=PrL

¢ Lab on apps development for tablets,
smartphones and smartwatches

Week 8:
Bluetooth Low Energy

Giovanni Ansaloni

Rafael Medina, Hossein Taji, Yuxuan Wang
Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) - Institute of Electrical and Micro Engineering (IEM)

=PrL

<

Next Tuesday, Nov 19, 14.15

Be there 10 minutes early!

Exam starts at 14.30
Exam ends at 16.00

- 90 minutes
5 extra mins to upload
mini-project on Moodle

© ESL-EPFL

Midterm next week

Sprungli Sasaki Asselin
Po| . Baciu-
S Dragan
Meyer Nasiri Peyrat
Grosse Kosson Li
Dominjon Dumoncel Duval
Borello Chéne Clevorn

=PrL

c Midterm next week

= We will (briefly) discuss the Midterm solution and grades on November 26t

= Also, | will provide more details on the final exam

« ..andalso..BIG NEWS!!!

© ESL-EPFL

=PrL

¢ Bluetooth Low Energy (BLE)

= BLE provides lower power consumption with respect to classic Bluetooth

* small bursts of data exchange

= Apps can communicate with BLE devices
that have low power requirement

* proximity sensors,
fitness/medical devices, ...

* BLE devices can last for weeks/years

= The BLE API allows to:
e Discover devices
e Query for services
e Send/receive data

© ESL-EPFL

Classic Bluetooth

- ()

€3 Bluetooth

= S

Wireless devices streaming

rich content like data, video,

and audio
(device pairing required)

Bluetooth Low Energy (BLE)
& b
€3 Bluetooth’

SMART
8 ¢

Sensor devices sending
small bits of data, using very
little energy
(device pairing not required)

=PrL

¢ = Central vs. peripheral

* Roles in establishing a BLE connections
— Central device scans, looking for advertisement
— Peripheral device makes advertises device capabilities

= Server vs. client

* How two connected devices talk to each
- Client asks for data
—> Server provides data

= |[n today’s lab:
e Tablet — central device, client
* HR strap — peripheral device, server

© ESL-EPFL

BLE Roles

)

=PrL

¢ Generic Attribute Profile (GATT)

= Specification for sending and receiving short pieces of data
* known as "attributes" over a BLE link

= GATT is built on top of the Attribute Protocol (ATT)
e ATT is optimized to run on BLE devices
= each attribute only uses few bytes
 attributes are identified by a Universally Unique Identifier (UUID)
* complete documentation: https://www.bluetooth.com/specifications/specs/

= ATTs
* services: Battery, Device information, Heart rate, ...
e characteristics: Battery level, System ID, Heart rate measurement, ...

© ESL-EPFL

https://www.bluetooth.com/specifications/specs/

=PrL

<

= Service
* Collection of characteristics

* e.g., the “Heart Rate Monitor” service includes
the “Heart Rate Measurement” characteristic

= Characteristic

* Contains a single value and several descriptors
that describe the characteristic's value

= Descriptor

* Describes a characteristic’s value, e.g.:
= human-readable description
= acceptable range for a characteristic's value
= unit of measure of a characteristic's value

© ESL-EPFL

Characteristics and Services

Profile
it Service h 4 Service o)
(Characteristic i i Characteristic R
(Value] (Value J
(Descriptor] (Descriptor j
(Descriptor] (Descriptor)
_ J _ J
(Characteristic i & Characteristic A
(Value] (Value]
(Descriptor) (Descriptor)
(Descriptor j (Descriptor)
\ J - 4
_ A\ Y,

=PrL

¢ Geonaute HRM - Services

= Heart rate service
e Heart rate measurement characteristic

= Value: “Heart rate measurement: 61bpm, | (c;_ —
Contact is Detected, RR Interval 983.04ms” ‘

= Descriptor: “Notifications enabled”
e Body Sensor Location characteristic
= Value: “Chest”

= Device information service
e Device information characteristic

= System ID, Model Number, Serial Number, Firmware Revision, Hardware Revision,
Software Revision, Manufacturer Name

© ESL-EPFL

=PrL

o ———»| STANDBY & INIT

Skin Contact OFF for 20-30 secs

| rovERTISING [

, Connection failed or TIMEQUT

Skin Contact OFF for 20-30 secs
Disconnect BLE connecton '

1
i

|
)

|

|

Collector disconnects

| ESTABLISHMENT

Battery Inserted
¥

A 4

CONNECTION

|

© ESL-EPFL

J

Connection Established

h 4

CONNECTED

LinkLoss

Geonaute HRM- BLE HR state machine

- \
(GE('J_NBUTE orantaL cooe |

=PrL

Ok, but in practice?

= Scans
= Discovers
= Connects
= Reads/writes characteristics

© ESL-EPFL

= Advertises services&characteristics
= Accepts connections

=PrL

¢ Setting up BLE: app manifest

= Bluetooth permissions

= Bluetooth Admin permissions
* to scan for BLE devices

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="android.permission.BLUETOOTH" />

= Location permission
* Because discoverable devices might reveal information on the user location,

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

© ESL-EPFL 11

=PrL

<

Setting up BLE: app manifest

= App is available to BLE-capable devices only:

<uses~feature android:name="android.hardware.bluetooth_le"
android: required="true'"/>

= To make BLE optional, set required="false” in the manifest,
and check if BLE availability is supported in the host device

if(packageManager.hasSystemFeature(PackageManager.FEATURE_BLUETOOTH_LE)) {
} LB

© ESL-EPFL

12

=PrL

¢ Setting Up BLE

= Grab the BluetoothAdapter
* bridge towards the BLE API

val bluetoothAdapter: BluetoothAdapter? = BluetoothAdapter.getDefaultAdapter()

= Enable Bluetooth:

* ask Android to ask user = implicit Intent
= Activity.RESULT_OK if the user turned Bluetooth on, Activity.RESULT _CANCELED otherwise

private fun promptEnableBluetooth() {
val enableBtIntent = Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE)
resultLauncher. launch(enableBtIntent)

}

val resultLauncher =
registerForActivityResult(ActivityResultContracts.StartActivityForResult()){ result ->
if (result.resultCode == AppCompatActivity.RESULT_OK) {

}
¥

© ESL-EPFL 13

=PrL

<

= Use a BluetoothLeScanner
* startScan() method

* callback of class ScanCallback
invoked when new BLE device found

= Scanning is battery-intensive:
e Set a time limit on your scan

= Callback
— do something when device found

e overrides onScanResult()

© ESL-EPFL

Finding BLE Devices

private val bluetoothLeScanner: BluetoothLeScanner? =
bluetoothAdapter?.bluetoothlLeScanner
private val handler = Handler()

// Stops scanning after 10 seconds.
private val SCAN_PERIOD: Long = 10000.

private fun scanLeDevice() {
if (bluetoothLeScanner != null) {

bluetoothLeScanner leScanCallback)

handler.postDelayed({
if (bluetoothLeScanner '= null) {
bluetoothLeScanner.stopScan(leScanCallback)
} }, SCAN_PERIOD

b

var myBluetoothDevice: BluetoothDevice? = null

private val [eScanCallback:| ScanCallback =
object : ScanCallback() {
override fun onScanResult(callbackType: Int,
result: ScanResult) {
super.onScanResult(callbackType, result)
myBluetoothDevice| = result.device

14

=PrL

¢ Connecting to a BLE device

= Connect to the device Gatt Server
private val myGattCallback |= object : BluetoothGattCallback() {

myBluetpothGatt =
myBluetoothDevice, connectGatt(

override fun onConnectionStateChange(gatt: BluetoothGatt,

requireContext(), vea) {
false, if == file.STATE_CONNECTED) {
myGattCallback) gatt.discoverServices()
}
}
override fun onServicesDiscovered(gatt: BluetoothGatt,
..) {
= the callback defines)
responses to BLE events
. override fun onCharacteristicChanged(gatt: BluetoothGatt,
* device connected characteristic: BluetoothGattCharacteristic) {

e device service discovered }

* characteristic read/changed
/ & override fun onCharacteristicRead(gatt: BluetoothGatt,

chagagteristic: BluetoothGattCharacteristic,

© ESL-EPFL 15

=PrL

¢ Reading BLE attributes

= Requests a read of a characteristic value
to the BLE device GATT server

val hrCharacteristic: BluetoothGattCharacteristic

gatt.getService(HEART_RATE_SERVICE_UUID)
.getCharacteristic(HEART_RATE_MEASUREMENT_CHAR_UUID)

myBluetoothGatt,readCharacteristic(hrCharacteristic)

= The device response triggers the
onCharacteristicRead() callback

© ESL-EPFL 16

iEL Enabling BLE data notifications

= |f we want to be notified each time a characteristic is updated

e e.g: heart rate acquired from BLE sensor
* usually, set in onServiceDiscovered()

1. Enable notifications for the characteristic on client (tablet)

gatt.setCharacteristicNotification(characteristic, enabled)

HR lot of
2. Enable stream of data from server (HR sensor) please, HR
val descriptor : BluetoothGattDescriptor = anytime! for you!
characteristic.getDescriptor(HEART_RATE_MEASUREMENT_CHAR_UUID) '

descriptor.value = BluetoothGattDescriptor.ENABLE NOTIFICATION_VALUE
gatt.writeDescriptor(descriptor)

= Characteristic updates trigger onCharacteristicChanged()

© ESL-EPFL 17

=PrL

¢ Today’s Lab

= Interfacing with the HR belt using BLE
* scanning
* service discovery
 reading/writing characteristics

= Letting user choose the source of HR data
* smartwatch or belt

WearAPI
© ESL-EPFL 19

=PrL
Where are we?

CLOUD

project-sports-tracker

- profiles
5. -LPRawc-6u20SsS06zNe

height: 173

password: "YouMustNotStorePlainTextPasswords"

username: "Rose”

weight: 61.29999923706055

TABLET

aboutFragment # loginProfileFragment newRecordingFragment exerciseLiveFragment myHistoryFragment W! ARAB ! ! S
e b
EBRTON A\ S

This app is provided for il
the Android course! e e ° o &t
—— = s TR (J

Heart Rate

WearAPI
© ESL-EPFL 20

=PrL

© ESL-EPFL

Questions?

5 &k

21

