
Lab on apps development for tablets,
smartphones and smartwatches

Giovanni Ansaloni
Rafael Medina, Hossein Taji, Yuxuan Wang

Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) – Institute of Electrical and Micro Engineering (IEM)

Week 0:
Course presentation & Introduction to Kotlin

§ Giovanni Ansaloni (giovanni.ansaloni@epfl.ch)

§ Teaching Assistants

• Rafael Medina (rafael.medinamorillas@epfl.ch)

• Hossein Taji (hossein.taji@epfl.ch)

• Yuxuan Wang (yuxuan.wang@epfl.ch)

• Christodoulos Kechris (christodoulos.kechris@epfl.ch)

• Qunyou Liu (qunyou.liu@epfl.ch)

• Amirhossein Shahbazinia (amirhossein.shahbazinia@epfl.ch)

© ESL-EPFL 2

mailto:marina.zapater@epfl.ch)
mailto:rafael.medinamorillas@epfl.ch
mailto:hossein.taji@epfl.ch
mailto:christodoulos.kechris@epfl.ch
mailto:qunyou.liu@epfl.ch
mailto:amirhossein.shahbazinia@epfl.ch

3© ESL-EPFL WearAPI

TABLET

CLOUD

WEARABLES

Lab on apps development for tablets,
smartphones and smartwatches

§ Classes: 4 hours per week – Tuesday, 14h to 18h

§ First 9 weeks:
• Lecture à 14h to 15h

§ 1 hour theory lesson to explain main concepts
• Lab à 15h to 18h

§ 3 hours of practice of the concepts explained during the lectures
§ groups of 3 students
§ solution available on Moodle before the start of the next lecture

§ Next 5 weeks:
• Midterm exam à (35% grade)
• Development of projects in groups of 3 people à (65% grade)

§ Apart from the 4-hour lab, you’re supposed to devote another 4 hours per week
of your own time

§ Lectures+lab sessions provide you with the basis to develop your projects
à but you can start project anytime you want!

© ESL-EPFL
4

§ Course material on Moodle
• EE-490(g)

© ESL-EPFL

§ Lecture slides
§ Assignments handouts
§ Assignments solutions
§ Projects description
§ News & discussion forums
§ ...

5

https://moodle.epfl.ch/course/view.php?id=14012

§ November 19th

§ 35% of the grade
§ ~1h30m duration
§ Individual, in class (using PC)

§ 2 parts
• mini-project to be completed
• multiple-choices questions

§ Content covered by lectures and labs
à if you followed classes & did lab exercises, you will pass the exam

© ESL-EPFL
6

§ Oral exam related to final project
• 65% of the grade
• Grade may vary among members

of the same group

• Duration of the exam per group:
20 minutes
§ Including app demo

• Documentation to upload via Moodle,
7 days before the exam date:
§ Slides of the presentation of the project

(typically 8-10 slides)
§ Working code of the project
§ Video (optional)

© ESL-EPFL
7

§ Final grade determined by
• Developed app

§ compliance to specification
§ features above minimum requirements
§ UI look&feel, user friendliness
§ code quality
§ difficulty of the project

• Presentation

• Individual assessment
§ % of project developed
§ understanding of implemented features
§ Q&A

© ESL-EPFL
8

© ESL-EPFL

§ 9 weeks of theory/lab sessions (+ 5 weeks for projects)

0. Course presentation. Introduction to Kotlin.

1. Android overview. Defining a GUI.
2. Dynamic applications: State and interactivity.

3. Complex GUIs: Screens and menus.

4. Apps under the hood: Life cycles
Communication between Android
 and AndroidWear devices: Wear APIs.

5. Separating concerns: UI controllers and viewModels.
Interfacing with sensors: System Services.

6. Interfacing with the cloud: Firebase.
Displaying structured data: Lists.

7. Local databases: Room library.
Integrating Google maps.

8. Bluetooth Low Energy.

9

- Android Basics with Compose:
https://developer.android.com/courses/

android-basics-compose/course

- Android courses:
https://developer.android.com/courses

https://developer.android.com/courses/android-basics-compose/course
https://developer.android.com/courses/android-basics-compose/course
https://developer.android.com/courses

§ Programming using several devices:
• Tablet: Huawei MediaPad T3 10 (or Nexus 9)

§ Or your Android phone, if you prefer
• Huawei Watch Sport 2
• Interacting with external peripherals

(Polar H7 chestbands, Parrot Anafi drones, etc.)

§ You’ll be given the required material
• you need to give it back by the end of the course

© ESL-EPFL
10

§ Each group of three students receives
a Tablet, a Smartwatch and a HR sensor
at the start of the course
• Sept 10th (today): after the lecture
• ...or during the upcoming lab hours

§ Form your team as soon as possible!

§ Further material depending
on the chosen project

© ESL-EPFL
11

§ Students in a group are fully and equally responsible for the material.

§ Serial Number:
• EPFL Inventory number sticker (if available)
• Serial number of the tablet/watch:

§ Setting à About Phone à Status à Serial Number
§ ...or printed on the box

12

§ Project in groups of 3 students
• We propose several topics for projects

§ We ensure these projects cover the objectives in the course
• If you want to develop your own project, discuss objectives with me

§ Teams need to request a project before November 12th at the latest
• Register your group and project preference using Google Forms

§ Form opens on Tuesday 17th at 15:00h à Link sent by Moodle
• Please state 1st/2nd/3rd choice
• If you don’t pick a group and project, you’ll be assigned one

§ You can start working on the project before theory/labs finish
• As soon as you have confirmation that it has been assigned to you
• We will provide a gitLab sub-repository for each group à upload regularly!

© ESL-EPFL
13

14

Tentative
exam dates

Choose
project

Lectures +
labs

Mid-term

Project

Return
material

Questions?

© ESL-EPFL
15

§ Course presentation

§ Projects

§ Introduction to Kotlin

§ Today’s lab

© ESL-EPFL 16

1. Drones
2. Edge AI
3. Distributes applications / games
4. Augmented reality
5. ...

Detailed projects description soon available on Moodle
Asks the TA supervising each project for further information

17

§ Course presentation

§ Projects

§ Introduction to Kotlin

§ Today’s lab

© ESL-EPFL 18

§ Android applications are developed using Java à Kotlin

§ Since 2019, Kotlin is the recommended language for Android
• new tools/content, documentation and training Kotlin-first

§ Good news: Kotlin is easy to learn
(especially if you know OOP already)
• Concise and expressive
• Android studio will help you a lot

§ Extensive documentation here:
https://developer.android.com/courses/kotlin-bootcamp/overview

19© ESL-EPFL

https://developer.android.com/courses/kotlin-bootcamp/overview

§ Kotlin can be used for:

20© ESL-EPFL

• Functional programming

val messages = listOf(
"Hey! Where are you?",
"Everything going according to plan today?",
"Please reply. I've lost you!"

)

fun main() {
val senders = messages
println(messages[1])

}

• We will use both!

• Object-orientated programming

class Person(val name: String) {
fun greet() = println("It's me, $name.")

}

fun main() {
val sam = Person("Sam")
sam.greet()

}

§ Based on functions
§ modules of code that accomplish a specific task

fun feedFish (hungry : Boolean) : String {
var food: String
if (hungry) {

food = ”yes”
} else {

food = “no”
}
return food

}

fun main(){
…
val result = feedFish(true)

}

arguments

return type

local variable

21© ESL-EPFL

Function call

§ In Kotlin (almost) every expression has a value

§ A lambda is an incapsulated expression
§ Last statement is the return value

§ Inputs and outputs type declarations
are optional

var isHot = if (temperature > 50) true else false

var waterFilter = { dirty : Int -> dirty / 2}

lambda in curly braces

22

parameters
implementation

Inputs types
(comma separated)

var waterFilter : (Int) -> Int = { dirty : Int -> dirty / 2}

Output type

© ESL-EPFL

§ Lambdas are commonly passed in-line as the last parameter
 à trailing lambda

fun main() {
dirtyLevel = updateDirty(dirtyLevel) {dirty : Int -> dirty / 2}

}
lambda

fun updateDirty(dirtyLevel: Int, operation: (Int) -> Int): Int {
return operation(dirtyLevel)

}

23© ESL-EPFL

§ A higher-order function is a function that
§ takes functions (including lambdas) as parameters
and/or
§ returns a function as result

fun updateDirty(dirtyLevel: Int, operation: (Int) -> Int): Int {
return operation(dirtyLevel)

}

fun main(){
dirtyLevel = updateDirty(dirtyLevel, waterFilter)

}

function that takes an Int and returns an Int

var waterFilter = { dirty : Int -> dirty / 2}

higher
order function

lambda

24© ESL-EPFL

fun updateDirty(dirtyLevel: Int, operation: (Int) -> Int): Int {
return operation(dirtyLevel)

}

fun main(){
dirtyLevel = updateDirty(dirtyLevel, ::waterFilter)

}

function that takes an Int and returns an Int

fun waterFilter(dirty: Int): Int { return dirty / 2 }

higher
order function

function

25© ESL-EPFL

Method
reference

§ A higher-order function is a function that
§ takes functions (including lambdas) as parameters
and/or
§ returns a function as result

§ OOP à Object Oriented Programming

§ One with…
• Abstract data types:

§ Classes à types
§ Objects à instances of a class

• Encapsulation
§ Properties à characteristic of a class
§ Methods à functionality of a class

• Inheritance

26© ESL-EPFL

§ A class defines a type:
• An abstraction represented as a set of features/members

§ Properties (aka Attributes/Fields/Instance variables)
§ Methods (aka Routines/(Member) functions)

• A mold for all its objects

§ Example:
class Aquarium(length: Int = 100, width: Int = 20, height: Int = 40) {

var length: Int = length
var width: Int = width
var height: Int = height

fun printSize() {
println("Width: $width cm " + "Length: $length cm " + "Height: $height cm ")

}

}

propertiesvar can be assigned
multiple times
val can only be
assigned once

Default values (constructor)

Method

27© ESL-EPFL

§ Kotlin allows to directly assign values to property in constructors
§ Constructor code (other than default values assignments) in init{} block

Default values assigned to
properties assigned in constructor

class Aquarium (var length: Int = 100, var width: Int = 20, var height: Int = 40) {

init {
println(”Aquarium Initializing")

}

fun printSize() {…}
var hungryFishes : Boolean = false
fun feedFish () { …}

}

Constructor
code

28© ESL-EPFL

§ Functions inside of a class
§ A functionality offered by a class

29© ESL-EPFL

class careForFish (…){

fun feedFish (hungry : Boolean) : String {
var food: String
if (hungry) {

food = ”yes”
}else{

food = “no”
}
return food

}
…
}

arguments

return type

local variable

§ Creating an objects, referencing properties/methods
 à client relationship

class Aquarium (var length: Int = 100,
var width: Int = 20,
var height: Int = 40) {

init {… }
fun printSize() {…}
…

}

fun buildAquarium() {
val aquarium1 = Aquarium()
aquarium1.printSize()
// default height and length
val aquarium2 = Aquarium(width = 25)
aquarium2.printSize()
// default width
val aquarium3 = Aquarium(height = 35, length = 110)
aquarium3.printSize()

}

30© ESL-EPFL

§ An enum class that represents a group of constants
enum class Canton(val code: String) {

VAUD("VD"),
GENEVA("GE"),
...

}

31© ESL-EPFL

Class
definition Object

initialization

val canton = Canton.VAUD
...
val code = Canton.VAUD.code

§ A data class are used to hold data
§ automatic generation of .equals(), .copy() methods

data class Person(
val name: String,
val age: Int

)

val person = Person("John Doe", 25)
val samePerson = person.copy()

val isSamePerson = (person == samePerson)
...
val modifiedPerson = person.copy(age = 30)

Class
definition

Object
initialization

§ Classes can leave the type of input parameters undetermined
§ usually, generic “T” type
§ type is resolved when initializing objects

class Box<T>(t: T) {
var capacity = t

}

32© ESL-EPFL

Class definition

val boxInt: Box<Int> =
Box<Int>(1)

val boxFloat: Box<Float> =
Box<Float>(1.2f)

Object
initialization

val boxInt = Box(1)

val boxFloat = Box(1.2f)

Object
initialization
(inferred types)

§ Class attributes and methods can have different visibility/access levels
• Public: visible outside the class.

§ Methods and attributes are public by default
• Private: only visible in that class
• Protected: same as private, but also visible by subclasses

public var length: Int = 30

private fun fishFood (hungry : Boolean) : String {…}

33© ESL-EPFL

§ Getters and setters methods can (optionally) be defined for each property
• Getter: called every time a property is accessed

• Setter: called every time a value is assigned to a property

var volume: Int
set(value) {

height = (value * 1000) / (width * length)
}

34

var volume: Int
get() = width * height * length / 1000

© ESL-EPFL

§ A class gets the properties/methods of another class by inheriting from it

§ The derived class can
§ Introduce new features
§ Redefine features of the parent class but…
§ …only open Kotlin classes/methods/properties can be subclassed
 à everything closed by default

open class Aquarium (var length: Int = 100, var width: Int = 20, open var height: Int = 40) {

open var volume: Int
get() = width * height * length / 1000
set(value) {

height = (value * 1000) / (width * length)
}

}
35© ESL-EPFL

§ Subclasses declaration

§ Objects of subclasses are created like any other objects

class TowerTank(override var height: Int, var diameter: Int): Aquarium(height = height, width =
diameter, length = diameter) {
override var volume: Int

get() = (width/2 * length/2 * height / 1000 * PI).toInt()
set(value) {

height = ((value * 1000 / PI) / (width/2 * length/2)).toInt()
}

<OTHER PROPERTIES AND METHODS>
}

base class

fun buildTowerTank() {
val towerTank1 = TowerTank()
println(towerTank1.volume)

}

36© ESL-EPFL

§ Abstract classes
do not implement all methods

• can only be sub-classed, they cannot be
used to instantiate objects

• implicitly “open”

abstract class AquariumFish {
abstract val color: String

}

interface FishAction {
fun eat()

}

class Shark: AquariumFish(), FishAction {
override val color = "gray"
override fun eat() {

println("hunt and eat fish")
}

}

§ Interfaces declare methods,
but do not implement them
§ can’t have constructors
§ implicitly “open”

§ Subclasses can inherit from
one superclass and/or
multiple interfaces

37

§ By default, properties in Kotlin cannot be Null

§ ‘?’ must be added to the type to indicate that a property is nullable

§ ‘?.’ operator à tests for null value

§ ‘?:’ (Elvis) operator à Handles null cases

§ ‘!!’ operator à Rise exception at run time if value is null (discouraged)

var rocks: Int = null ERROR

var rocks: Int? = null OK

fishFoodTreats = fishFoodTreats?.dec()

fishFoodTreats = fishFoodTreats?.dec() ?: 0

val len = s!!.length

38© ESL-EPFL

§ Functions that only execute a block of code
§ applied to an object
§ followed by a lambda expression
§ forms a temporary scope within the object

§ Objects methods/variables accessed without specifying the object name

§ let
§ apply
§ run
§ with
§ also

39© ESL-EPFL

Complete documentation:
https://kotlinlang.org/docs/scope-functions.html

https://kotlinlang.org/docs/scope-functions.html

40© ESL-EPFL

var name: String? = null
…
name?.let {

val nameLength = it.length
println(nameLength)

}

Only enter the scope
if “name” is not null

it refers to object
inside of the scope

§ Functions that only execute a block of code
§ applied to an object
§ followed by a lambda expression
§ forms a temporary scope within the object

§ Objects methods/variables accessed without specifying the object name

§ let
§ executes lambda

on non-nullable object

§ apply
§ run
§ with
§ also

41© ESL-EPFL

“this” refers to object
inside of the scope
(optional)

§ Functions that only execute a block of code
§ applied to an object
§ followed by a lambda expression
§ forms a temporary scope within the object

§ Objects methods/variables accessed without specifying the object name

§ let
§ apply

§ apply assignments
to object

§ run
§ with
§ also

val adam = Person("Adam").apply {
this.age = 32
this.city = "London"

}
println(adam)

1. Creating your first Kotlin classes and objects
2. Basics of encapsulation
3. Inheriting from classes

Lab handout available on Moodle

© ESL-EPFL 42

1. Choose a computer for the whole semester

2. First Android Studio execution: run setup wizard
§ Use default configurations
§ Cancel the admin password request

© ESL-EPFL 43

Android Studio is freely available for download here:
https://developer.android.com/studio/archive

IMPORTANT: we will use version
 2022.3.1 Patch 2 (Giraffe) – September 2023

§ same version as installed in lab desktops
§ in general, Android Studio versions

are not back-compatible

 Detailed instructions in the handout© ESL-EPFL 44

https://developer.android.com/studio/archive

