBycicle.printStates()

4.2 Creating and modifying objects

Create a new file by right-click on the package name directory and then, New -> Kotlin C,
lass/File. Set the file name as Aquarium because we want to make a class with the same
name. The following example defines a class and initialize its parameters with default
values. class names by convention start with a capital letter

class Aquarium {
var width: Int = 20
var height: Int = 40
var length: Int = 100

Under the hood, Kotlin automatically creates getters and setters for the properties you
defined in the Aquarium class, so you can access the properties directly, for example, my |
Aquarium.length.

Note: If you declared these properties with val instead of var, the properties would be
immutable. You could only set them once, and all the instances of Aquarium would have
the same dimensions.

Also note that Android Studio underlines the name of each var in your code, but not each
val. Kotlin coding style prefers immutable data when possible, so Android Studio draws
your attention to mutable data so you can minimize its use.

To create an instance, reference the class (e.g. in the TestClass.kt file, inside the main()
function) as if it were a function, Aquarium(). This calls the constructor of the class and
creates an instance of the Aquarium class, similar to using new in other languages.

val myAquarium = Aquarium()

In the earlier example, every instance of Aquarium is created with the same dimensions.
You can change the dimensions once it is created by setting the properties, but it would
be simpler to create it the correct size to begin with.

In some programming languages, the constructor is defined by creating a method within
the class that has the same name as the class. In Kotlin, you define the constructor directly

12

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

in the class declaration itself, specifying the parameters inside parentheses as if the class
was a method. As with functions in Kotlin, those parameters can include default values.

class Aquarium(length: Int = 100, width: Int = 20, height: Int = 40) {
// Dimensions in cm
var length: Int = length
var width: Int = width
var height: Int = height

The more compact Kotlin way is to define the properties directly with the constructor,
using var or val, and Kotlin also creates the getters and setters automatically. Then you
can remove the property definitions in the body of the class.

100, var width: Int = 20,
40) {

class Aquarium(var length: Int
var height: Int

When you create an Aquarium object with that constructor, you can specify no arguments
and get the default values, or specify just some of them, or specify all of them and create
a completely custom-sized Aquarium

val aquariuml = Aquarium()

// default height and length
val aquarium2 = Aquarium(width = 25)

// default width
val aquarium3 = Aquarium(height = 35, length = 110)

// everything custom
val aquarium4 = Aquarium(width = 25, height = 35, length = 110)

The example constructors above just declare properties and assign the value of an expres-
sion to them. If your constructor needs more initialization code, it can be placed in one or
more init blocks.

class Aquarium (var length: Int = 100, var width: Int = 20, var height: Int
init {

13

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

println("aquarium initializing")

}
init {

// 1 liter = 1000 cm™3

println("Volume: ${width * length * height / 1000} 1")
}

Notice that the init blocks are executed in the order in which they appear in the class
definition, and all of them are executed when the constructor is called. Parameters of the
primary constructor can be used in the initializer blocks. Any properties used in initializer
blocks must be declared previously.

Kotlin automatically defines getters and setters when you define properties, but sometimes
the value for a property needs to be adjusted or calculated. For example, above, you
printed the volume of the Aquarium. You can make the volume available as a property by
defining a variable and a getter for it. Because volume needs to be calculated, the getter
needs to return the calculated value, which you can do with a one-line function.

val volume: Int
get() = width * height * length / 1000 // 1000 cm™3 = 1 1

You can also create a new property setter for the volume, so that, if the volume changes,
height is automatically adjusted.

var volume: Int
get() = width * height * length / 1000
set(value) {
height = (value * 1000) / (width * length)

There have been no visibility modifiers, such as public or private, in the code so far.
That’s because by default, everything in Kotlin is public, which means that everything can
be accessed everywhere, including classes, methods, properties, and member variables.

In Kotlin, classes, objects, interfaces, constructors, functions, properties, and their setters
can have visibility modifiers:

* public means visible outside the class. Everything is public by default, including
variables and methods of the class.

» internal means it will only be visible within that module. A module is a set of Kotlin
files compiled together, for example, a library or application.

14

E P F L EE-490g - Lab On Apps Development For ¢§¥s'1[['|:s["L IORTORY

Tablets, Smartphones And Smartwatches

» private means it will only be visible in that class (or source file if you are working
with functions).
* protected is the same as private, but it will also be visible to any subclasses.

Properties within a class, or member variables, are public by default. If you define them
with var, they are mutable, that is, readable and writable. If you define them with val, they
are read-only after initialization.

4.3 Class inheritance

In the Kotlin language, classes can be derived from other classes. A class that is derived
from another class is called a subclass (child class). The class from which the subclass is
derived from is called a superclass (parent class).

Any is the only class in Kotlin that has no superclass. Every class is implicitly a subclass of
Any. There is no limit in inheritance, and ultimately everything is derived from the topmost
class, Any.

Brakes Bicycle
Gears
Wheels (superclass)

Brakes Mountain Road Brakes

Gears . . Gears
Wheels Bicycle Bicycle Wheels

Shock absorbers (subclass) (subclass) Lights

Figure 2: Two subclasses of the superclass Bicycle inheriting same features and adding more
specific ones

The idea of inheritance is simple: creating a new class with the same features as one
already existing and, also adding more specific features. Coming back to the Bicycle
example, this class describes a generic bicycle with features such as gears, breaks, etc. If
we want to go on a road trip, we might need a road bike that has lights for when it becomes
dark in order to be seen. However, in our road trip we might need a mountain bike, since
we want to go off track. As shown in Figure 2, we can create a class named Mountai
nBicycle, that would have the same features as a generic bicycle, with some additional
ones, such as shock absorbers. In both cases, the bicycles have wheels, gears and brakes,
but they can be tuned for a specific use case. MountainBicycle and RoadBicycle are
subclasses of Bicycle. By doing this, we can reuse the fields and methods of the existing
superclass without having to write them again. A subclass inherits all the members (fields,

15

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

methods, and nested classes) from its superclass.

In Kotlin, by default, classes cannot be subclassed. Similarly, properties and member
variables cannot be overridden by subclasses (though they can be accessed).

You must mark a class as open to allow it to be subclassed. Similarly, you must mark
properties and member variables as open, in order to override them in the subclass.

open class Aquarium (open var length: Int
open var height: Int
open var volume: Int
get() = width * height * length / 1000
set(value) {
height = (value * 1000) / (width * length)

100, open var width: Int = 20,
40) {

}

Now, you can create a subclass of Aquarium called TowerTank, which implements a rounded
cylinder tank instead of a rectangular tank. You can add TowerTank below Aquarium, be-
cause you can add another class in the same file as the Aquarium class. Override the
volume property to calculate a cylinder. The formula for a cylinder is pi times the radius
squared times the height. You need to import the constant PI from java.lang.Math.

class TowerTank (override var height: Int, var diameter: Int):
Aquarium(height = height, width = diameter,
length diameter) {
override var volume: Int

// ellipse area =m * rl1 * r2
get() = (width/2 * length/2 * height / 1000 * PI).toInt()
set(value) {
height = ((value * 1000 / PI) / (width/2 * length/2)).toInt()

}
You can instantiate TowerTanks similarly to Aquariums:

val myTower = TowerTank(diameter = 25, height = 40)

4.4 Data classes

A data class is similar to a struct in some other languages—it exists mainly to hold some
data—but a data class object is still an object. Kotlin data class objects have some extra

16

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

benefits, such as utilities for printing and copying.

data class Decoration(val rocks: String, val wood: String, val diver: String){

}

You can instantiate objects of this data class as follows:

val dO0 = Decoration("crystal", "wood", "diver")

To have access to the values of a data class you can use either variables or destructing.

val rock = d0.rocks
val wood = dO.wood
val diver = d0.diver

// Assign all properties to variables.
val (rockl, woodl, diverl) = do

If you don’t need one or more of the properties, you can skip them by using _ instead of a
variable name, as shown in the code below.

val (rock2, , diver2) = do

We here end our overview of the main features of the Kotlin language. In the next lab, we
will use Kotlin to develop our first Android app.

17

	Introduction
	Today's lab
	Kotlin as a functional language
	First Kotlin Code
	Variables
	Lists and loops
	Nullability
	Functions
	Higher order functions

	Kotlin as an object oriented language
	Classes
	Creating and modifying objects
	Class inheritance
	Data classes

