=PrL

c Lab on apps development for tablets,
smartphones and smartwatches

Week 2:
State and interactivity

Giovanni Ansaloni

Rafael Medina, Hossein Taji, Yuxuan Wang
Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) - Institute of Electrical and Micro Engineering (IEM)

=PrL

$ Class outline

= Handling events
e Buttons and Composables click events

= Managing State in Jetpack Compose
 State hoisting

= Communicating with other applications
* Listening for results

Username

Password

Confirm Pick image

© ESL-EPFL 2

EPFL Kotlin Activity classes

= Activity classes manage the Ul and the interaction with user actions

= Activity classes extend ComponentActivity / WearableActivity

simple Activity class
= OnCreate() callback

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
* call to super

super.onCreate(savedInstanceState)
setContent {

MaterialTheme {
////////,/////’///////////’ MyApp(modifier = Modifier.fillMaxSize())

* inflate theme }

hy
* Interactivity? ‘? }
ol

* inflate layout

© ESL-EPFL 3

=PrL

$ Interactive apps

= User generate events by interacting with the GUI = with composables
* e.g. clicks/longClicks on buttons

» The apps should appropriately respond to user actions

= We specify the app behavior wrt events
in Composable functions
by specifying function parameters

* Kotlin lambdas/functions attached to events

© ESL-EPFL 4

=PrL Buttons

$ = Buttons have an onClick function parameter

* defined inside the parentheses ButtonPreview
Button(onClick = { /*T0D0*/ }) { » .
}

» The button appearance is defined inside of the curly brackets

Button(onClick = { /*T0D0*/ }) {
Image(
imageVector = Icons.Outlined.Message,
contentDescription = null, ButtonPreview

colorFilter = ColorFilter.tint(Color.White),
modifier = Modifier

.padding(end = 8.dp)

)

Text(text = stringResource(R.string.button text))

hy

© ESL-EPFL 5

=PrL

Buttons

* Implementing onClick (example: toast message)

ConstraintLayout(modifier = modifier.fillMaxSize()) { this: ConstraintLayoutScope
val (button) = createRefs()
val context = LocalContext.current

Button(
onClick {
Toast.makeText(

context,
context.getString(R.string.toast message text),

Toast.LENGTH_LONG
) .show()

},

modifier = Modifier.constrainAs(button) { this: ConstrainScope

top.linkTo(parent.top)
bottom.linkTo(parent.bottom)
start.linkTo(parent.start)

end.linkTo(parent.end)
}

© ESL-EPFL 6
) { this: RowScope

EPFL Making a composable Clickable

$ = Click event can be added to any composable through modifiers
 Clickable
 CombinedClickable

= also longpress, doublepress, ...

Row (
modifier
.FillMaxWidth()
.background(Color.Cyan)

.clickable {
Toast

.makeText(
context,
context.getString(R.string.toast message text)
Toast.LENGTH_LONG

)

.show()

© ESL-EPFL I 7

i&'— Using a callback functions to handle events

= Callback = function called in response to an event
* defined outside of the composable

@Composable

fun Message() { Callback
val context = LocalContext.current l
Row(modifier = Modifier.clickable {
clickHandlerFunction(context) < » fun clickHandlerFunction(context: Context) {
} { Toast.makeText(context,
context.getText(R.string.toast _message_text),
} Toast.LENGTH _LONG)
} .show()
}

© ESL-EPFL 8

=PrL

$ Class outline

= Handling events
e Buttons and Composables click events

= Managing State in Jetpack Compose
 State hoisting

= Communicating with other applications
* Listening for results

Username

Password

Confirm Pick image

© ESL-EPFL 9

i&L State

= State in an app is any value that can change over time

 State determines what is shown in the Ul at any particular time

e State changes trigger recomposition
- redrawing of Ul

= Recomposition flow:

Update state

Update Ul

© ESL-EPFL 10

=PrL

$ MutableState and remember

= MutableState types make state observable variables

* can wrap any other type
* changes in observable variables trigger recomposition
 often, state must be remembered across recomposition

= |[nitializing a state object:
var count: MutableState<Int> = remember { mutableStateOf(value: @) }

= Updating a state object:

Button(onClick = { count.value++ })
= Reading a state object:

Text(text = "Counter: ${count.value}")

© ESL-EPFL 11

=PrL

<

Delegated properties

= Using by keyword when initializing the state
e asks the remember API to initalize a mutableState variable

* |nitializing a state object:
var count by remember { mutableStateOf(value: 0) }

= Updating a state object:
Button(onClick = { count++ }) {

= Reading a state object: \
Text(text = "Counter: ${count}") no need to write

more about delegated properties: “value” when
kotlinlang.org/docs/delegated-properties.html using the
variable

© ESL-EPFL 12

https://kotlinlang.org/docs/delegated-properties.html

EPFL rememberSaveable

= Remember retains state across recomposition,
not across configuration changes
* Example: Screen rotation from portrait to landscape

= rememberSaveable retains state across recomposition,
and across configuration changes

* Large objects may affect performance
= \Viewmodels are a better alternative in those cases (next lectures)

var count by rememberSaveable { mutableStateOf(value: 0) }

© ESL-EPFL 13

=PrL Values and events

= In Composables hierarchies
e State values are propagated downward

* State events are propagated upward
= events: everything that may change the value of a state variable

HelloScreen » stateful
state variable composable

state event

| |

HelloContent - stateless
composable

© ESL-EPFL 14

g State hoisting

$ = A State variable should be held by the lowest common ancestor
between all composable that write and/or read it

= State hoisting elevates the state variable declarations
in @ composable hierarchy

hoistin
g L Username(State)
UsernameTextField I
Username(State) UsernameTextField

© ESL-EPFL 15

=PrFL o oo
$ State hoisting
= Hoisting replaces the state variable with two parameters
in the composable function:
* Value — the current value to display
* onEvent() — function to update the value when an event occurs

hoistin
g I—» Username(State)
UsernameTextField »

UsernameTextField

Username(State)

© ESL-EPFL 16

=PrL

State hoisting
$ = Examplel

hosted state variable Username(State)
@Composable
fun LoginScreen() {

var username by rememberSaveable { mutableStateOf("") } -

Column {
TextField(value = username,
onValueChange = { newValue -> username = newValue})
T~ event

__— value parameter

Text(text = "Picked username: S{username}") parameter

}
}

© ESL-EPFL 17

=PrL

State hoisting
c = Example2

L.

hosted state variable
@Composable /

fun LoginScreen() {
var username by rememberSaveable { mutableStateOf("") }

— UsernameTextField

)

Column {
UsernameTextField(
username = username,
onUsernameChanged = { username =it }

@Composable
—> fun UsernameTextField(username: String,
onUsernameChanged: (String) -> Unit) {
TextField(value = username,
onValueChange = { newValue ->
onUsernameChanged(newValue)})

)

Text(text = "Picked username: S{username}")

}
}

or: { onUsernameChanged(it) }

or: onUsernameChanged
© ESL-EPFL 18

=PrL

$ Class outline

= Handling events
e Buttons and Composables click events

= Managing State in Jetpack Compose
 State hoisting

= Communicating with other applications
* Listening for results

Username

Password

Confirm Pick image

© ESL-EPFL 20

=PrL

$ Interfacing with other applications

= You can use functionalities from other activities using Intents

= |[ntents: message objects among Android components

= Explicit Intent: message to a specific target

e Usually employed for communicating among different activities in an App
e Multi-activity app now discouraged

- we will use Navigation instead (Next lecture!)

d how
Single activity: WhY, when, an

136K views * 3years ad°

o Android Developers (/]

https://www.youtube.com/
watch?v=2k8x8V77CrU

d |
th the Vig P
W Navl ation AI(:\‘\HeC'\lre Com! onen‘ de\[e\o

cC

What's @
C—

7 The Framework shouldn't care |
m LJ

Navigation
© ESL-EPFL

21

https://www.youtube.com/watch?v=2k8x8V77CrU
https://www.youtube.com/watch?v=2k8x8V77CrU

3‘- Interfacing with other applications

You can use functionalities from other activities using Intents

Intents: message objects among Android components

Complete action using

Explicit Intent: message to a specific target

Implicit Intent: the app does not know the recipient . c.
®

* only what is must be accomplished:
open a website, start a call, etc...

* User presented with a chooser if multiple applications
can handle a task

Browser Chrome

= (Much) more on Intents:
https://developer.android.com/guide/components/intents-filters

© ESL-EPFL 22

https://developer.android.com/guide/components/intents-filters

=PrL

<

Defining an implicit Intent

= Implicit intent must provide Action to be done
* ACTION_VIEW, ACTION_DIAL, ACTION_SEND

= Depending on the Action, they can also provide
* Asingle Data content, specified either as URI or a data Type

e Multiple EXTRAs specified as key-value pairs

val webIntent: Intent = Intent(Intent.ACTION_VIEW)
webIntent.setData(Uri.parse("https://www.google.com"))

& https //'www.google com

IMAGTES

Google

Google offerec in

8 i
oN

M Gmail
7 copyto clipboard

Q Messages

val shareIntent = Intent(ACTION_SEND) .

shareIntent.setType("text/plain”)
.putExtra("KEY","VALUE") 53

i&L Intents examples
= Make a phone call

val callIntent: Intent = Intent(Intent.ACTION_DIAL)
callIntent.setData(Uri.parse("tel:5551234"))

= Send an e-mail

val mailIntent: Intent = Intent(Intent.ACTION_SEND)
mailIntent.setType("text/plain")
maillntent.putExtra(Intent.EXTRA_EMAIL,"jan@example.com") -
maillntent.putExtra(Intent.EXTRA_SUBJECT, "Email subject")
maillntent.putExtra(Intent.EXTRA_TEXT, "Email message text")
maillntent.putExtra(Intent.EXTRA_STREAM,
Uri.parse("content://path/to/email/attachment"))

= complete list of Actions:
https://developer.android.com/reference/kotlin/android/content/Intent

© ESL-EPFL

24

https://developer.android.com/reference/kotlin/android/content/Intent

=PrL

<

Starting the external activity

= |n all cases, the Intent message is| startActivity(myIntent)

= mylntent = intent message

 describing Action,
Data, Extras etc...

= the app that executes startActivity()
goes in background

= the one that manages the intent
(or a chooser)
comes in foreground

© ESL-EPFL

Your app

Implicit
intent
request

Android

Intent
matched
with
activity

25

Camera app

i&'— Receiving implicit intents

= The receiving app advertises which intents can process
* Intent Filters in Android Manifest

<activity android:name="ShareActivity">

<intent-filter>
<action android:name="android.intent.action.SEND" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="text/plain”/>

</intent-filter>

</activity>

= Retrieves the intent content in onCreate()

intent.extras

val bundle: Bundle? =
= bundle?.getString("key")

val name: String?

© ESL-EPFL 26

=PrL

$ Request data from other apps

» |[nterfacing external apps not always a one-way street
* sometimes, we expect Intents to provide data back
e examples
= select a picture from gallery (= today’s Lab!)
= select a contact

= Starting the external activity and getting the result are decoupled
* Requesting Apps may be destroyed/recreated while waiting for results

= Enabled by adding proper dependencies to gradle file

* And update it to the latest version

implementation 'androidx.activity:activity-compose:1.8.0'

© ESL-EPFL 27

=PrL

$ Request data from other apps

1. External apps are still invoked via Intents
* Created and started e.g. in the event listener of a Composable
* With the appropriate Action, type etc...
* launch() instead of startActivity()

5] whiteboard_Ta... = 2013-07-16 20....
176 kB Oct 1, 2020 219 kB Jul 3,2020

HomeContent(imageUri, onButtonClicked = {
val intent = Intent(Intent.ACTION_GET_CONTENT)
intent.setType("image/*")

imagePicker /launch(intent)

})

© ESL-EPFL 28

=PrL

$ Request data from other apps

2. The callback is defined as property of a launcher class variable
* defined in the class, outside methods

* initialized with rememberLauncherForActivityResult(), with:
= Contract

= |[ambda function implementing callback

var imageUri by remember { mutableStateOf<Uri?>(value: null) }

] whiteboard_Ta... = 2013-07-16 20....
176 kB Oct 1,2020 219 kB Jul 3,2020

val imagePicker =|rememberLauncherForActivityResult(

contract = ActivityResultContracts.StartActivityForResult(),
onResult = { result ->

if (result.resultCode == Activity.RESULT_0K) {
val uri = result.data?.data
imageUri = vuri

)

N non-specific contract 2
] Callback updating the state

EPFL Request data from other apps

= Specialized contracts allow to simplify code
» getContent() contract directly returns the Uri of the image
* does not require to explicitly write Intent
= action is always ACTION_GET_CONTENT
= data type is passed as argument to launch()

1. HomeContent(imageUri, onButtonClicked = { imagePicker.|launch(input: "image/*") })

val imagePicker = rememberLauncherForActivityResult(

contract = ActivityResultContracts.BetContent(),

2. onResult = { uri ->
imageUri = vuri

)

= Complete list of Android Contracts:
https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts
© ESL-EPFL 30

https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts

=PrL

$ Class outline

= Handling events

e Kotlin and XML callbacks

= Accessing Resources in Kotlin
* View Binding

= Communicating with other applications
* Listening for results

= Lab of Today

© ESL-EPFL 31

iE" Today’s Lab

= Tablet application that reacts to the users’ actions

= Login credentials and user picture

) Marina Nathanael

rFassword
CONFIRM PICK IMAGE

1

© ESL-EPFL 32

i&L Announcements

= Groups and material

* Form your group if you haven’t already done so
e Each group gets a tablet, smartwatch and HR sensor

= Solutions to the labs on Moodle
* We make them available before each lecture

= Projects:
e Groups can request projects using the googleForm (link on Moodle)
* First assignment of students to projects on Moodle this week
* Information on gitLab on Moodle

33

3‘- Midterm Exam: Information

» Individual assessment =2 35% of the course evaluation

= Covers all content of the course from week 0 to week 8

= Where: MED 2 2419, MED 2 2519
* You will be randomly assigned to one of the two classes

= When: Tuesday November 195t at 14.15pm, 90 mins duration
 Exit the class when you finish the exam

34

=PrL

$ Mid-term Exam: Logistics

= Exam with Android Studio and the Android emulator

* You can do the exam with your laptop,
or with the computers in the lab

* No real devices needed

= Two parts
1. Replying to short questions in Moodle

2. Mini app: we will give you a template app,
you need to implement missing features

35

=PrL

$ Mid-term Exam: Material

= Only the following online material will be allowed during the mid-term:
* Moodle lecture slides, labs, etc.
* Android developers website
* You can also bring
= |ectures/labs printed
= your own notes

= Use of mobile phones and Al assistants is not allowed in any case

36

EPFL Part1l: Questions on Moodle

= ~4 questions

= one attempt

Quiz navigation

Question 1 What is/are the purpose(s) of using a strings.xml resource file in an

Not yet Android project ? T1[2 ’ ‘ 3[4 ’

answered

Marked out of Select one or more: Finish attempt ...

= (J Avoid repeating the text in different java & layout files

¥ Flag question) n Vi

& (J Automatically correct typos e
Edit

question (J Provide multiple translations
(J Prevent other apps to access private content

(J Allow developers to use emojis

37

=PrL

<

Part2: Mini-app

= You will be given a draft of an App project (as we do with labs)

= You will be tasked to implement some features

= Examples:
1. App crashes, fix the issue explaining how you did it

2. Something should be performed in response to a button press

= At the end of each task, you will call us to verify
that the functionality is working

* When you raise your hand,
the emulator must be already started and the app launched

38

=PrL

© ESL-EPFL

Questions?

5 &k

39

