=PrL

c Lab on apps development for tablets,
smartphones and smartwatches

Week 6:
Firebase and Lists

Giovanni Ansaloni

Rafael Medina, Hossein Taji, Yuxuan Wang
Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) - Institute of Electrical and Micro Engineering (IEM)

=PrL Mid-term

= Nov 19", 14.15.

* Be here 10 minutes early %

We will provide a map with individual seat assignments MID'THQ_/\,’

Do you need a desktop PC?

Fill this googleForm: https://forms.gle/gsR7HQcJ9RQforp76
before Tue Nov 5t

=

2. Set up your desktop on Tue 12" during class hours

If you will instead use your laptop

=

Do not fill in the googleForm

© ESL-EPFL

https://forms.gle/qsR7HQcJ9RQforp76

=PrL Mid-term

= Nov 19, 14.15.

= 35% of the grade %
= 90 minutes duration
* 5 minutes extra to upload your mini-project solution on Moodle MID-’THQ/V]
EX4
= 2 parts MS'

* mini-project to be completed
* multiple-choices questions

= Material allowed
* Moodle page of the course (lecture slides, labs, etc.)
* Android developer website
* Printed version of lecture slides and labs handouts
* Your notes

© ESL-EPFL

EPFL Part1l: Questions on Moodle

= ~4 questions

= one attempt

Quiz navigation

Question 1 What is/are the purpose(s) of using a strings.xml resource file in an

Not yet Android project ? T1[2 ’ ‘ 3[4 ’

answered

Marked out of Select one or more: Finish attempt ...

= (J Avoid repeating the text in different java & layout files

¥ Flag question) n Vi

& (J Automatically correct typos e
Edit

question (J Provide multiple translations
(J Prevent other apps to access private content

(J Allow developers to use emojis

3" Part2: Mini-app

= You will be given a draft of an App project (as we do with labs)

= You will be tasked to implement some features

= Examples:

1. App crashes, fix the issue explaining how you did it

2. Something should be performed in response to a button press
3.

= At the end of each task, you will call us to verify
that the functionality is working

* When you raise your hand,
the emulator must be already started and the app launched

=PrL

$ Class outline

’o

Firebase Realtime Database

= Firebase
e Realtime database
* Cloud storage

70

Cloud Storage

for Firebase

= Lists
* Lazy Layouts

© ESL-EPFL

=PrFL P 9
$ = Firebase is a platform that provides tools to help you What IS FlrEbase)

* beta testing
* run transactions/ads
* store persistent data ——

Authentication WES SETUP @

My Coffee Project

® see USERS SIGN-IN METHOD EMAIL TEMPLATES
O Anatytics
Q DUSER C
= We will show how to use it - = e
to sync data to the cloud & s
1. ConneCt your app to Flrebase i :j::“""“ Authenticate and manage users from a
2. Enable Firebase features o v
3. Add code to your app to interface - _‘__1

B Notifications

Realtime and Storage databases

?vp“'k UPGRADE

= Many other cloud features provided by Firebase
e Authentication
e Analytics, ..) ©
%o

© ESL-EPFL 7

i&L Firebase console

Add Firebase to your Android app

= Go to console.firebase.google.com

o 2] 3

* The console allows you to create new projects Emerappdetalls Copyconfigfle Addtobuld gradi

- -
Firebase creates a config file for your app e e —

Android Studio to see your @ v [3MyApplication (~/Desktop/My

H H H . A 3 » [.gradle
= To be added to your Android Studio project prject oot drectory. =
v o
= - T:F]pbuild
Move the google-services.json file you § CIlibs
just downloaded into your Android app 4 . E“.‘
N v .gitignore
module root directory. [&app.im!

(& build.gradle

= All this happens automatically through Android Studio
* We will teach you how to do it in the lab

. _ . priop o
= Firebase console requires to specify access rules
. {
* e.g. for Real-time database "hLEE"E
= Visit firebase.google.com/docs/database/security “.read”: true,
. ".write": true
to learn more about security rules)

}

© ESL-EPFL 8

https://console.firebase.google.com/
https://firebase.google.com/docs/database/security

=PrL

e Using Firebase Database / Storage

= Your app is connected with Firebase \
using the GUI-based Firebase assistant
from Android Studio

Store and sync data in realtime across all
connected clients

==l
=

friendly-chat-12345

= Realtime Database for profiles , - messages
* data synchronization with listeners / e = "‘IZib4H77’i°WeWF7dP
* key-value database :::eH::::ymus
* data is synced across all clients, R JH'RbbLOertho

remains available when app goes offline | name: "anonymous"

L. text: "How are you"
= =K2ib62mjHh34CAUbide

i
-~ name: "anonymous”

= Cloud Storage for pictures /’Q [T .- -

© ESL-EPFL 9

i&" Interfacing with Realtime database
= |n Data is stored in Json trees

* branches
* key-value pairs

Firebase console Json

= profles «——— = pranch N

"profiles" : {

: > "-MXcVm4mG1qO0cuHp6Xco"

‘.. name: "Luca" - N "name" : "Luca"
key-value pairs }

¥
¥

=)~ -MXcVm4mGiqOcuHp6Xc0 «~———

= RealTime Database is a NoSQL database

= no fixed fields
 easily extensible

© ESL-EPFL

: {

10

=PrL

<

Interfacing with Realtime database

In app code:

= reference the database

val database: FirebaseDatabase = FirebaseDatabase.getInstance()

= reference a branch of the database

val profileRef: DatabaseReference = database.getReference('"profiles")

= create a new child by providing a unique key via push()

profileRef.push()

© ESL-EPFL

11

=PrL

<

Writing to Realtime database

= The reference is used to create new entries
 unique key provided via push()
* navigate the json tree with child()
e setValue()

val key = database.push().key

if (key !'= null) {
database.child(key).child('"name").setValue("Luca")

+

= Data classes can also be passed to setValue()

val key = database.push().key - prf’ﬂles
if (key !'= null) { - -MXc_esIneN8WthUOYz
val user = User("Luca", "56")

database.child(key).setValue(user) \,
} L. weight: "56"

-------- name: "“Luca”

© ESL-EPFL 12

=PrL

c Reading from Realtime database

= Attach ValueEventListener on the database Reference

e onDataChanged() callback
—> takes a snapshot of the database when data on cloud changes

» getValue() to read data from cloud

listener

> database.addValueEventListener(object : ValueEventListener {
take snapshot

» override fun onDataChange(dataSnapshot: DataSnapshot) {

: : for (thisUser in dataSnapshot.children) A

navigate json tree » usernameDatabase = thisUser.child("username")

» »getValue(String::class.java)
username = usernameDatabase 7: “NULL“

get data

}
}

override fun onCancelled(error: DatabaseError) {
/* Failed to read value x/
}

})
© ESL-EPFL

iE'— An aside: Realtime database transactions

= What about multiple concurrent accesses?

* use transactions = abort and retry if state is modified during access
firebase.google.com/docs/database/android/read-and-write#fsave data as transactions

databaseRef.runTransaction(object : Transaction.Handler {

override fun|doTransaction|(mutableData: MutableData): Transaction.Result {
val p = mutableData.getValue(String::class.java)
?: return Transaction.success(mutableData)

i“" 7

. // do something with “p
mutableData.value = p
return Transaction.success(mutableData)

}

override fun|onComplete(...) {
// any error?
Log.d(TAG, "postTransaction:onComplete:" + databaseError!!)

>) 14

https://firebase.google.com/docs/database/android/read-and-write

iEL Another aside: Firestore

= Realtime database /@ = Firestore /@

NoSQL database NoSQL database

Data is stored as collection of documents

Data is stored as Json tree

* No support for complex hierarchies Supports sub-collections

* Deep queries Indexed (shallow) queries

» performance degrades as data set grows = performance is proportional to number of results
* Good for * Good for

» synchronizing data up to few GB » TBs of data

» basic querying = complex querying

Detailed documentation: https://firebase.google.com/docs/database/rtdb-vs-firestore

© ESL-EPFL 15

https://firebase.google.com/docs/database/rtdb-vs-firestore

=PrL

<

Interfacing with Cloud storage

= Similar mechanism wrt Realtime Database

» setup Firebase cloud storage with the Firebase assistant
= Tools = Firebase

* reference the storage in your app

var storageRef = Firebase.storage.reference /

© ESL-EPFL 16

=PrL

<

Writing to Cloud storage

* Create a reference to the location where you want to store data
val mountainsRef = storageRef.child("mountains.jpg")

* now you can upload the data (e.g. image)

val bitmap = (binding.mountainImage.drawable as BitmapDrawable).bitmap
val baos = ByteArrayOutputStream()
bitmap.compress(Bitmap.CompressFormat.JPEG, 100, baos)

val data = baos.toByteArray()

var uploadTask = mountainsRef.putBytes(data)

e ... and listen for successful / unsuccessful uploads

up loadTask.addOnFailureListener {

// Handle unsuccessful uploads
}.addOnSuccessListener { taskSnapshot ->

// taskSnapshot.metadata contains size, content-type, etc.
}

© ESL-EPFL 17

=PrL

<

Reading from Cloud storage

* Create a reference to the location where you want to read from

var islandRef = storageRef.child("images/island.jpg")

* Read byte stream from cloud storage, convert it to appropriate format

islandRef.getBytes (ONE_MEGABYTE).addOnSuccessListener { byteArray —->
val image: Drawable = BitmapDrawable(resources,
BitmapFactory.decodeByteArray(byteArray,
}.addOnFailureListener { /* Handle any errors */ }

In the LAB, we will use
- Realtime database to store usernames and the URI of profile images
- Cloud storage to store the images content

© ESL-EPFL

18

=PrL

$ Class outline

’o

Firebase Realtime Database

» Firebase

e Realtime database
e Cloud storage

= Lists
* Lazy Layouts — /

Cloud Storage

for Firebase

© ESL-EPFL

=PrL

$ Scrollable Lists

= LazyColumn, LazyRow and Lazy grids are composable that displays scrollable lists
* jtems can contain headers, icons, etc...

= only visible items are processed
* when an item scrolls off-screen, the corresponding item composable is recycled = memory efficient
 if an item changes, Lazy Layouts updates only that one item

= o) - o) »

© ESL-EPFL

LazyColumn LazyRow Lazy grids

=PrL

<

= |layouts of items

Lazy Layout require:

= data to display

© ESL-EPFL

Lazy Layouts

Track My Sleep Quality

START

2 seconds on Thursday

&@ OK

1, 2 seconds on Thursday
Item 4 Poor
data
S 3 seconds on Thursday
e Excellent!

AO 3 seconds on Thursday

ltem
layout

21

=PrL

1. Use Lazy composable

2. Inside the Lazy composable block,
provide the list of data items

3. Implement the item layout
as a composable inside the

items lambda

© ESL-EPFL

Lazy Layouts

data to be displayed

@Composable
fun Messagelist(messdges: List<Message>)
{
LazyColumn {
items(messages) { message ->
MessageRow(message)

}
}

} ltem

composable
@Composable

fun MessageRow(message: Message) {

}

22

=PrL

<

= [tems can react to events

Clickable items in Lazy Layouts

—> State Hoisting from jitems to Lazy layout Bo L

* passing the ID of the clicked item 6; B

e ...7 "

&

@Composable e
fun MessageRow(LazyColumn { So o

message: Message,

Modifier
SillMaxWidth()

.clickable {{onltemClicked(message)

P {

© ESL-EPFL

items(messages) { message ->

Toast.makeText(
context,
"Clicked message ID: S{clickedMessage.id}",
Toast.LENGTH_LONG

).show()

b

=
onltemClicked: (Message) -> Unit MessageRow([« e =
) \ message,
Row(onltemClicked = { clickedMessage ->

23

=PrL

<

= LazyListState incapsulates the state of a LazyList
* provided to the LazyColumn/Row/Grid as a parameter

= Provides information about the layout

= Allows to interact with it from elsewhere in the app
* next slide

© ESL-EPFL

val listState = rememberLazyListState()

LazyListState

LazyColumn(state = listState

) {

}

if (listState.firstVisibleltemIndex == 0)

... //Do something if list is scrolled up

}

LazyColumn

LazyRow

Lazy grids

24

=PrL

<

= Example: scroll to the top of the list

when a button is clicked
* coroutineScope to not block the Ul LazyColumn(state = listState) {
items(messages) { message ->
. Initiatiate a LazyListState } =

LazyListState

val coroutineScope = rememberCoroutineScope()
val listState = rememberLazyListState()

with rememberlLazyListState

}
2. Passit to the LazyColumn as a parameter Button(
onClick = {
, coroutineScope./launch {
3. call LazyListState methods - listState.animateScrollToltem(index = 0)

}
}

) {
Text("Scroll to top")

© ESL-EPFL } 25

i&" Today’s Lab

= Use Firebase to store / retrieve
* user Profiles /
= usernames, passwords(!)!, pictures ' e

* exercise session
Firebase Realtime Database

70

Cloud Storage

for Firebase

= Show information on exercise sessions
e session information is stored in the cloud
* it is retrieved from Firebase ...
e ...and displayed in a Lazy Layout

[1] Secure authentication using Firebase:
https://firebase.google.com/docs/auth/android/firebaseui#kotlin+ktx

© ESL-EPFL 26

https://firebase.google.com/docs/auth/android/firebaseui

=PrL

© ESL-EPFL

Questions?

5 &k

27

