
Lab on apps development for tablets,
smartphones and smartwatches

Week 4:
Life cycles and Wear APIs

Giovanni Ansaloni
Rafael Medina, Hossein Taji, Yuxuan Wang

Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) – Institute of Electrical and Micro Engineering (IEM)

§ Activities lifecycles
• lifecycle callbacks
• configuration changes

§ Communicating between tablet and watch
• Data API
• Message API

© ESL-EPFL 2

3

§ What is the activity lifecycle?
• A set of states the Activity can be in during its lifetime, from its creation to its destruction

§ More formally:
• A directed graph of all the states an activity can be in, and the callbacks associated with transitioning

from each state to the next one

§ We can add some functionality (“code”)
to the transition functions

© ESL-EPFL

4© ESL-EPFL

§ onCreate()
• Called when the Activity is created

§ for example, we tap launcher icon

• Does all initial setup:
§ data binding, action bar, …

• Only called once during lifetime

• Should contain the initialization
operations at the Activity level

• Takes a Bundle with all the
Activity previous state, if it exists

• If successful, the activity is
created but not visible

§ onStart()
• Called when onCreate() terminates

§ Or when the activity was stopped and restarts

• Called right before activity is visible to user

• Followed by onResume(),
if the Activity comes to the foreground

5© ESL-EPFL

§ onResume()
• Called when the Activity is ready

to get input from users

• After onResume() successfully terminates,
the Activity is running and visible

• Always followed by onPause()

6© ESL-EPFL

§ onPause()
• Called when another Activity comes

to the foreground

• Used e.g. to release listeners to non-GUI events

• Should be fast, as the other Activity
cannot resume until
this method finishes

• Followed by either
onResume() or onStop()

7© ESL-EPFL

§ onStop()
• Activity is no longer visible to the user

• Could be called because:
§ the Activity is about to be destroyed
§ another Activity completely overlays

the current one

• Followed by either onRestart()
if we are going to interact with user,
or onDestroy() if it is going away

8© ESL-EPFL

§ onRestart()
• Similar to onCreate()

• Called after Activity has been stopped,
immediately before it is started again

• Transient state, always followed by onStart()

9© ESL-EPFL

§ onDestroy()
• The Activity is about to be destroyed (final call before destruction)

• Could happen because:
§ Configuration changes
§ finish() method is called
§ The Android system need some stack space

• The system may destroy
Activities without calling this function

§ Save data on onPause() or onStop()

10© ESL-EPFL

§ Entire lifetime
• Between onCreate() and onDestroy()
• Setup of global state in onCreate()
• Release remaining resources in onDestroy()

§ Visible lifetime
• Between onStart() and onStop()
• Maintain resources that have to be

shown to the user

§ Foreground lifetime
• Between onResume() and onPause()
• Code should be light

11© ESL-EPFL

§ Composables also have a lifecycle

§ Only composable functions affected by recomposition are called

12© ESL-EPFL

recomposed

NOT
recomposed

§ Activity lifecycle events can be captured
by composables with LifecycleEventEffect
• specific lifecycle event as a parameter

§ Specialized functions:
LifecycleResumeEffect / LifecycleStartEffect
• require the implementation of the dual

lifecycle callback (onPause / onStop)

13© ESL-EPFL

@Composable
fun HomeScreen() {

LifecycleEventEffect(Lifecycle.Event.ON_RESUME) {
refreshData()

}
// …

}

@Composable
fun HomeScreen() {

LifecycleResumeEffect {
// add ON_RESUME code here
onPauseOrDispose {

// add ON_PAUSE code here
}

}

§ Configuration changes invalidate the current layout or other resources
• When does configuration change?

§ Rotates the device
§ Chooses different system language (e.g. English to French)

§ On a configuration change, AndroidOS:
1. Shuts down activity calling: onPause() à onStop() à onDestroy()
2. Then starts it over calling: onCreate() à onStart() à onResume()

§ State is lost during a configuration change!

© ESL-EPFL 14

§ Composable state data can be saved with rememberSaveable à Lecture2

§ For Activity data, implement onSaveInstanceState()
• called after onStop()

 ...or (better) implement ViewModels à next lecture

15© ESL-EPFL

@Composable
fun Counter(modifier: Modifier = Modifier) {

var count by rememberSaveable { mutableStateOf(0) }
...

}

§ Retrieving the saved data from the onCreate() argument
• bundle will return saved values, or null if not present

16© ESL-EPFL

§ Activities lifecycles
• lifecycle callbacks
• configuration changes

§ Communicating between tablet and watch
• Data API
• Message API

© ESL-EPFL 17

▪ Communication enabled by WearOS
among connected/paired nodes

▪ WearOS app must be installed on tablet/smartphone

▪ Tablets/smartphone paired with smartwatch via WearOS app

▪ For development, tablets/smartphone and smartwatch
must be compiled from the same laptop/desktop

▪ More details here:
▪ https://support.google.com/wearos/answer/6056630?hl=en&co=GENIE.Platform%3DAndroid

© ESL-EPFL 18

https://support.google.com/wearos/answer/6056630?hl=en&co=GENIE.Platform%3DAndroid

▪ Two communication modalities:
▪ Data

▪ From one node to all connected nodes
▪ Synchronizes data, similar to shared memory
▪ Good for structured data
▪ Synchronization event queue

▪ Messages
▪ From one node to another
▪ Good for one-way requests
▪ Best effort

▪ Available by updating the projects’ gradle

© ESL-EPFL 19

▪ Data API provide storage with automatic synchronization
▪ Data API requests stored in a queue
▪ Objects can be incapsulated to send binary data (e.g., images)

▪ On the sending side, dataClient is used to interface with the Data API

▪ On the receiving side, OnDataChangedListener() callbacks
are executed when receiving data

© ESL-EPFL 20

▪ Declare and initialize the dataClient

▪ Define the Data for syncing
▪ Payload à what is being sent
▪ Path à unique string (starting with a forward slash)

▪ Send the Data to the destination

© ESL-EPFL

class MainActivity : ComponentActivity() {
private lateinit var dataClient: DataClient
...
override fun onCreate(...) {

...
dataClient = Wearable.getDataClient(this)
...}

}

21

1. Data Items are implemented using a
PutDataMapRequest object and its embedded Datamap
▪ .create() à path
▪ .datamap à payload
▪ .setUrgent() à send as soon as possible

1

© ESL-EPFL 22

2. Data Items are sent as a PutDataRequest
▪ using dataClient

2

© ESL-EPFL 23

▪ The other side of the data connection is notified
of data changes by implementing a listener

1. Implement the DataClient.OnDataChangedListener interface

2. registering / unregistering listener
▪ in onResume() and onPause()

© ESL-EPFL 24

3. Provide the onDataChanged() callback

look at pending
events

check path

retrieve
payload

© ESL-EPFL 25

▪ used to exchange large amounts of data
https://developer.android.com/training/wearables/data-layer/assets
▪ As before, attach the Asset to the dataMap and send

▪ Convert image to bytes

© ESL-EPFL 26

https://developer.android.com/training/wearables/data-layer/assets

▪ Use getAsset() to retrieve the Asset from the dataMap

▪ Retrieve the data stream and convert it to the proper format
▪ e.g.: bitmap image

© ESL-EPFL 27

▪ Messages implement a one-way communication
▪ sent immediately
▪ small payload

▪ Sender gets a list of all connected nodes

▪ Restricting the list of nodes to specific capabilities
https://developer.android.com/training/wearables/data-layer/messages

▪ Receiver implements the Message API interface

© ESL-EPFL 28

https://developer.android.com/training/wearables/data-layer/messages

▪ Sending a message to nodes

node

path

payload

© ESL-EPFL 29

▪ Receiving messages in onMessageReceived() callback

▪ Receiver registers/unregisters listener in onResume(), onPause()

© ESL-EPFL 30

§ Share login information between tablet and watch using Wear API

§ Share login credentials among Screens using NavHost arguments on tablet app

© ESL-EPFL 31

WearAPI

myUserID

Questions?

© ESL-EPFL 32

