=PrL

c Lab on apps development for tablets,
smartphones and smartwatches

Week 5:
ViewModels and System Services

Giovanni Ansaloni

Rafael Medina, Hossein Taji, Yuxuan Wang
Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) - Institute of Electrical and Micro Engineering (IEM)

=PrL

$ Course Feedback

The running of the course enables my learning and an appropriate class climate

5
3
0 0 ———
0% 0% 11% 33% 56%
No opinion Strongly disagree Disagree Agree Strongly agree

= Participation: 47%
(8 over 17)

=PrL

<

Course Feedback

= Great TAs
+ = Interesting course (x3) mmm " Slides late on Moodle
= Good material /presentation (x2) = More details

Theory is presented in a more complicated way than it actually is.

Add more examples / more explanation (line by line).

Labs can’t be finished in 3 hours.

Chairs are uncomfortable.

=PrL

$ Class outline

Oberver

= ViewModels and Livedata)

\
= System Services \ _
. LiveData V|eWMOdeI
* Sensor services

* Notifications
 Alarms

-~

—— =

You reached your goal! 20:51
Active 60 min a day

Android System Update

Tap to find out more and install

= Broadcast receivers

© ESL-EPFL

=PrL

<

= Qur Composables are becoming
increasingly complicated

* Listeners, navigation, menus, ...

= Are Composable functions doing too much?

1. Management of the Composables GUI
= displaying views, listening to user actions

2. Holding and manipulating data

© ESL-EPFL

Where are we?
Managing
GuUI
Implement

app logic "

L.

’

i&" Separation of concerns

1. Ul controllers > Composables, Activities

* Manage the GUI
- displaying/updating Composables

2. ViewModels

* Hold and manipulate data
- implement the app “logic”

© ESL-EPFL

=PrL

$ ViewModels

» extend the ViewModel class

class MyViewModel : ViewModel(){...} [. }
ViewModel

* linked to and by a Ul controller
= in the Ul Controller class:

private lateinit var viewModel: MyViewModel

© ESL-EPFL

=PrL

e Referencing ViewModels

= Ul controllers are re-created during configuration changes W Cariallar
* rotations, ... (Activity/Composable)

= ViewModels persist during configuration changes v

ViewModel
= VViewModels are referenced by ViewModelProvider

* ViewModelProvider returns existing ViewModel if exists

viewModel = ViewModelProvider(this)
.get(MyViewModel::class.java)

© ESL-EPFL

=PrL

$ Ul-controller vs ViewModel

= Ul controller: everything (and only) what is related to GUI
Ul Controller

 declaration/references to Activities/Composables (Activity/Composable)

e events
= e.g. onClick() v

= ViewModel
* all other variables, methods etc.. implementing the app logic

= Ul Controllers can access methods in ViewModels

viewModel.viewModelFun()

© ESL-EPFL

=PrL

<

Ul controllers and ViewModels

[Ul Controller W
(

Activity/Composable)

= Does not manipulate data to be
displayed in the Ul

= Contain code for displaying data,
managing listeners

= Does contain a reference to the
associated ViewModel

= Destroyed and re-created at
configuration changes

© ESL-EPFL

{ ﬁ ViewModel }

= Does contain the data the Ul
controller displays

= Contains code for data processing

= Does not contain reference to the
associated Ul controller

= Destroyed only when the associated
Activity goes away permanently

10

i&L Initialize ViewModels with a Factory class

= The initial state of ViewModel can be parametric

* i.e. depends on the Arguments
that started the corresponding Activity

= VViewModel using parameters such as:

|

class MyViewModel(myParameter: Int) : ViewModel()<{

...are created using a ViewModelFactory

m ViewModel }

© ESL-EPFL
11

=PrL

c Initialize ViewModels with a Factory class

= VViewModelFactory creates the ViewModel()
Ul Controller

(Activity/Composable)

class MyViewModelFactory(private vall myParameter: Int)|:
ViewModelProvider.Factory {

override fun <T : ViewModel?> create(modelClass: Class<T>): T { v
return| MyViewModel(myParameter)| as T

} ViewModelFactory

A 4

= As instructed by the Ul controller

viewModelFactory = MyViewModelFactory(initParamValue)

viewModel = ViewModelProvider(this, viewModelFactory)
.get(MyViewModel::class.java)

© ESL-EPFL
12

=PrL

c Initialize ViewModels in Composables
= Commonly provided as a last default parameter
in the constructor Ul Controller
(Activity/Composable)
= Scope is

* enclosing destination (Screen) if in a navigation graph
e Activity otherwise

@Composable ViewModelFactory
fun MyScreen(

modifier: Modifier = Modifier,
myViewModel: MyViewModel = viewModel()

) {]
viewModel = ViewModelProvider(this)
.get (MyViewModel::class.java)
Documentation: https://developer.android.com/topic/libraries/architecture/
© ESL-EPFL

viewmodel/viewmodel-apist#tviewmodels-scoped 13

iE" Initialize ViewModels in Composables

= Commonly provided as a last default parameter

in the constructor Ul Controller

' Activi |
* Parameters passed via Factory (e el sl 2 ie)

@Composable

fun MyScreen(v

modifier: Modifier = Modifier,

myViewModel: MyViewModel = viewModel(ViewModelFactory
factory = MyViewModelFactory(myParameter))

) {

A 4

= Factory is the same as in the Activity case

REMINDER class MyViewModelFactory(private val myParameter: Int) :
ViewModelProvider.Factory {

override fun <T : ViewModel?> create(modelClass: Class<T>): T {
return MyViewModel(myParameter) as T
}

}

© ESL-EPFL 14

=PrL

$ LiveData and Observers

= Data values are stored in ViewModels,
but the Ul controller should be aware of (some of) them Observer

= When should the Ul Controller update the GUI?

» Reflecting changes in the ViewModel ‘
\ ViewModel

= Android provides for
 LiveData in ViewModel Classes
= changes in LiveData are notified to the Ul controller

= |ifeCycle-aware, notify only if Ul controller (e.g. Composable)
is active and/or becomes visible

e ————

* Observers in Ul controllers

© ESL-EPFL 15

=PrL

LiveData
e

= LiveData are declared in ViewModels

* Wrapper that can contain any kind of object Observer
or primitive type
= Examples:

val score: LiveData<Int> :
\
ez el ViewModel

val word: LiveData<String>

-~

e ————

= Observers in Ul Controller link Activity/Composable and LiveData

© ESL-EPFL
16

=PrL

$ Observers in Activities

= Activities are notified when LiveData changes

override fun onCreate(savedInstanceState: Bundle?) { Observer
super.onCreate(savedInstanceState) !

-~

// link viewModel
viewModel =
ViewModelProvider(this).get(GameViewModel::class.java)

\
\
//set an observer for the “word” LiveData ViewModel

viewModel.word.observe(this, Observer { newWord —>
//handle the word update
})

e ————

Observe the "word” Livedata in Viewmodel.
When it changes, notify as soon as the Activity is active according to its LifeCycle
The new value for “word” is “newWord”

© ESL-EPFL 17

=PrL

$ Observers in Composables
= observeAsState observe LiveData from the ViewModel
and transforms it into state Observer
* Every time the LiveData updates, /

the Ul that depends on "word” is recomposed.

\
Composable \ .
?un (Fs)ameSc reen (ViewModel

modifier: Modifier = Modifier,
gameViewModel: GameViewModel = viewModel()

e ————

) {

val word by gameViewModel.word.observeAsState(initial = "")

© ESL-EPFL
18

MutableliveData and LiveData

Ul Controller

(Activity/Composable)

=PrL

<

= LiveData should be readable,
but not writable by the Ul controller

—> separation of concerns

= Use MutableLiveData in ViewModels
* declare it private to make it writable only inside the class \ -
LiveData V|eWMOdeI

private val _word = MutableLiveData<String>()

A 4

)
I
1
I
|
\

_word.value = "myWord"

= Associate LiveData with MutableLiveData with getter

val word: LiveData<String>

get() = _word
19

© ESL-EPFL

=PrL

<

Summing up
= Separation of concerns
] Ul Controller
e Ul Controller vs. ViewModel /

(Activity/Composable)

= ViewModels can be parametrized via ViewModelFactory

\ ViewModel
= LiveData/MutablelLiveData incapsulates observed data
* MutableLiveData

- readable/writable, private of ViewModel
— readable by Ul controller

e ————

e LiveData

= Observers automatically update the Ul when LiveData changes
 Activities - viewModel.<VAR>.observe(...{...})

* Composables - viewModel.<VAR>.observeAsState()

© ESL-EPFL

20

=PrL

$ Class outline

Observer

= ViewModels and Livedata)

\
= System Services \ _
* Sensor services

* Notifications
 Alarms

-~

—— =

You reached your goal! 20:51
Active 60 min a day

Android System Update

Tap to find out more and install

= Broadcast Receivers

© ESL-EPFL 21

=PrL .

¢ System Services
= Allows applications to access OS and hardware features

* Sensor Service

Notification Service

e Alarm Service

Power Manager Service

Vibrator Service, Audio Service

Telephony Service, Connectivity Service, Wi-Fi Service

= Available via Service Managers
val sensorMgr = app.getSystemService(SENSOR_SERVICE) as SensorManager
val alarmMgr = app.getSystemService(Context.ALARM_SERVICE) as AlarmManager

val notificationMgr = app.getSystemService(Context.NOTIFICATION_SERVICE)
as NotificationManager

© ESL-EPFL 22

=PrL

<

System Services

= Service Managers require an application Context

* Handle to characteristics of application, OS, and device
- AndroidViewModel instead of ViewModel

class myViewModel(private val app: Application, <MY_OTHER_INPUTS>)
AndroidViewModel(app)| {

= AndroidViewModel is supported by viewModelFactory

class myViewModelFactory(private val application: Application,

}

<MY_OTHER_INPUTS>) : ViewModelProvider.Factory {
override fun <T : ViewModel?> create(modelClass: Class<T>): T {

return myViewModel(application, <MY_OTHER_INPUTS>) as T
}

© ESL-EPFL

23

=PrL

Sensor service

Many types of sensors:
* Accelerometer, Gyroscope, Light, ...
* GPS
* Heart Rate

Each Sensor contains information about the vendor, type, ...

List of sensors on a device:

var sensorlist = sensorMgr.getSensorList(Sensor.<TYPE>)
* <TYPE> —-> TYPE_ACCELEROMETER, TYPE_LIGHT, TYPE_ALL

Handle to a sensor of a given type

val slightSens = sensorMgr.getDefaultSensor(Sensor.TYPE_LIGHT)

© ESL-EPFL

24

EPFL . .
Monitoring sensor events

= To get sensor data, we need to implement two callbacks,
via the SensorEventListener interface
* the accuracy of a sensor changes: onAccuracyChanged()
* asensor reports a new value: onSensorChanged()

class myViewModel(private val app: Application) :
AndroidViewModel(app), | SensorEventListener{ | 1.

u StepS: 2. val sensorMgr = app.getSystemService(SENSOR_SERVICE) as SensorManager
1. Implement SensorEventListener fun registerSensor() {
. val lightSens = sensorMgr.getDefaultSensor(Sensor.TYPE_LIGHT)
2. Creating the sensor Manager sensorMgr.registerListener(this, lightSens,
3 Provide methods to SensorManager.SENSOR_DELAY_NORMAL) ;
. } \
register/unregister the listener 3. . Ccters O 1
. un unregisterSensor try to
- called in onPause()/onResume sensorMgr.unregisterListener(this) Iisterg e)\//erf/ 3us
of the corresponding Activity }
4. Doing something when override fun onSensorChanged(event: SensorEvent?) {
//read value to be incapsulated in LiveData variable
sensor accuracy/value changes val flux: Float = event?.values?.get(0) ?: OF
¥
4,

override fun onAccuracyChanged(sensor: Sensor?, accuracy: Int) {
//Do something if sensor accuracy changes
© ESL-EPFL }

=PrL ., . .
$ Notification service
= What is a notification?

20:54

* A message displayed outside of the regular app Ul Monday, 21 November
= Does not interrupt operations on the foreground app & Lai ingh

I I g e

* To see details, user opens the notification drawer 4 new messages

You reached your goal!
Active 60 min a day

e At minimum, consists of

- S ma I l Icon Android System Update
- Title Tap to find out more and install
= Detail text

Touch to disable USB debugging.

Save your visit from yesterday? 17:39
Add Museum of Contemporary Art Australi..

USB for charging
Touch for more options.

o USB debugging connected

© ESL-EPFL 26

=PrL

$ = ViewModel that launches a notification

a
Lab01Android Lab01Android

© ESL-EPFL

A very simple example

CLEARALL

27

=PrL . .
¢ How to create a Notification - setup
1. Getting a reference to NotificationManager SystemService

2. Creating a communication channel and attach it to the NotificationManager
* required for Android version >= 8 (Oreo)

class myViewModel(private val app: Application)
AndroidViewModel(app) {

private val notificationManager =
app.getSystemService(Context.NOTIFICATION_SERVICE) as NotificationManager

init{
if (Build.VERSION.SDK INT >= Build.VERSION CODES.0) {

7:52 PM - Mon, 0ct 30 val notificationChannel = NotificationChannel(
"myChannelID", "myChannel",
NotificationManager.IMPORTANCE_HIGH)

24 Lab01Android * now

i e S notificationManager.createNotificationChannel(notificationChannel)

This is the notification text }
@ Android System v }

Virtual SD card
New Virtual SD card detected

CLEARALL

© ESL-EPFL 28

=PrL

¢ How to create a Notification — display

3. Build the Notification message
e Title / Content / Icon

4. Send the notification to the Notification Manager

fun displayNotification() {

val notifyBuilder = NotificationCompat.Builder(app, "myChannelID")
3. .setSmallIcon(R.drawable.cooked_egq)

.setContentTitle("My notification")

.setContentText("Time to work!")

7:52 PM * Mon, Oct 30

4. | notificationManager.notify (NOTIFICATION_ID, notifyBuilder.build()) |

=4 Lab01Android * now }

You have been notified!
This is the notification text

@ Android System
Virtual SD card
New Virtual SD card detected

CLEARALL

© ESL-EPFL

=PrL

$ Notifications and pending intents

= Notifications can be interactive, responding when user tap on them

* Notification may have buttons (e.g. “reply”)

» https://developer.android.com/training/notify-user/
build-notification.html

= Behavior of tapping on notification is specified in
“Pendinglntent” object

* e.g. “app is opened when notification is tapped”
* Described as part of notification

© ESL-EPFL

&

Lalit Singh
Hi

€ REPLY

20:41

30

https://developer.android.com/training/notify-user/build-notification
https://developer.android.com/training/notify-user/build-notification

=PrL

1. Create an intent

2. Create a Pendingintent

3. Add it to notification builder
* And then call notify()

4. Call activity!!'.finish()
to force-quit an app

© ESL-EPFL

Creating a Pendinglintent

fun displayNotification() {

| val contentIntent = Intent(app, MainActivity::class.java) | 1.
|va1 restartPendingIntent = PendingIntent.getActivity(| 2.
app,
NOTIFICATION_ID,
contentlntent,

PendingIntent.FLAG_UPDATE_CURRENT

~

val notifyBuilder = NotificationCompat.Builder(app, "myChannelID")
.setSmallIcon(R.drawable.cooked_egq)
.setContentTitle("My notification")
.setContentText("Time to work!")
.setContentIntent(restartPendingIntent) 3.
notificationManager.notify (NOTIFICATION_ID, notifyBuilder.build())}

31

=PrL

e How does our example change now?

= When you launch
the Notification,
the app finishes

= When you click
on the notification,
the app is relaunched

© ESL-EPFL

a
Lab01Android

CLEARALL

32

=PrL

$ Notification priorities

= Determines how the system displays the notification
with respect to other notifications

= Use <mNotifyBuilder>.setPriority()

* .setPriority(NotificationCompat.PRIORITY_HIGH)
* PRIORITY_MIN (-2) to PRIORITY_MAX (2)

= Priority above O triggers heads-up
notification on top of current Ul
e Used for important notifications such as phone calls
e Use lowest priority possible

‘ ﬂ Frangois Chouart

X DISMISS o ANSWER
VPV PEES SIS LUURA UYWL @ pat 1EURE Ve
of the shelves as she passed: {t was
labeled "ORANGE MARMALADE.” but to
© ESL-EPFL her great disappointment it was empty: 34
she did not like to drop the jar, for fear of

=PrL

$ Broadcast receivers

= Broadcast Receivers respond to events
* independent from Activity/Composables
e even when app is closed

= Here, we will see them in conjunction to Alarms

* Alarm service setups alarm event
* Broadcasts receiver captures event

= Other patterns exists
* Example: System broadcasts: delivered under certain events

= After the system ends booting:
android.intent.action.BOOT_COMPLETED
= When the WiFi state changes:

android.intent.action.WIFl_STATE _CHANGED

© ESL-EPFL

Eant

C Broadcast A
Receiver
OnReceive

N -

EPFL . -
e Creating Broadcast Receivers

1. Create a new class that

. class AlarmReceiver: BroadcastReceiver
extends BroadcastReceiver ()

override fun onReceive(context: Context, intent: Intent) {
2. Implement onReceive() , //Do something to deal with the alarm

e Receives the event Intent
* Handles the event I3

<application

<activity android:name=".MainActivity'>

3. Registration of the Broadcast </activity>
Receiver to the event

. : <receiver
* Registration android:name=".receiver.AlarmReceiver"
in Android Manifest android:enabled="true"
android:exported="false">
</receiver>
</application>

© ESL-EPFL 36

=PrL

<

= An Alarm in Android schedules something to happen at a set time
* Fire intents at set times or intervals

* App does not need to run for alarm to be active
— Use with BroadcastReceiver

Stand Up Alert!
You should stand up and wal

Stand Up Alarm (A . —»
oN v«
N\ ¢ 34

Broadcast
Receiver
delivers
notification
ViewModel Alarm
sets up alarm triggers

© ESL-EPFL

Alarms

37

=PrL

$ = Measuring time

* Elapsed Real Time: time since system boot = Use when possible!

= Independent of time zone

= Used to measure intervals and relative time

= Elapsed time includes time device was asleep
e Real Time Clock (RTC)—UTC (wall clock) time

= When time of day at local time zone matter

= Wake up behavior
* Wakes up device if screen is off
= Use only for critical operations
= Can drain battery!
* Does not wake up device
= Fires next time device is awake
© ESL-EPFL

Types of Alarms and behaviors

Elapsed Real Time
(ERT)—since system
boot

Real Time Clock
(RTC)—time of day
matters

Do notwake E| APSED REALTIME RTC
up device
Wake up ELAPSED_REALTIME_WAKEUP | RTC WAKEUP

38

=PrL

<

1.

Stand Up Alarm

N

on

ViewModel
sets up alarm

© ESL-EPFL

Alarm
triggers

s Broadcast

Setting up an Alarm

Create AlarmManager in the ViewModel

class myViewModel(private val app: Application)
AndroidViewModel(app) {

val alarmMgr = app.getSystemService(Context.ALARM_SERVICE)

as AlarmManager

Receiver
delivers
notification

40

=PrL

c Setting up an Alarm

2. Alsoin ViewModel, set up a Pendinglntent

e associated to BroadcastReceiver
Broadcast Receiver

* containing Intent processed by onReceive() in BroadcastReceiver /
name

fun onSetAlarm() {
val alarmIntent = Intent(app,) MyAlarmReceiver::class.java)
val pd = PendingIntent|getBroadcast|(app, REQUEST_CODE, alarmIntent, 0)
alarmMgr.setExact(AlarmManager.ELAPSED _REALTIME_WAKEUP,
SystemClock.elapsedRealtime() + 60 * 1000,

pd)
Lo
Stand l::;A\arm /—> m:}\/:/j \

N LA Broadcast

Receiver

delivers
notification

ViewModel Alarm

sets up alarm triggers

© ESL-EPFL 41

=PrL

<

3. Advertise the Receiver

in the Manifest XML file

Stand Up Alarm i "’\/)
9 3

el \8 47

N7 6 344

ViewModel Alarm
sets up alarm triggers
© ESL-EPFL

Setting up an Alarm

<application
<activity android:name=".MainActivity'>

</activity> :
Broadcast Receiver

<receiver - name

android:nameS".MyAlarmReceiver"
android:enabled="tTUe">
</receiver>

</application>

/]

Broadcast
Receiver
delivers

notification

42

=PrL

4. Create a BroadcastReceiver
* Do something in onReceive()

* In this example,
the broadcast receiver
displays a notification when
triggered by the alarm

AN

Stand Up Alarm i 2 A
o s /
N

Broadcast
Receiver
delivers
notification
ViewModel Alarm
sets up alarm triggers

© ESL-EPFL

Setting up an Alarm

class Alarmreceiver :]|BroadcastReceiver]) {

private val NOTIFICATION_ID = 0
override fun onReceive(context: Context, intent: Intent) {

val notificationManager = getSystemService(
context,
NotificationManager::class.java

) as NotificationManager

//create channel 1if
// Build.VERSION.SDK INT >= Build.VERSION_CODES.O

val notifyBuilder = NotificationCompat
.Builder(context,"myChannelID")
.setSmallIcon(R.drawable.cooked egg)
.setContentTitle("My notification")
.setContentText("Notification on time!")

notificationManager
.notify (NOTIFICATION_ID, notifyBuilder.build())

43

=PrL

© ESL-EPFL

Questions?

5 &k

44

=PrL

$ Where are we?

Course presentation. Introduction to Kotlin.
Android overview. Defining a GUI.
Dynamic applications: State and interactivity.

Complex GUIs: Screens and menus.

> w N = O

Apps under the hood: Life cycles
Communication between Android

and AndroidWear devices: Wear APIs.

5. Separating concerns: Ul controllers and viewModels.
Interfacing with sensors: System Services.

— . e TV s s s s
— —

6. Interfacing with the cloud: Firebase.
Displaying structured data: Lists.

7. Local databases: Room library.
Integrating Google maps.

8. Bluetooth Low Energy.

© ESL-EPFL 45

=PrL

$ Today’s Lab

= Restructure tablet app
= ViewModels
= | jveData
= Observers

= Acquire data from watch HR sensor $

= Send HR data to tablet

ESL User
HR =82

= HR plot on tablet

© ESL-EPFL

