=PrL

c Lab on apps development for tablets,
smartphones and smartwatches

Week 4
Life cycles and Wear APls

Giovanni Ansaloni

Rafael Medina, Hossein Taji, Yuxuan Wang
Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) - Institute of Electrical and Micro Engineering (IEM)

=PrL

e Class outline

= Activities lifecycles o
Resume() Resume (onPause()
* lifecycle callbacks P I S
. . _ (visible) ‘ _ (partiall visible) —]
» configuration changes e T

pes N S Y
— Created) onRestart() (?hml plpe? ——
onCreate() ;/ \—/ onDeitroy()

i @

= Communicating between tablet and watch
e Data AP
* Message API

© ESL-EPFL

i&L Activity lifecycle

= What is the activity lifecycle?
* A set of states the Activity can be in during its lifetime, from its creation to its destruction

= More formally:

* Adirected graph of all the states an activity can be in, and the callbacks associated with transitioning
from each state to the next one

" Resumed
= We can add some functionality (“code”) C%)—\

- . onResume() onPause()
to the transition functions

onResume()

~ Started /" Paused
((visible) 4 (partially visible)
onStart() ? onStop()
onStart()
. Stopped
Created onRestart() (hidden)

onCreate()

I —

© ESL-EPFL 3

onDestroy()

=PrL

$ Activity lifecycle: onCreate()

class MainActivity : AppCompatActivity() {
= onCreate()

« Called when the Activity is created private lateinit var binding: ActivityMainBinding

= for example, we tap launcher icon override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
* Does all initial setup: e //data binding
L . //1initialization
= data binding, action bar, ... }

* Only called once during lifetime Resumed
[—'< me))]

onResume() onPause()

* Should contain the initialization onResume()

operations at the Activity level G ————

[* (visible) (partially visible)
* Takes a Bundle with all the onStart() SI & onstop()
. on a
Activity previous state, if it exists l
Created nRestart() Stopped
L. . onCreate() (hidden) onDestroy()

* If successful, the activity is

created but not visible |a| —

© ESL-EPFL 4

=PrL

<

= onStart()

* Called when onCreate() terminates
= Or when the activity was stopped and restarts

e Called right before activity is visible to user

* Followed by onResume(),
if the Activity comes to the foreground

onCreate()

I

© ESL-EPFL

Activity lifecycle: onStart()

override fun onStart() {

super.onStart()
//Activity about to become visible

T
t

onResume() onPause()
onResume()

g Paused
(partially visible)
onStop()
onStart() l
Stopped
nRestart() (hidden) onDestroy()
Destroyed

u

=PrL

$ Activity lifecycle: onResume()

override fun onResume() {
super.onResume()
= onResume() //Activity ready to interact with user

* Called when the Activity is ready
to get input from users

» After onResume() successfully terminates,

the Activity is running and visible —
((visible) > |
* Always followed by onPause() 1 onPause()
onResume() |

- S —
[—“ (visible) (partially visible)
t

onStart() onStop()
onStart()
—> Created nRestart() m
onCreate() : onDestroy()

I —

© ESL-EPFL 6

=PrL

$ Activity lifecycle: onPause()

override fun onPause() {
super.onPause()
//Another activity 1s coming
= onPause() //on the foregroun
e Called when another Activity comes ¥

to the foreground

e Used e.g. to release listeners to non-GUI events

e Should be fast, as the other Activity

cannot resume until
. .. onResume()
this method finishes onResume()

Started Paused
* Followed by either (visible) (partially visible)
onResume() or onStop() onStart() i onstop()
D Created nRestart() m

onCreate() onDestroy()

I —

© ESL-EPFL 7

=PrL

<

= onStop()
 Activity is no longer visible to the user

e Could be called because:
= the Activity is about to be destroyed

= another Activity completely overlays
the current one

* Followed by either onRestart()
if we are going to interact with user,
or onDestroy() if it is going away

© ESL-EPFL

onStart()

Activity lifecycle: onStop()

override fun onStop() {

super.onStop()
//Activity 1s now stopped

Resumed
(visible)
onResume() T onPause()
onResume()
" Started Paused
(visible) (partially visible)]
onStart()
Stopped
Created nRestart()
fhicden) onDestroy()
Destroyed

=PrL

<

= onRestart()
* Similar to onCreate()

* Called after Activity has been stopped,
immediately before it is started again

* Transient state, always followed by onStart()

(—P

onCreate()

I

© ESL-EPFL

Activity lifecycle: onRestart()

override fun onRestart() {
super.onRestart()
//Activity between stop and start

Resumed
(visible)

—

onResume() onPause()

onResTume() ‘ |
(i)
f

-

Paused
| ' (partially visible)
onStart() onStop()
onStart()
- s
(hm)- onDestroy()
Destroyed

=PrL

$ Activity lifecycle: onDestroy()

= onDestroy()
* The Activity is about to be destroyed (final call before destruction)

* Could happen because:
= Configuration changes

= finish() method is called e
» The Android system need some stack space (M—\
t

onResume() onPause()
onResume()

* The system may destroy

Activities without calling this function [—>(/k e » /-(m':l;'gm »
= Save data on onPause() or onStop() onStart() 4 onsStop()
onStart()

—> Created Lonﬂestan(] ?hmld%:;’
lal Destroyed

© ESL-EPFL 10

=PrL

$ Activity lifecycle loops

= Entire lifetime
* Between onCreate() and onDestroy()
* Setup of global state in onCreate()
* Release remaining resources in onDestroy()

= Visible lifetime —_
* Between onStart() and onStop() ((V'?W) >

« Maintain resources that have to be onresumeD onResume() onPausel
shown to the user pri— @_\
[—’((visible) (partally visible)
onStart() ? onStop()
= Foreground lifetime vaiEt)
* Between onResume() and onPause() .. 5w Created onRestart() Stopped —

* Code should be light

I —

© ESL-EPFL 1

=PrL

$ Composable Lifecycle

. Composition
= Composables also have a lifecycle

Recompose 0 or

more times
Enter the m Leave the
Composition Composition
Composable g

= Only composable functions affected by recomposition are called

. | Looncro [
Logininput

Logininput _, Nor
recomposed

© ESL-EPFL 12

Recomposition
(showError = true)

—
P
—-

3" Lifecycle-aware Composable

@Composable
fun HomeScreen() {

= Activity lifecycle events can be captured LifecycleEventEffect(Lifecycle.Event.ON_RESUME) {
by composables with LifecycleEventEffect refreshData()
 specific lifecycle event as a parameter }
// ...
}

= Specialized functions: @Composable
LifecycleResumeEffect / LifecycleStartEffect fun HomeScreen() {

* require the implementation of the dual LifecycleResumeEffect {

lifecycle callback (onPause / onStop) // add ON RESUME code here
onPauseOrDispose {
// add ON_PAUSE code here

}
}

© ESL-EPFL 13

=PrL

<

Configuration changes

= Configuration changes invalidate the current layout or other resources
 When does configuration change?
= Rotates the device
» Chooses different system language (e.g. English to French)

= On a configuration change, AndroidOS:
1. Shuts down activity calling: onPause() = onStop() = onDestroy()
2. Then starts it over calling: onCreate() =2 onStart() 2 onResume()

= State is lost during a configuration change!

© ESL-EPFL

14

=PrL

<

Saving Activity state

= Composable state data can be saved with rememberSaveable = Lecture2

@Composable
fun Counter(modifier: Modifier = Modifier) {

var count by rememberSaveable { mutableStateOf(0) }

}

= For Activity data, implement onSavelnstanceState()
 called after onStop()

override fun onSavelInstanceState(outState: Bundle) {
super.onSaveInstanceState(outState)
//Add iInformation for saving something to the outState bundle
} outState.putInt("oneStoredvValue",myValue)

...or (better) implement ViewModels = next lecture

© ESL-EPFL

15

=PrL

<

Restoring Activity State

= Retrieving the saved data from the onCreate() argument
* bundle will return saved values, or null if not present

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

myValue = savedInstanceState?.getInt("oneStoredvValue") ?7: @

© ESL-EPFL

16

=PrL

<

= Activities lifecycles
* lifecycle callbacks
e configuration changes

= Communicating between tablet and watch
* Data API
* Message API

© ESL-EPFL

Class outline

R TN

" (vsble)

onResume() onPause()
onResume()
[Started /" Paused
Ny (visible) _ (partially visible)
onStart() onstop()
onStart()

pes N . Y
— Created) onRestart() (?hml plpe? ——
onCreate() ;/ \—/ onDeitroy()

Iél @

.,

17

EPFL Communicating between tablet and watch

<

= Communication enabled by WearOS
among connected/paired nodes

= WearOS app must be installed on tablet/smartphone

= Tablets/smartphone paired with smartwatch via WearOS app

= For development, tablets/smartphone and smartwatch
must be compiled from the same laptop/desktop

= More details here:
= https://support.google.com/wearos/answer/6056630?hl=en&co=GENIE.Platform%3DAndroid

© ESL-EPFL

18

https://support.google.com/wearos/answer/6056630?hl=en&co=GENIE.Platform%3DAndroid

=PrL

<

= Two communication modalities:

= Data
= From one node to all connected nodes
= Synchronizes data, similar to shared memory
= Good for structured data
= Synchronization event queue

= Messages
= From one node to another

= Good for one-way requests
= Best effort

= Available by updating the projects’ gradle

dependencies {

Android Wear API

£l
 and
(2o

implementation ‘com.google.android.gms:play-services-wearable:17.0.0'

© ESL-EPFL

19

EPEL Data API

%/ —@ o

= Data API provide storage with automatic synchronization
= Data API requests stored in a queue
= Objects can be incapsulated to send binary data (e.g., images)

= On the sending side, dataClient is used to interface with the Data API

= On the receiving side, OnDataChangedListener() callbacks
are executed when receiving data

© ESL-EPFL

20

=PrL

<

Initiating a Data synchronization

= Declare and initialize the dataClient

class MainActivity : ComponentActivity() {

}

= Define the Data for syncing
Payload - what is being sent
Path —> unique string (starting with a forward slash)

private lateinit var dataClient: DataClient

override fun onCreate(...) {

dataClient = Wearable.getDataClient(this)

)

= Send the Data to the destination

© ESL-EPFL

4—».

21

EPFL Sending Data with Data API

1. Data ltems are implemented using a) -

PutDataMapRequest object and its embedded Datamap
= .create) - path

= .datamap - payload

= setUrgent() - send as soon as possible

private var COUNT_KEY: String = "COUNT_KEY"
private lateinit var dataClient: DataClient

private fun increaseCounter() {
val putDataMapRequest: PutDataMapRequest = PutDataMapRequest.create("/count")

1 putDataMapRequest.dataMap.putInt (COUNT_KEY, count)
putDataMapRequest.setUrgent()

val countDataRequest: PutDataRequest = putDataMapRequest.asPutDataRequest()
dataClient.putDataltem(countDataRequest)

© ESL-EPFL 99

EPFL Sending Data with Data API

2. Data Items are sent as a PutDataRequest L 4 -

= using dataClient

private var COUNT_KEY: String = "COUNT_KEY"
private lateinit var dataClient: DataClient

private fun increaseCounter() {
val putDataMapRequest: PutDataMapRequest = PutDataMapRequest.create("/count")

putDataMapRequest.dataMap.putInt (COUNT_KEY, count)
putDataMapRequest.setUrgent()

2 val countDataRequest: PutDataRequest = putDataMapRequest.asPutDataRequest()
dataClient.putDataltem(countDataRequest)
Y

© ESL-EPFL 23

iﬁn_ Receiving Data with Data API
-

class MainActivity : Activity(), |DataClient.OnDataChangedListener{

= The other side of the data connection is notified
of data changes by implementing a listener

1. Implement the DataClient.OnDataChangedListener interface

2. registering / unregistering listener
= in onResume() and onPause()

override fun onResume() {

super.onResume () ")
Wearable.getDataClient(this).addListener(this) :?

}

override fun onPause() {
super.onPause()
Wearable.getDataClient(this).removeListener(this)

© ESL-EPFL 24

EPFL Receiving Data with Data API

< & —

3. Provide the onDataChanged() callback

override fun onDataChanged(dataEvents: DataEventBuffer) {

dataEvents. forEach { event =>
look at pending / // DatalItem changed
events if (event.type == DataEvent.TYPE_CHANGED) {
val recItem = event.dataltem

if (recItem.uri.path?.compareTo("/count") == 0) {
check path «—— = \al count =
DataMapItem.fromDataltem(recItem).dataMap.getInt(COUNT_KEY)
) t/////////////’///////’hpdateCount(count) //private fun doing something with “count”
retrieve }

payload } else if (event.type == DataEvent.TYPE_DELETED) {
// Dataltem deleted
}

© ESL-EPFL

EPFL Exchange Assets with Data API

<

= used to exchange large amounts of data

https://developer.android.com/training/wearables/data-layer/assets
= As before, attach the Asset to the dataMap and send

val resId = R.drawable.<someImageResource>

val myAsset =
createAssetFromBitmap(BitmapFactory.decodeResource(resources, resld))

putDataMapRequest.dataMap . putAsset (ASSET_KEY, myAsset)

val putDataRequest: PutDataRequest = putDataMapRequest.asPutDataRequest()
dataClient.putDataItem(putDataRequest)

= Convert image to bytes

private fun createAssetFromBitmap(bitmap: Bitmap) : Asset{
val myStream = ByteArrayOutputStream()
bitmap.compress(Bitmap.CompressFormat.PNG, 100, myStream)
return Asset.createFromBytes(myStream.toByteArray())

}

© ESL-EPFL

4—».

26

https://developer.android.com/training/wearables/data-layer/assets

=PFL Receiving Assets

= Use getAsset() to retrieve the Asset from the dataMap

< & —

override fun onDataChanged(dataEvents: DataEventBuffer) {
dataEvents.forEach { event ->
if (event.type == DataEvent.TYPE_CHANGED) {
val recItem = event.dataltem
if (recItem.uri.path?.compareTo("/asset_data") == 0) {
val myAsset =
DataMapItem. fromDataltem(recItem)|. dataMap.getAsset(COUNT_KEY)
loadBitmapFromAsset(myAsset)

Retrieve the data stream and convert it to the proper format
= e.g.: bitmap image

fun loadBitmapFromAsset(asset: Asset): Bitmap? {
val assetInputStream: InputStream? =
Tasks.await (Wearable.getDataClient(this).getFdForAsset(asset))
?t.1nputStream
return BitmapFactory.decodeStream(assetInputStream)

}

© ESL-EPFL

=PrL

<

Messages

* Messages implement a one-way communication @

= sent immediately —

= small payload

= Sender gets a list of all connected nodes

private fun getNodes(): Collection<String> {
return
Tasks.await(Wearable.getNodeClient(requireActivity()).connectedNodes).map { it.id }

}

= Restricting the list of nodes to specific capabilities
https://developer.android.com/training/wearables/data-layer/messages

= Receiver implements the Message API interface

class MainActivity : Activity(), MessageClient.OnMessageReceivedlListener{

© ESL-EPFL

28

https://developer.android.com/training/wearables/data-layer/messages

EPFL Messages

<

= Sending a message to nodes @
—

for (nodeId in getNodes()){

Wearable.getMessageClient(requireActivity())|sendMessage|
node nodeld,

MESSAGE_PATH,
path +/////////////// message.toByteArray())

/
payload

© ESL-EPFL 29

=PrL

<

Messages

= Receiving messages in onMessageReceived() callback @

override fun onMessageReceived(messageEvent: MessageEvent) { _—
if (messageEvent.path == MESSAGE_PATH) {
receivedMessageString = messageEvent.data.toString()

}

= Receiver registers/unregisters listener in onResume(), onPause()

override fun onResume() {

super.onResume () ?

Wearable.getMessageClient(this).addListener(this)
¥

override fun onPause() {
super.onPause()

) Wearable.getMessageClient(this).addListener(this)

© ESL-EPFL

30

g Today’s Lab

<

= Share login information between tablet and watch using Wear API

= Share login credentials among Screens using NavHost arguments on tablet app

A

myUserID

aboutFragment # loginProfileFragment newRecordingFra TaiseLiveFra; myHistoryFragment

st ABORATORY :
=

This app is provided for
the Android course! e 9 ° e

WearAPI

© ESL-EPFL

=PrL

© ESL-EPFL

Questions?

5 &k

32

