
Lab on apps development for tablets,
smartphones and smartwatches

Giovanni Ansaloni
Rafael Medina, Hossein Taji, Yuxuan Wang

Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) – Institute of Electrical and Micro Engineering (IEM)

Week 2:
State and interactivity

§ Handling events
• Buttons and Composables click events

§ Managing State in Jetpack Compose
• State hoisting

§ Communicating with other applications
• Listening for results

© ESL-EPFL 2

§ Activity classes manage the UI and the interaction with user actions

§ Activity classes extend ComponentActivity / WearableActivity

§ OnCreate() callback

• call to super

• inflate layout

• inflate theme

• Interactivity?

© ESL-EPFL

simple Activity class

3

§ User generate events by interacting with the GUI à with composables
• e.g. clicks/longClicks on buttons

§ The apps should appropriately respond to user actions

§ We specify the app behavior wrt events
in Composable functions
by specifying function parameters
• Kotlin lambdas/functions attached to events

© ESL-EPFL 4

§ Buttons have an onClick function parameter
• defined inside the parentheses

§ The button appearance is defined inside of the curly brackets

© ESL-EPFL 5

§ Implementing onClick (example: toast message)

6© ESL-EPFL

§ Click event can be added to any composable through modifiers
• Clickable
• CombinedClickable

§ also longpress, doublepress, ...

© ESL-EPFL 7

§ Callback à function called in response to an event
• defined outside of the composable

© ESL-EPFL 8

@Composable
fun Message() {

val context = LocalContext.current
Row(modifier = Modifier.clickable {

clickHandlerFunction(context)
}) {

…
}

}

Callback

fun clickHandlerFunction(context: Context) {
Toast.makeText(context,

context.getText(R.string.toast_message_text),
Toast.LENGTH_LONG)

.show()
}

§ Handling events
• Buttons and Composables click events

§ Managing State in Jetpack Compose
• State hoisting

§ Communicating with other applications
• Listening for results

© ESL-EPFL 9

§ State in an app is any value that can change over time
• State determines what is shown in the UI at any particular time
• State changes trigger recomposition

 à redrawing of UI

§ Recomposition flow:

© ESL-EPFL 10

Event

Update UI

Update state

§ MutableState types make state observable variables
• can wrap any other type
• changes in observable variables trigger recomposition
• often, state must be remembered across recomposition

§ Initializing a state object:

§ Updating a state object:

§ Reading a state object:

© ESL-EPFL 11

© ESL-EPFL 12

§ Using by keyword when initializing the state
• asks the remember API to initalize a mutableState variable

§ Initializing a state object:

§ Updating a state object:

§ Reading a state object:

more about delegated properties:
kotlinlang.org/docs/delegated-properties.html

no need to write
“.value” when
using the
variable

https://kotlinlang.org/docs/delegated-properties.html

© ESL-EPFL 13

§ Remember retains state across recomposition,
not across configuration changes
• Example: Screen rotation from portrait to landscape

§ rememberSaveable retains state across recomposition,
and across configuration changes
• Large objects may affect performance

§ Viewmodels are a better alternative in those cases (next lectures)

© ESL-EPFL 14

§ In Composables hierarchies
• State values are propagated downward
• State events are propagated upward

§ events: everything that may change the value of a state variable

stateful
composable

stateless
composable

state variable

© ESL-EPFL 15

§ A State variable should be held by the lowest common ancestor
between all composable that write and/or read it

§ State hoisting elevates the state variable declarations
in a composable hierarchy

Login Screen

UsernameTextField

Message

Username(State)

Login Screen

UsernameTextField

Message

Username(State)
hoisting

© ESL-EPFL 16

§ Hoisting replaces the state variable with two parameters
in the composable function:
• Value à the current value to display
• onEvent() à function to update the value when an event occurs

Login Screen

UsernameTextField

Message

Username(State)

Login Screen

UsernameTextField

Message

Username(State)
hoisting

© ESL-EPFL 17

@Composable
fun LoginScreen() {

var username by rememberSaveable { mutableStateOf("") }

Column {
TextField(value = username,

onValueChange = { newValue -> username = newValue})

Text(text = "Picked username: ${username}")
}

}

hosted state variable

value parameter

event
parameter

§ Example1
Login Screen

TextField

Message

Username(State)

© ESL-EPFL 18

Login Screen

UsernameTextField

Message

Username(State)

@Composable
fun LoginScreen() {

var username by rememberSaveable { mutableStateOf("") }

Column {
UsernameTextField(

username = username,
onUsernameChanged = { username = it }

)
Text(text = "Picked username: ${username}")

}
}

§ Example2

@Composable
fun UsernameTextField(username: String,

onUsernameChanged: (String) -> Unit) {
TextField(value = username,

onValueChange = { newValue ->
onUsernameChanged(newValue)})

}

or: { onUsernameChanged(it) }
or: onUsernameChanged

hosted state variable

§ Handling events
• Buttons and Composables click events

§ Managing State in Jetpack Compose
• State hoisting

§ Communicating with other applications
• Listening for results

© ESL-EPFL 20

§ You can use functionalities from other activities using Intents
§ Intents: message objects among Android components

§ Explicit Intent: message to a specific target
• Usually employed for communicating among different activities in an App
• Multi-activity app now discouraged
 à we will use Navigation instead (Next lecture!)

© ESL-EPFL

https://www.youtube.com/
watch?v=2k8x8V77CrU

21

https://www.youtube.com/watch?v=2k8x8V77CrU
https://www.youtube.com/watch?v=2k8x8V77CrU

§ You can use functionalities from other activities using Intents
§ Intents: message objects among Android components

§ Explicit Intent: message to a specific target
§ Implicit Intent: the app does not know the recipient

• only what is must be accomplished:
open a website, start a call, etc…

• User presented with a chooser if multiple applications
can handle a task

§ (Much) more on Intents:
https://developer.android.com/guide/components/intents-filters

© ESL-EPFL 22

https://developer.android.com/guide/components/intents-filters

§ Implicit intent must provide Action to be done
• ACTION_VIEW, ACTION_DIAL, ACTION_SEND

§ Depending on the Action, they can also provide
• A single Data content, specified either as URI or a data Type
• Multiple EXTRAs specified as key-value pairs

© ESL-EPFL 23

§ Make a phone call

§ Send an e-mail

§ complete list of Actions:
https://developer.android.com/reference/kotlin/android/content/Intent

© ESL-EPFL 24

https://developer.android.com/reference/kotlin/android/content/Intent

§ In all cases, the Intent message is sent by

§ myIntent à intent message
• describing Action,

Data, Extras etc…

§ the app that executes startActivity()
goes in background

§ the one that manages the intent
(or a chooser)
comes in foreground

© ESL-EPFL 25

§ The receiving app advertises which intents can process
• Intent Filters in Android Manifest

§ Retrieves the intent content in onCreate()

© ESL-EPFL 26

§ Interfacing external apps not always a one-way street
• sometimes, we expect Intents to provide data back
• examples

§ select a picture from gallery (à today’s Lab!)
§ select a contact

§ Starting the external activity and getting the result are decoupled
• Requesting Apps may be destroyed/recreated while waiting for results

§ Enabled by adding proper dependencies to gradle file
• And update it to the latest version

© ESL-EPFL 27

1. External apps are still invoked via Intents
• Created and started e.g. in the event listener of a Composable
• With the appropriate Action, type etc…
• launch() instead of startActivity()

© ESL-EPFL 28

2. The callback is defined as property of a launcher class variable
• defined in the class, outside methods
• initialized with rememberLauncherForActivityResult(), with:

§ Contract
§ lambda function implementing callback

© ESL-EPFL 29
non-specific contract

Callback updating the state

§ Specialized contracts allow to simplify code
• getContent() contract directly returns the Uri of the image
• does not require to explicitly write Intent

§ action is always ACTION_GET_CONTENT
§ data type is passed as argument to launch()

§ Complete list of Android Contracts:
https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts

© ESL-EPFL

1.

2.

30

https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts

§ Handling events
• Kotlin and XML callbacks

§ Accessing Resources in Kotlin
• View Binding

§ Communicating with other applications
• Listening for results

§ Lab of Today

© ESL-EPFL 31

§ Tablet application that reacts to the users’ actions

§ Login credentials and user picture

© ESL-EPFL 32

§ Groups and material
• Form your group if you haven’t already done so
• Each group gets a tablet, smartwatch and HR sensor

§ Solutions to the labs on Moodle
• We make them available before each lecture

§ Projects:
• Groups can request projects using the googleForm (link on Moodle)
• First assignment of students to projects on Moodle this week
• Information on gitLab on Moodle

33

§ Individual assessment à 35% of the course evaluation
§ Covers all content of the course from week 0 to week 8

§ Where: MED 2 2419, MED 2 2519
• You will be randomly assigned to one of the two classes

§ When: Tuesday November 19st at 14.15pm, 90 mins duration
• Exit the class when you finish the exam

34

§ Exam with Android Studio and the Android emulator
• You can do the exam with your laptop,

or with the computers in the lab
• No real devices needed

§ Two parts
1. Replying to short questions in Moodle
2. Mini app: we will give you a template app,

you need to implement missing features

35

§ Only the following online material will be allowed during the mid-term:
• Moodle lecture slides, labs, etc.
• Android developers website
• You can also bring

§ lectures/labs printed
§ your own notes

§ Use of mobile phones and AI assistants is not allowed in any case

36

§ ~4 questions
§ one attempt

37

§ You will be given a draft of an App project (as we do with labs)
§ You will be tasked to implement some features

§ Examples:
1. App crashes, fix the issue explaining how you did it
2. Something should be performed in response to a button press

§ At the end of each task, you will call us to verify
that the functionality is working
• When you raise your hand,

the emulator must be already started and the app launched

38

© ESL-EPFL 39

Questions?

