=PrL

c Lab on apps development for tablets,
smartphones and smartwatches

Week O:
Course presentation & Introduction to Kotlin

Giovanni Ansaloni

Rafael Medina, Hossein Taji, Yuxuan Wang
Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) - Institute of Electrical and Micro Engineering (IEM)

=PrL

<

= Giovanni Ansaloni (giovanni.ansaloni@epfl.ch)

= Teaching Assistants

* Rafael Medina (rafael.medinamorillas@epfl.ch)

* Hossein Taji (hossein.taji@epfl.ch)

* Yuxuan Wang (yuxuan.wang@epfl.ch)

Christodoulos Kechris (christodoulos.kechris@epfl.ch)

Qunyou Liu (qunyou.liu@epfl.ch)

Amirhossein Shahbazinia (amirhossein.shahbazinia@epfl.ch)

© ESL-EPFL

mailto:marina.zapater@epfl.ch)
mailto:rafael.medinamorillas@epfl.ch
mailto:hossein.taji@epfl.ch
mailto:christodoulos.kechris@epfl.ch
mailto:qunyou.liu@epfl.ch
mailto:amirhossein.shahbazinia@epfl.ch

EPFL

What

Lab on apps development for tablets, W a/e
smartphones and smartwatches

- height: 173

- password: "YouMustNotStorePlainTextPas
- username: "Ros

E weight: 61.29999923706055

TABLET

© ESL-EPFL

WearAPI

EPFL Course organization

$ = Classes: 4 hours per week — Tuesday, 14h to 18h

= First 9 weeks:
* Lecture 2 14h to 15h
= 1 hour theory lesson to explain main concepts
* Lab - 15h to 18h
= 3 hours of practice of the concepts explained during the lectures
= groups of 3 students
= solution available on Moodle before the start of the next lecture

= Next 5 weeks:
* Midterm exam = (35% grade)
* Development of projects in groups of 3 people 2 (65% grade)

o AFart from the 4-hour lab, you’re supposed to devote another 4 hours per week
of your own time

= Lectures+lab sessions provide you with the basis to develop your projects
—> but you can start project anytime you want!

© ESL-EPFL

=PrL

<

= Course material on Moodle

Course organization

= Lecture slides

= Assignments handouts
= Assignments solutions
* EE-490(g) = Projects description

= News & discussion forums

Lab on app development for tablets and smartphones

& Participants

Dashboard > My courses » EE-490(g) (21-22)
g8 Grades

O General

General

5 Week 0 - Presentation

© ESL-EPFL

https://moodle.epfl.ch/course/view.php?id=14012

3" Course evaluation: Mid-term

= November 19t

35% of the grade %
~1h30m duration

MIp.
Individual, in class (using PC) TBQ-/V’

2 parts
* mini-project to be completed
* multiple-choices questions

= Content covered by lectures and labs
—> if you followed classes & did lab exercises, you will pass the exam

© ESL-EPFL

=PrL

= Oral exam related to final project
* 65% of the grade

* Grade may vary among members
of the same group

* Duration of the exam per group:
20 minutes

= Including app demo

* Documentation to upload via Moodle,
7 days before the exam date:

= Slides of the presentation of the project
(typically 8-10 slides)

= Working code of the project
= Video (optional)

© ESL-EPFL

$ Course evaluation: Final exam

FINAL EXAM

=PrL Course evaluation: Final exam

$ = Final grade determined by

* Developed app
= compliance to specification
= features above minimum requirements

= Ul look&feel, user friendliness Fm NAL EXAM
= code quality
= difficulty of the project

* Presentation

* Individual assessment

= % of project developed

= understanding of implemented features
= QRA

© ESL-EPFL

=PrL

<

© ESL-EPFL

Lectures: Outline of the course

= 9 weeks of theory/lab sessions (+ 5 weeks for projects)

> w NN = O

Course presentation. Introduction to Kotlin. - Android Basics with Compose:

https://developer.android.com/courses
android-basics-compose/course

Android overview. Defining a GUI.

Dynamic applications: State and interactivity. _
- Android courses:
Complex GUIs: Screens and menus. https://developer.android.com/courses

Apps under the hood: Life cycles
Communication between Android

and AndroidWear devices: Wear APIs.

Separating concerns: Ul controllers and viewModels.
Interfacing with sensors: System Services.

Interfacing with the cloud: Firebase.
Displaying structured data: Lists.

Local databases: Room library.
Integrating Google maps.

Bluetooth Low Energy.

https://developer.android.com/courses/android-basics-compose/course
https://developer.android.com/courses/android-basics-compose/course
https://developer.android.com/courses

=PrL

<

Material used for labs & project

= Programming using several devices:
e Tablet: Huawei MediaPad T3 10 (or Nexus 9)
= Or your Android phone, if you prefer
* Huawei Watch Sport 2

* Interacting with external peripherals
(Polar H7 chestbands, Parrot Anafi drones, etc.)

= You'll be given the required material
* you need to give it back by the end of the course

© ESL-EPFL

10

iE" Material used for labs & project

= Each group of three students receives
a Tablet, a Smartwatch and a HR sensor
at the start of the course

* Sept 10th (today): after the lecture
e ...or during the upcoming lab hours

= Form your team as soon as possible!

= Further material depending
on the chosen project

© ESL-EPFL »

=PrL

$ Filling-in the Lending Material Form

= Students in a group are fully and equally responsible for the material.

= Serial Number:
* EPFL Inventory number sticker (if available)
* Serial number of the tablet/watch:
= Setting 2 About Phone = Status = Serial Number
= ...or printed on the box

12

g Projects

$ = Project in groups of 3 students
* We propose several topics for projects

= We ensure these projects cover the objectives in the course
* |f you want to develop your own project, discuss objectives with me

= Teams need to request a project before November 12t at the latest
* Register your group and project preference using Google Forms
= Form opens on Tuesday 17t at 15:00h = Link sent by Moodle
* Please state 15t/2nd/31d choice
* |f you don’t pick a group and project, you’ll be assigned one

= You can start working on the project before theory/labs finish

* As soon as you have confirmation that it has been assigned to you
* We will provide a gitLab sub-repository for each group = upload regularly!

© ESL-EPFL

13

=PrL

Lectures +
labs

Project

Tentative
exam dates

D Return

material

Mon Tue
3
10
16 17
23 24
30
Mon Tue

16

30

10
17
24
31

September 2024
Wed Thu Fri
4 5 6
1 12 13
18 19 20
25 26 27
December 2024
Wed Thu Fri

4 5 6
11 12 13
18 19 20
25 26 27

October 2024
Mon Tue Wed Thu Fri
1 2 3 4
7 8 9 10 11
14 L 158 16" 17 | 18
21 22 23 24 25
28 29 30 A

January 2025
Mon Tue Wed Thu Fri
1 2 3

6 i 8 9 10

27 || 28 || 29 || 30 || 91

Sat

12
19
26

Sat
4
1

When

November 2024

Mon Tue Wed Thu Fri Sat Sun

1 2 %)

4 5 6 7 8 9 10
| N

11 E123 18 | 14 | 15 16 17

18 =19: 20 21 22 23 24
HEEN

25 26 27 28 29 30

February 2025
Mon Tue Wed Thu Fri Sat Sun

10 11 12 13 14 15 16
18 19 20 21 22 23
24 25 26 27 28

14

=PrL

© ESL-EPFL

Questions?

5 &k

15

=PrL

<

= Course presentation

= Projects
= Introduction to Kotlin

= Today’s lab

© ESL-EPFL

Class outline

16

=PrL

Projects!

Drones

Edge Al

Distributes applications / games
Augmented reality

Lk e

Detailed projects description soon available on Moodle

Asks the TA supervising each project for further information

17

=PrL

<

= Course presentation

= Projects
= Introduction to Kotlin

= Today’s lab

© ESL-EPFL

Class outline

18

=PrL

<

Why Kotlin (and not Java)?

= Android applications are developed using><9 Kotlin

= Since 2019, Kotlin is the recommended language for Android
* new tools/content, documentation and training Kotlin-first

= Good news: Kotlin is easy to learn
(especially if you know OOP already)

* Concise and expressive
* Android studio will help you a lot

= Extensive documentation here:
https://developer.android.com/courses/kotlin-bootcamp/overview

© ESL-EPFL 19

https://developer.android.com/courses/kotlin-bootcamp/overview

=PrL

e Kotlin in a nutshell

= Kotlin can be used for:

* Functional programming a * Object-orientated programming

class Person(val name: String) {

val messages = listOf{ fun greet() = printIn("It's me, Sname.")

"Hey! Where are you?", }
"Everything going according to plan today?",

"Please reply. I've lost you! fun main() {

) val sam = Person("Sam")

fun main() { } sam.greet()

val senders = messages
printin(messages[1])

}
 We will use both!

© ESL-EPFL 20

gl_ Kotlin as functional language

= Based on functions
= modules of code that accomplish a specific task

fun feedFish (hungry : Boolean) : String {

var food: String
if (hungry) { \

return type

food = "yes”
} else {
food = “no” arguments

}

return food

} local variable
fun main(){
Function call
val result = feedFish(true)
}

© ESL-EPFL 21

=PrL

Lambdas
g

= |n Kotlin (almost) every expression has a value

var isHot = if (temperature > 50) true else false

: : - implementation
= A l[ambda is an incapsulated expression parameters
= [ast statement is the return value \ \
var waterFilter : (Int) -> Int = { dirty : Int -> dirty / 2}
e ™~
Inputs types Output type

(comma separated)

= |nputs and outputs type declarations
are optional var waterFilter = { dirty : Int -> dirty / 2}

lambda in curly braces

© ESL-EPFL 22

=PrL

Lambdas
g

= Lambdas are commonly passed in-line as the last parameter
- trailing lambda

fun main() {
dirtyLevel = updateDirty(dirtyLevel) idirty: Int -> dirty / 2.}
} T

lambda

fun updateDirty(dirtyLevel: Int, operation: (Int) -> Int): Int {
return operation(dirtyLevel)

}

© ESL-EPFL 23

g Higher order functions

= A higher-order function is a function that
= takes functions (including lambdas) as parameters
and/or
= returns a function as result

lambda — var waterFilter = { dirty : Int -> dirty / 2}

fun main(){
dirtyLevel = updateDirty(dirtyLevel, waterFilter)
}

fun updateDirty(dirtyLevel: Int, operation: (Int) -> Int): Int {
higher — C '

return operation(dirtyLevel) r
order function } function that takes an Int and returns an Int

© ESL-EPFL 24

g Higher order functions

= A higher-order function is a function that
= takes functions (including lambdas) as parameters
and/or
= returns a function as result

Method

function — fun waterFilter(dirty: Int): Int { return dirty / 2} reference
fun main(){

dirtyLevel = updateDirty(dirtyLevel, ::waterFilter)
}

fun updateDirty(dirtyLevel: Int, operation: (Int) -> Int): Int {
higher — C '

return operation(dirtyLevel) r
order function } function that takes an Int and returns an Int

© ESL-EPFL 25

g._ Kotlin as an OOP Language

= OOP - Object Oriented Programming

= One with...
* Abstract data types:
= Classes - types
= Objects —> instances of a class

e Encapsulation
= Properties - characteristic of a class
= Methods - functionality of a class

* Inheritance

© ESL-EPFL 26

=PrL Kotlin Classes

$ = A class defines a type:

* An abstraction represented as a set of features/members
= Properties (aka Attributes/Fields/Instance variables)
= Methods (aka Routines/(Member) functions)

A mold for all its objects

Default values (constructor)
|

class Aquarium(length: Int = 100, width: Int = 20, height: Int = 40) { ' l
i var length: Int = length d’
var can be assigned _——= 5/ width: Int = width }- properties
multiple times / var height: Int = height
val can only be
assigned once

= Example:

fun printSize() {
Method printin("Width: $width cm " + "Length: $length cm " + "Height: $height cm ")

}

© ESL-EPFL 27

=PrL

$ Constructors —

‘OOP

= Kotlin allows to directly assign values to property in constructors

= Constructor code (other than default values assignments) in init{} block

class Aquarium (var length: Int = 100, var width: Int = 20, var height: Int = 40) {

Constructor init { Default values assigned to
code printin("Aquarium Initializing") properties assigned in constructor

}

fun printSize() {...}

var hungryFishes : Boolean = false
fun feedFish () { ...}

© ESL-EPFL

28

3" Methods e

®» Functions inside of a class
= A functionality offered by a class

class careForFish (...){

fun feedFish (hungry : Boolean) : String {

var food: String '\
return type

it (hungry) {

food = "yes”
lelse{ arguments
food = “no”

}

return food
} local variable

© ESL-EPFL 29

=PrL

$ Classes and objects

- client relationship -

_ fun buildAquarium() { i d’ j
class Aquarium (var length: Int = 100,

_ val aquariuml = Aquarium()
var width: Int = 20, aquariuml.printSize()

var height: Int = 40) { -
val aquarium2 = Aquarium(width = 25)

init {---_} | aquarium2.printSize()
fun printSize() {...}

= Creating an objects, referencing properties/methods Ltw,, I I

val aquarium3 = Aquarium(height = 35, length = 110)
J aquarium3.printSize()

© ESL-EPFL

=PrL

e Specialized classes

= An enum class that represents a group of constants

enum class Canton(val code: String) {
Class VAUD("VD"),
' GENEVA("GE"), val canton = Canton.VAUD

Object /

} initialization val code = Canton.VAUD.code

definition

= A data class are used to hold data
= automatic generation of .equals(), .copy() methods

data class Person(val person = Person("John Doe", 25)
Cla_SS_ o val name: String, val samePerson = person.copy()
definition val age: Int _
Object : _ __
) val isSamePerson = (person == samePerson)

initialization B
val modifiedPerson = person.copy(age = 30)
© ESL-EPFL 31

=PrL

$ Classes with type parameters e

= Classes can leave the type of input parameters undetermined
= usually, generic “T” type
= type is resolved when initializing objects

~ class Box<T>(t: T) {
var capacity =t

Class definition

}
val boxInt: Box<Int> = val boxInt = Box(1)
Object Box<Int>(1) Object
initialization initialization
val boxFloat: Box<Float> = (inferred types) val boxFloat = Box(1.2f)

Box<Float>(1.2f)

© ESL-EPFL 32

=PrL

$ Encapsulation

= Class attributes and methods can have different visibility/access levels
* Public: visible outside the class.

= Methods and attributes are public by default
* Private: only visible in that class

* Protected: same as private, but also visible by subclasses

public var length: Int = 30
private fun fishFood (hungry : Boolean) : String {...}

© ESL-EPFL 33

=Pr-L
$ Getters and setters

= Getters and setters methods can (optionally) be defined for each property
e Getter: called every time a property is accessed

var volume: Int
get() = width * height * length / 1000

» Setter: called every time a value is assigned to a property

var volume: Int
set(value) {
height = (value * 1000) / (width * length)

}

© ESL-EPFL 34

=PrL

<

Inheritance

= A class gets the properties/methods of another class by inheriting from it

= The derived class can

open

* Introduce new features
= Redefine features of the parent class but...

= ...only open Kotlin classes/methods/properties can be subclassed

- everything closed by default

class Aquarium (var length: Int = 100, var width: Int = 20,

openjvar volume: Int

get() = width * height * length / 1000
set(value) {

}

height = (value * 1000) / (width * length)

© ESL-EPFL

open

var height: Int = 40) {

35

=PrL

<

Inheritance

= Subclasses declaration

class TowerTank(override var height: Int, var diameter: Int){ Aquarium(height = height, width =
diameter, length = diameter) {
override var volume: Int

get() = (width/2 * length/2 * height / 1000 * PI).tolnt()

set(value) { base class

height = ((value * 1000 / PIl) / (width/2 * length/2)).tolnt()

}

<OTHER PROPERTIES AND METHODS>

)

= Objects of subclasses are created like any other objects

fun buildTowerTank() {
val towerTankl = TowerTank()
printin(towerTankl.volume)

J
© ESL-EPFL

36

=PrL

Inheritance
= Abstract classes = Interfaces declare methods,
do not implement all methods but do not implement them
e can only be sub-classed, they cannot be = can’t have constructors
used to instantiate objects = implicitly “open”
e implicitly “open”
abstract class AquariumFish { interface FishAction {

abstract val color: String fun eat()
} \ }
class Shark: AquariumFish(), FishAction {
override val color = "gray" = Subclasses can inherit from

override fun eat() { one superclass and/or

intin("hunt and eat fish" inle |
| printin("hunt and eat fish’) multiple interfaces

}

37

=PrL

Nullability in Kotlin

= By default, properties in Kotlin cannot be Null

var rocks: Int = null =) FRROR

= “?” must be added to the type to indicate that a property is nullable
var rocks: Int? = null == OK

= ‘? operator =2 tests for null value

fishFoodTreats = fishFoodTreats?.dec()

= ‘?" (Elvis) operator = Handles null cases

fishFoodTreats = fishFoodTreats?.dec() ?: O

= ‘I" operator — Rise exception at run time if value is null (discouraged)

val len = sll.length

© ESL-EPFL

38

=PrL

c Objects and scope functions A

= Functions that only execute a block of code
= applied to an object
= followed by a lambda expression

= forms a temporary scope within the object
= Objects methods/variables accessed without specifying the object name

= et
apply
" run

= with
= also

Complete documentation:
https://kotlinlang.org/docs/scope-functions.htm|

© ESL-EPFL 39

https://kotlinlang.org/docs/scope-functions.html

=PrL

$ Scope functions

= Functions that only execute a block of code
= applied to an object
= followed by a lambda expression

= forms a temporary scope within the object
= Objects methods/variables accessed without specifying the object name

" |et . String? = null it refers to object
= executes lambda varname. strings = nu inside of the scope
on non-nullable object
name?./et {
= apply val namelength = it.length
" run printin(nameLength)
. }
= with
Only enter the scope
= also

if “name” is not null

© ESL-EPFL 40

=PrL

c Scope functions

= Functions that only execute a block of code
= applied to an object
= followed by a lambda expression
= forms a temporary scope within the object
= Objects methods/variables accessed without specifying the object name

= et
. val adam = Person("Adam").apply {
apply _ this.age =32
" apply assignments this.city = "London"
to object }
rintin(adam) “this” refers to object
" run P inside of the scope
= with (optional)
= also

© ESL-EPFL

41

=PrL

Today’s Lab — “Kotlin basics”

1. Creating your first Kotlin classes and objects
2. Basics of encapsulation

3. Inheriting from classes

Lab handout available on Moodle

© ESL-EPFL

42

=PrL

<

Using Lab's Computers

1. Choose a computer for the whole semester

2. First Android Studio execution: run setup wizard
= Use default configurations

" Cancel the admin password request

© ESL-EPFL

43

EPFL Using your own computer

Android Studio is freely available for download here: - S
https://developer.android.com/studio/archive \

IMPORTANT: we will use version
2022.3.1 Patch 2 (Giraffe) — September 2023

= same version as installed in lab desktops

® in general, Android Studio versions
are not back-compatible

© ESL-EPFL Detailed instructions in the handout y

https://developer.android.com/studio/archive

