
Lab on apps development for tablets,
smartphones and smartwatches

Giovanni Ansaloni
Rafael Medina, Hossein Taji, Yuxuan Wang

Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) – Institute of Electrical and Micro Engineering (IEM)

Week 1:
Android overview. Defining a GUI.

© ESL-EPFL

0. Course presentation. Introduction to Kotlin.
1. Android overview. Defining a GUI.
2. Dynamic applications: State and interactivity.
3. Complex GUIs: Screens and menus.
4. Apps under the hood: Life cycles

Communication between Android and AndroidWear devices: Wear APIs.
5. Separating concerns: UI controllers and viewModels.

Interfacing with sensors: System Services.
6. Interfacing with the cloud: Firebase.

Displaying structured data: Lists.
7. Local databases: Room library.

Integrating Google maps.
8. Bluetooth Low Energy.

2

3© ESL-EPFL

source: Technavio, 2024

source: SensorTower, 2022

4

Source: GlobalVision, 2019

© ESL-EPFL

source: Statista, 2024

#d
ev

el
op

er
s

(m
ill

io
ns

) 23 23.9
27.7 28.7

§ ~24M developers in 2019, 900K new developers per year
§ 2% of developers earn 54% of all app. revenue
§ 64% of Android developers are below the app. poverty line (<500$/month)

2018 2019 2023 2024

5© ESL-EPFL

source:
Statista, 2022

6© ESL-EPFL

Source: CounterPoint Research, 2022

Source: The Business
Research Company, 2022

§ The same old “Android vs. Apple” game
§ but with more players

7

Source: Developer Megatrends

© ESL-EPFL

2020 2026

source: Technavio, 2022

§ Entertainment
§ Security

§ Speakers
§ Lighting

§ Thermostats
§ ...

8© ESL-EPFL

source: Grand View Research, 2020 Source:
Developer Megatrends

§Drones SDKs

§ cars
§ cities
§ healthcare
§ clothing
§ factories
§ ...

9© ESL-EPFL

§ 17B IoT devices (2024), and growing
• 32B devices in 2030 [1]

§ Smart* are an increasing market
• * = watches, drones, cities, cars, ...

§ Endless application landscape
• No dominant 3rd party developers.... yet

§ You can develop for them today!

10© ESL-EPFL [1] “Number of IoT connections worldwide
2022-2033, with forecasts to 2030”, statista.com

11© ESL-EPFL

TABLET

CLOUD

WEARABLES

§ Android overview

§ Resources, Composables

§ Lab of Today
• Create and build your first app for tablet & watch!

© ESL-EPFL 12

§ Android is a full ecosystem used on over 80% of all smartphones

§ Mobile operating system based on Linux Kernel

§ User Interface (UI) for touch screens

§ Multi-platform system:

• powers devices such as watches, TVs, and cars

§ Highly customizable for devices / by vendors

§ Open source

13© ESL-EPFL

The Android stack is composed of layers:

1. System and user apps

2. Android OS API framework
• Feature set of the Android-OS available

via Kotlin APIs

3. Android runtime
• Each app runs its own process with its

own instance of the runtime

4. Hardware Abstraction Layer (HAL)
• Standard interfaces that expose hardware

as a library

5. Linux Kernel

14© ESL-EPFL

15

HARDWARE HARDWARE HARDWARE

© ESL-EPFL

§ Chipset:
• Qualcomm Snapdragon 425

§ 4 core Cortex A53 @1.4GHz
• 3GB RAM
• Built-in storage: 16GB

§ Sensors
• Ambient light sensor
• Gyroscope
• Accelerometer
• Magnetometer

§ Camera: 5MP (frontal 2MP)
§ Bluetooth 4.0, A2DP
§ WiFi 802.11 b/g/n
§ 2G/3G/4G
§ LCD Capacitive touchscreen

• 9.6”, 16million colors, 800x1280px, 157ppi

16

§ Chipset:
• CPU: Qualcomm Snapdragon 2100
• 768MB RAM and 4GB Flash

§ Sensors:
• 6-axis a+G sensor
• 3-axis compass
• Heart Rate Sensor (PPG)
• Barometer
• Capacitive sensor
• Ambient light sensor

18© ESL-EPFL

§ GPS
§ WiFi 2.4GHz 802.11b/g/n
§ Bluetooth 4.1
§ Display:

• 1.2-inch circular AMOLED display
• 390x390 pixels w. 326 PPI

§ A set of interactive screens
§ GUI and behavior described in Kotlin Programming Language
§ Developed with Android SDK (Android Studio)
§ Using Android API Framework (2)
§ Executed by Android Runtime

Virtual machine (ART) (3)

19© ESL-EPFL

§ Developers can download Android Studio for free:
https://developer.android.com/studio/archive
• Development tools (debugger, monitors, editors)
• Libraries (maps, wearables)
• Virtual devices (emulators)
• Documentation (http://developers.android.com)
• Sample code

§ Android itself is an Open Source
Project: http://source.android.com/

20© ESL-EPFL

https://developer.android.com/studio/archive
http://developers.android.com/
http://source.android.com/

21

Source: https://developer.android.com/about/dashboards/index.html

© ESL-EPFL

§ Android 10 – 14 (2019-2024)
 à ~ 85% of devices

§ App Developer specifies target and minimum version

Source, Statcounter, July 2024

§ Official Android IDE
• Kotlin code for app logic and GUI layout
• Configurations in XML

§ Develop, run, debug apps …
• Visual layout preview
• Virtual devices (emulators)

§ Apps are packaged into APK or AAB files
§ Apps published via the Google Play store

• Official Google distribution service

22© ESL-EPFL

§ manifests:
• Characteristics of the app and component definition

§ java :
• code of your app
• Activities and VieModels à functionality
• Composables à GUI
• Helper classes

§ res(ources):
• images, strings, colors, XML and media files

§ Gradle Scripts:
• Scripts used to build the application

23© ESL-EPFL

§ Android overview

§ Resources, Composables

§ Lab of Today
• Create and build your first app for tablet & watch!

© ESL-EPFL 24

§ Resources à everything that is not code

Resources… why?
§ Provide alternative resources to support specific device

configurations
• different language packs, different screen size images
• re-compile only when needed

25© ESL-EPFL

<string name="app_name">Lab01Android</string>

§ Each Resource is associated with an Identifier (ID)
• Identifiers must be unique!

§ ID is composed of two parts:
• The resource type (e.g. string, color, etc…)
• The resource name, either:

§ the filename, excluding the extension (images/media)
§ a string in the XML <name> attribute (values)

26© ESL-EPFL Resource type

Resource name

<vector
android:height="108dp"
android:width="108dp"

§ Referencing resources from Kotlin code

§ R class: glue between Kotlin and resources

val myString = getString(R.string.app_name)

27© ESL-EPFL

Resource type

Resource name
val myDdrawable =

getDrawable(R.drawable.ic_launcher_background)

§ Using View resources
• Text, buttons, ...
• parameters for size, color, ...

§ ViewGroups resources
as ”Views containers”
• To organize GUI elements in columns, grids...

§ Views-based GUI development
• directly in XML code
• graphically with Android Studio

§ More information:

28© ESL-EPFL

https://developer.android.com/develop/ui/views/
layout/declaring-layout

https://developer.android.com/develop/ui/views/layout/declaring-layout
https://developer.android.com/develop/ui/views/layout/declaring-layout

GUI design with Jetpack Compose
§ GUI elements declared as Kotlin @Composable functions

29© ESL-EPFL

Composables

§ Top composables called inside the setContent method in a ComponentActivity class
• Activities are the “entry point” of an app (more on Activities next week)

§ OnCreate() callback
• call to super
• inflate layout
• inflate theme

§ color scheme, typography, shapes

• MyApp() composable function

© ESL-EPFL

@Composable
fun MyApp() {

…
}

GUI design with Jetpack Compose

30

§ Composable is the basic building block to create user interfaces
• Everything the app user sees, is a composable

§ Default/standard provided composables:
• text display (Text), text edit (TextField)
• Buttons, menus and other controls
• scrollable lists:

LazyColumn, LazyRow, LazyGrid
• Images
• ...

31

Switch
SeekBar

Radio
Button

Button

EditText

Check
box

© ESL-EPFL

http://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/Button.html

§ Composable can be @Previewed
• previews can parameterized to test specific scenarios or layout dimensions

32© ESL-EPFL

@Preview(widthDp = 320, heightDp = 320)
@Composable
fun GreetingPreview() {

MaterialTheme {
Greeting("Android")

}
}

@Composable
fun Greeting(name: String){

Surface{
Column(Modifier.padding(16.dp)) {

Text(text = "Hello")
Text(text = name)

}
}

}

Preview size

§ Composables can be
• created
• reused
• combined

33© ESL-EPFL

@Composable
fun Greeting(name: String, modifier: Modifier = Modifier)
{
Surface{

Column(
modifier = Modifier

.background(color = Color.Yellow)

.padding(16.dp)
) {

Text(text = "Hello")
Spacer(modifier = Modifier.size(8.dp))
Text(text = name)

}
}

}

§ Organize composables positions
• Row

• Column

• Box – put elements on top of another

34© ESL-EPFL

§ Change composables size, layout, behavior and appearance

§ Also, make composables clickable, scrollable, draggable or zoomable
• next lectures!

35© ESL-EPFL

§ The order of modifier functions is significant (left to right)

36© ESL-EPFL

Example 1:

Example 2:

§ Some modifiers are specific for one type of composable scope
• E.g. Modifier.align(Alignment.BottomEnd) can only be applied inside a BoxScope
• Attending to add a modifier to a wrong scope results in a compilation error

§ Full list of modifiers and their scopes:
https://developer.android.com/jetpack/compose/modifiers-list

37© ESL-EPFL

https://developer.android.com/jetpack/compose/modifiers-list

§ Best practice: add a modifier parameter at the end of custom Composables.
• Makes reusing Composables easier and avoids code duplication

38© ESL-EPFL

@Preview
@Composable
fun WinMessagePreview() {

MaterialTheme {
Message("You win", Modifier.background(Color.Green).padding(16.dp))

}}

@Preview
@Composable
fun LoseMessagePreview() {

MaterialTheme {
Message("You lose", Modifier.background(Color.Red).padding(16.dp))

}}

Same
composable Different

modifiers

@Composable
fun Message(message: String, modifier: Modifier = Modifier) { … }

§ Allows placement of composables relative to other composables on the screen
• Avoids nesting multiple Rows and Column
• Modifiers anchor composables to other composables

39© ESL-EPFL

reference
for each

composable
in the layout

top

bottom

start end

§ Guidelines are invisibles lines that help to position composables
• can be created at a certain point (dp) or certain percentage inside the parent composable.

§ Two types:
• Horizontal -> start and end
• Vertical -> top and bottom

40© ESL-EPFL

top

bottom
guideline

§ Recomposition is performed at run-time anytime the GUI needs to be updated
• Drawing the screen is costly

§ à Jetpack compose only redraws the GUI parts that needs updating
• Composable functions can execute in any order depending on changes in internal state

41© ESL-EPFL

@Composable
fun ButtonRow() {

MyFancyNavigation {
TopScreen()
MiddleScreen()
BottomScreen()

}
}

TopScreen() does not have to execute before MiddleScreen()

§ Android overview

§ Resources, Composables

§ Lab of Today
• Create and build your first app for tablet & watch!

© ESL-EPFL 42

1. Creating your first Android project

2. A static screen displaying text and images

3. Use Column and ConstraintLayout

4. Running your app (on real device and emulator)
1. on the Phone/Tablet
2. on the Watch

43© ESL-EPFL

§ Android overview

§ Resources, Views and Layouts

§ Lab of Today
• Create and build your first app for tablet & watch!

§ Gentle reminder: groups and material

© ESL-EPFL 44

Questions?

© ESL-EPFL 45

