5. Microwave network analysis
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5.1 Introduction

We will see in this chapter how the concepts of low-frequency circuit analysis can be
extended to microwave circuits and networks. We will reconsider familiar concepts like
current, voltage and impedance, find out if and when they can be used in microwave circuit
analysis. We will learn to view currents and voltages as sums of incident and reflected waves.
We will then introduce generalized waves and the scattering matrix as very efficient and
practical tools for microwave circuit analysis.

5.2 Voltage, current and impedance

Currents and voltages are difficult to define in the microwave bands, excepted for the case of
transmission lines supporting only a TEM wave. In all other cases, it is not possible to define
these quantities in a univocal way. Moreover, they are extremely difficult to measure in a
reliable way. Nevertheless, Kirchhoff's model is a very convenient tool for describing a
circuit, and we would like to retain it. We will thus try to define equivalent currents and
voltages on transmission line, remembering that excepted for the TEM case, these values are
concepts without physical meaning and are not uniquely defined.

Each propagating mode will be described by a separate voltage current pair.

5.2.1 TEM Modes

The measurement of currents and voltages is very difficult if not impossible at microwave
frequencies, excepted when access ports can be clearly defined. This is the case only for TEM
or quasi TEM modes.

Figure 5.1 illustrates the electric and magnetic fields for an arbitrary TEM transmission line.

Fig. 5. 1: Arbitrary TEM line
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The voltage difference between the two conductors is defined as :

V=L E-dl 5

In the case of a TEM wave, the field has a static behaviour, and the voltage will not depend
on the integration path, as long as the latter goes from conductor + to conductor -. Thus, the
voltage is uniquely defined and there is no ambiguity.

The total current in conductor + is defined by Ampere's law :

1:<ﬁc+ H-dl 52

where C+ is a closed integration path containing conductor +, but not conductor -. The
characteristic impedance is the written as :

(5.3)

Where L is the inductance per unit length of the TEM line and C its capacitance per unit
length.

5.2.2 Non TEM modes

The situation is less clear for non-TEM modes, as a simple example can show :
The transverse fields of the TE;( mode of a rectangular waveguide are given by :

Ey(x,y,2) = E ja)’uasinﬂe_jﬂz=EOe (x,y)e” jbz

i “ (5. 4)
H,(x,y,z)=E ism e /P = = Eghy, (x,y)e” Jbz
a
The voltage should thus be defined as
V= By L n X Jﬂzj dy (5. 5)
/4 a

This voltage would depend on the x position we place the integration path in the guide, and of
the geometry of this path. The result is clearly different if we choose a path 0<y<b at x=a/2 or
at x=0. So what is the voltage ?

The answer is that in this case there is no "correct" voltage, which could be measured. We
may however define a voltage and a current in many different ways for a non-TEM mode.

In order to obtain useful results, we will follow the following rules in our definition :

» The voltage and current are defined for one mode only. We decide (arbitrarily) that

the voltage has to be proportional to the amplitude of the transverse electric field,
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while the current has to be proportional to the amplitude of the transverse magnetic
field.

* In order to enable the use of Kirchhoff's model, the product of the current and the
voltage should yield the power flux of the considered mode.

» The voltage divided by the current should be equal to the characteristic impedance of
the line. The latter should also be equal to the mode impedance of the considered

mode.

In an arbitrary guide, the transverse fields can be expressed as a function of an incident and a
reflected wave. The voltage and current must thus be expressed in the same way :

E; (x,y,z):et(x,y)(E;r e_jﬂZ+E0_ejﬂZ)

4 (x,y)(V+ e /Py ejﬂz)
G
. ) (5.6)
H, (x,y,z) =h ()c,y)(E;r e_J’BZ—EO_ eJ'BZ)
— M(ﬁr e /P7_ - e]ﬂz)
G
We write thus :
V(z)=vte /Py elP- 57

[(z)=1"e /P eIF?
The characteristic impedance of this wave is defined (by analogy to the TEM case) as

L VIV _GE G 5.8)
o GE G

If we want moreover that the characteristic impedance is equal to the wave impedance of the
mode, we get :

C
C—; =7 0d (5.9)

5.2.3 Impedance concepts
It is important to make the difference between :

* The characteristic impedance of the medium. It depends only on the material

constituting the medium :
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7 = |& (5.10)
&

* The wave impedance of a mode. It will depend on the type of the mode (TE, TM,
TEM), on the guide, and on the materials used. It is also dependent on the frequency

and the geometry :
_ &y
mod — |Ht|

* The characteristic impedance, defined as the voltage divided by the current. It is

7 (5.11)

univocally defined only for a TEM transmission line :

+ J—
2L 65.12)
It I C

5.3 The impedance matrix

The concepts of voltage, current and impedance defined for transmission lines above can also
be used to characterize microwave components, circuits and systems. The latter will then be
defined by an impedance matrix, obtained from the voltage and current waves flowing on the
transmission lines which are linked to the ports of the element.

References:
R.E. Collin, "Foundations for Microwave Engineering", Mc Graw Hill, 1992.

5.3.1 Impedance of a single port element

The simplest possible microwave component has only one access. Its impedance matrix
reduces to a scalar, defined as the voltage divided by the current, both "measured" at the
access of the component, the reference plane.

refernce plane

Circuit with a single
access

access
n
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Fig. 5. 2 : Single port element

L (5. 13)

5.3.2 Impedance characteristics of a single port element
The complex power supplied to the element is given by Poynting's vector :

P=§ExH -ds= P, +2jo(, ~W,) (5. 14)

N

The E and H fields on the transmission line are by definition linked to the voltage and the
current :

B, (x.7.2) =1 (2) U2) ipe

G
b (5.15)
Hy (x.9.2) = 1 (2) M 02) o
)
Thus, with the chosen definition for voltage and current :
! je xhy -ds =1 (5. 16)
t XN¢ -dS = .
GG |
Thus
1 * *
P= VI e¢ xhy -ds =V1 (5.17)
GGy {
Moreover, the input impedance can be written as a function of the mean power :
v v P
Zil’l :R+jX:—_—2_—2
Lo
‘ (5.18)
B (B +2j0(W, -,))
U

Where P; is the real mean power, Wi, is the stored magnetic energy and W. the stored electric
energy. We can deduce from the above relation :

. R is proportional to the real power dissipated in the system (losses)
. X is proportional to the mean reactive energy stored in the system
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5.3.3 Impedance and admittance matrices

Let us consider the generic element depicted in figure 5.3. It is characterized by a certain
number of accesses defined by reference planes located on the transmission lines linking the
component to the outside world. These planes, noted t,, are the reference planes between
which the component is defined.

vt « V4
|

vy ) —— { —— vy iy

PG «— V5 s
|

Vo sy — — Vs s

vt 3 « V6 6
|

V3 iy et v

[Z]

Fig. 5. 3 : Multi-port microwave component and its access ports

An axis of coordinates z; is linked to each transmission line i. By definition, the origin of this
axis is located in the reference plane. We have thus at ports ty, to, ..., ty

V. =VI+V_
nenoon (5. 19)
L,=1\-1I,
The impedance and admittance matrices characterizing the component are defined by :
Vi=1Z||1
[V1=[2]11] 520

[7]=[¥][¥]
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with

I
1. =0 fork+j
k=0 Jorkz] (5.21)
-
V.
J Vi, =0 for k= j
In consequence,
. The impedance matrix is obtained in open circuit conditions.
. The admittance matrix is obtained in short circuit conditions.
The impedance matrix is the inverse of the admittance matrix
[v]=[2]" (5.22)

5.3.4 Properties of the impedance and admittance matrix

5.3.4.1 Reciprocity

Let us consider the case where the basic conditions for Lorentz' reciprocity theorem are
respected, thus the case where the component is isotropic, linear and passive. Consider the
component depicted in figure 5.4, where all the accesses excepted for two are short circuited.
Consider now E,, Hy, Ey, et Hy which are due to independent sources located somewhere in

the circuit. Lorentz' reciprocity theorem states that :

$E, x Hy, -ds =§ Ej, x H, -ds (5.23)

N N

where s is a closed integration surface enclosing the component.

We select the closed surface s as the external limit of the component passing through the
reference planes, such that E¢,,=0, excepted for reference planes 1 and 2. (If the transmission
lines are made of conductors, this is always true. Otherwise, we can always select a surface
sufficiently far away so that E¢,,, is negligible).
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aa

Ep-Hy,

[Z]

Fig. 5. 4 : Illustration of the reciprocity principle

The only contributions to the integrals come then from reference planes 1 and 2, the only ones
which are not short circuited.
We write on these planes :

e h

Eia=Vg— Hya =1,
la la Cl la la K
e h
Ep =Vlbgl Hyp :]lb?l
! 111 (5. 24)
€ 2
Eja :V2ac_2 Hy, =12aK—2
Eyp = Vap 2 Hayp = oy 22
2b 2b Cz 2b 2b K2
And the reciprocity theorem becomes :
1
(a1t _Vlblla)LI cg Gy -ds
1
5.25
| (5.25)
(M2aT2p _V2b12a)_[s2 O, 2 xhy -ds =0
But, by definition
e xhy-ds= e, xhy, -ds=1 5.26
‘[Sl ClKl ! ! J.Sl Csz 2 2 ( )
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Thus

Malib =Viblia +V2al2p =Vap 124 =0 (5.27)
We have
Iy =Y + o~
1 1171 1272 (5. 28)
I = +1nl,
Thus
(MaV26 =pV24 ) (Y2 = Y21) =0 (5.29)
This relation has to hold for any sources, thus for any voltage. This means that :
Y =1y (5. 30)

This relation can be generalized to all the ports of the component. We can thus write in a
general way, for a circuit or component having neither active elements, plasmas or ferrites
that :

Yl

j
ij =Zji

&

(5.31)

N

Thus the impedance and admittance matrices are symmetric for a reciprocal component.

5.3.4.2 Lossless circuit

Let us consider a lossless component with N ports. We can write that for this component the
average power consumed by the circuit is zero

Re{P,,}=0 (5.32)

By definition of the voltages and the currents at the ports, the mean power delivered to the
component is given by :

*

p, =[VT1] (5.33)
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Which can be written in term of the impedance matrix as

Py =([2]11)) [1]

(1] [2]1] (5.34)

N N .
Z Z ImZmn[n
n=1m=1

The currents 7, are independent, thus the real part of each m=n term has to be zero :

Re{l Z 1*}=|1n|2Re{znn}=o (5. 35)

n—nn-n

We deduce from this that the diagonal terms of the impedance matrix of a lossless circuit
must be purely imaginary.
Re{Z,,}=0 (5. 36)

We suppose now that all the currents flowing into the circuit are equal to zero, excepted for
I, and I,,,. We write

Re{([nl,’; +1m12)z,,m} - (Inl; . )Re{Zmn} =0 (5.37)

From which we deduce that

Re{Z,,}=0 (5. 38)

We have thus shown that the impedance (and admittance) matrix of a lossless component has
to be purely imaginary

5.3.5 Examples of impedance matrices

1) Transmission line
Consider the transmission line section depicted in figure 5.5

0 e—2= > i)
—> -
U(0) I | 1 v

Fig. 5.5 : Transmission line of length d

Its equivalent two-port is given by
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Fig. 5. 6 : Equivalent two-port
Where, by definition
Uy=U(d),12=-1(d) 2
Knowing that
U(z)=U,e7?+U_e""”*
5.40
I(z)=1,e7"—1_¢e"7* 40
We write
U(0)=U, +U_ U(d)=U,e 7 +U_e"7? 5.41)

1(0)=1,-1_  I(d)=I,e79 -1 7

The impedance and admittance matrices are then written as
Us] [Za1 Zo2 ]2

coth (yd) m [11}

=Z, ;
coth(yd) |-2

sinh (yd) 5.4
[[1}:{1/11 le}{%}
L |Hh Y ]|Up
-1
-1 U,
smn(ra) m09)

=Y

c
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2) Equivalent T circuit of a reciprocal two-port

A reciprocal two-port has the following impedance matrix :

{le le}
Ziy Zy

It can be represented by an equivalent T circuit

Fig. 5. 7 : Equivalent T circuit of a reciprocal two-port

where

Zy=211—213
Zy =2y -2y
Z.=2Z

example : equivalent T circuit of a transmission line section

Fig. 5. 8 : Equivalent T circuit of a transmission line section

with
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ch(yd)—1 yd
= anract [Slrgh—(}zd)J = anract tanh (7) (5.45)

24 =Zcaract [COth(7d) -

zZ

_ caract

¢ sinh(yd)

3) Equivalent I circuit of a reciprocal two-port
A reciprocal two-port has the following admittance matrix :

{Yn le} (5. 46)
o Y

Such a two port can be represented by an equivalent IT circuit

> ] ——
Uy Y, Y U,

Fig. 5. 9 : Equivalent I1 circuit of a reciprocal two-port

with
Y,=Y1+Y
Y=Y +1 (5.47)
Y.=-1

Example : equivalent IT circuit of a transmission line section

> ] —
YUy Yo Yq U2

Microwaves 13



With

Microwaves

Fig. 5. 10 : Equivalent I1 circuit of a transmission line section

1
sinh ( yd ) ]
ch(yd)—1 d
= Yearact ((—)] =Y, 4rqc tanh (%)

sinh (yd)

Yy = Yearaer (COth (Vd) -

Y,

caract

¢ sinh (yd)

(5. 48)
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5.4 The scattering matrix

References:

R.E. Collin, "Foundations for Microwave Engineering", Mc Graw Hill, 1992.

F. E. Gardiol, "Hyperfréquences", volume XIII du Traité d'Electricité, Presses Polytechniques Romandes, chap.
6

We have seen in the preceding sections that voltages and currents are not really well suited
for the microwave range. One of the direct consequences of the non uniqueness of these
values are that they are often not measurable. They can thus be used for the theoretical
characterization of circuits and components, as we have seen above, but these theoretical
impedances and admittances cannot be corroborated by measured results. This is why we
introduce normalized wave amplitudes, which are linked to power, in order to characterize
microwave circuits.

5.4.1 Normalized wave amplitudes
We define the normalized waves amplitudes a and b as

Vit 2 Vi =2l

a; = » b =
2\] Zci 2 Zci

(5. 49)

Note : These normalized wave amplitudes have the dimension of the square root of the power,
and power is easily measurable in microwaves.

The inverse relation is given by

v =Zor (a+8y) . ii:w (5. 50)

VA

ci

These normalizes amplitudes are defined on the transmission lines linking the ports of a
component. But on these transmission lines, we have :

v =vi e PPy et IPz

. . (5.51)
i =i e /P4 et IP?
From which we deduce
b Vi ipe
1
[7 .
“ (5.52)
b, Vi Bz
Z

Thus
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* a;: is a purely progressive (incident) wave giving the signal (square root of the power)
flowing into the port i
* bj: isapurely retrograde (reflected) wave, giving the signal flowing out of the port 1.

5.4.2 Reference planes

A microwave component is defined between its ports, which are planes transverse to the
transmission lines linking the component to the outside world. On these planes are located the
origin of the longitudinal coordinate z; related to the transmission line 1 (figure 5.11)

1

R

1

/1

Fig. 5. 11 : Microwave component with its reference planes

By definition, the reference planes have to satisfy the following criteria :

»  The reference planes are sufficiently far away from the component, to ensure that all
evanescent modes have decayed.

*  The transmission lines support only the dominant mode.

*  The transmission lines are lossless

The active power at port i is given by
B =Re| vl |- Re[(al- +by;) 4 —bf)} = |a;* - |5 (5. 53)

|ai‘2 is thus the active power flowing into the component at port i, while |bj? is the active
power flowing out of the component at port 1.

5.4.3 Scattering matrix of a component

A microwave component is characterized as a function of the generalized wave amplitudes
flowing on the transmission lines at the reference planes (figure 5.12). It is then characterized
by its scattering matrix as :
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Reference planes

Y ty
ay |
by - { —!—b—b4
ta ts
iy | a
_..._|_| T 5
|
by - —!—p—hj
t3 ts
ag [
| |
by . by

[51

Fig. 5. 12 : Microwave component with its reference planes

[6]=[5][q] (5.54)
with
Sjj :ﬁ (5.55)
a .
J ap=0,k#j

5.4.4 Properties of the scattering matrix

* The impedance matrix characterizes a component between open-circuits (Zjj = vi/ij, ;=0
for k#j), while the admittance matrix characterizes a component between short-circuits (Y
= ij/vj, k=0 for k#j). The scattering matrix characterizes a component between matched
loads (Sjj = bi/aj, ax=0 for k#j).

* The term s;j is the transfer function of the signal between port j and port i.

» The scattering matrix depends on the component itself, but also on the environment of the
component through the transmission lines.

* Changing the characteristic impedance of the transmission lines means changing also the

scattering matrix.

5.4.4.1 Reciprocity
In the case of a passive, linear and isotropic component, we have seen that
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(5. 56)

Z..

Jl
It is easy to show through matrix transforms that for a reciprocal circuit

s (5.57)

Sij =i

Thus, a reciprocal circuit has a symmetrical scattering matrix.

5.4.4.2 Lossless circuit

A lossless circuit is circuit where no active power is dissipated. This means that for such a
circuit, the sum of the active power flowing into the circuit must be equal to the active power
flowing out of the circuit :

el =S |bf (5.58)

In a matrix notation, this is equivalent to
[a][a]-[5][p]=0 (5. 59)

Where the tilde sign means the transpose complex conjugate of a matrix :
. 7
[a]=[a"] (5. 60)

Moreover, by definition,

(5.61)

Thus

[
{1-[5]is1Ha]=0 (5. 62)

This can be written as

gs?‘-s- _s, s, =l =k (5. 63)
PRk = Ok TR T s Gk '
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5.4.4.3 Moving the reference plane

The origins of the axes zi, thus the position of the reference plane, are arbitrarily defined, as
long as we are in single mode propagation. It can thus be interesting to study the effect of a
translation of the reference plane along the axis on the scattering matrix (figure 5.13).

et

Sy

fl

Fig. 5. 13 : Translation of the reference plane

The normalized wave amplitudes a'; et b'; linked to the translated coordinates system can be
expressed in term of the normalized wave amplitudes a; et bj, linked to the original
coordinate system, by

But we have also

We write

Microwaves

R [
al-—aie !

b =b e/? (5. 64)
@ =—PiAz;
[p1=[5[a"] et [p]=[5][a] (5.65)



s =s; ¢/ 20 (5. 66)
And in general

[b] = diag <7 ][ e
[b')=| diag e/ |[2]
With
PN 0 |
[diag efﬂ: 0 /2 : (5. 63)
| 0 /7"
Thus
[b']=| diag &/ |[5]| diag e7* |[a
[5]=| diag e/* 5] diag e/* | (5. 69)
sy=sy ej(so,-wj)

5.4.4.4 Relation between impedance matrix and scattering matrix

We define the two diagonal matrices
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Zy 0 .. 0
0 Z
[6]=[diag Z;]=| ~ "
0 Z.,
! 0 0
2.7, (5.70)
0 1
1
Fl|=|di = 2\Z
- |-
0 1
i 2Zey |

and use the definition of the normalized wave amplitudes to write

[s1=[F[[2)-[eT[[F1[[2]+[6T]]
=[F[[2])-[61)[[2]+[c1]) ' [T

(5.71)

and

[2]=[FT (1] [T [0] [F1(e] (5.72)

where [1] is the identity matrix.

5.4.5 Flow charts

The terms of the scattering matrix are transfer functions, linking an input port to an output
port. They can be represented graphically by flow charts.

example 1 : two-port

a $21 b,
> O B O >
511 $72
b; S12 )
- O < O -

Fig. 5. 14 : Flow chart of a two-port

example 2 : three-port
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> > >
$11 $22
by 512
- -
$31\7 523
513 532
$33
J
ag b3 Y

Fig. 5. 15 : Flow chart of a three-port

example 3 : two two-ports cascaded

2y 521 by=1a; 571 by
- O B O B O -
59 5) S )
b 1 S 12 s' 12 a'2
-} O < < O -
a,='b
Fig. 5. 16 : Cascaded two-ports
Microwaves

22



5.4.5.1 Flow chart reduction rules

1) multiplication

a S 52
- O s O s O
a 51°SH b
- O P O
Fig. 5. 17 : Two flow chart in series
2) addition
51
a
- b -
2
i 0o > o—Lp
5175
Fig. 5. 18: Two flow charts in parallel
3) retroaction
51
a b
- >
52
a ‘ b
> O P O >
51
1-s 89

Fig. 5. 19 : Retroaction of two flow charts

5.4.5.2 Example

Microwaves
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Find the reflection coefficient at the input of a reciprocal two-port terminated by a short

circuit
a 521 by
> O ‘l,\ O
! S S
rin—l ? 11 22 =-1
by $12 a
-} O <
al 521
>—O B
-1
| S
Fin: ? b 11 1+522
1 $21
¢ O <
4
>
2
|—> 811 21
Tin=? b T ltsa
-
4
»
2
21
I. =s;,+
in °11
by 1*522
|

Fig. 5. 20 : Reduction of flow chart

5.4.5.3 Example : two cascaded two-ports

Microwaves
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al 521 bzza'l 8 21 b'2
> O B O B> O >
S11 599 S 522
by 512 12 '
¢ O < < O ¢
a2=b'1
First stage : we look for the possible paths going from aj to by :
a 51 by=12)
O ‘l,\ O)
511 522 S

bl 512

- O <
a2=b'1
Stage two : we reduce
4 521
> O P
S'11
511
b S '
1 12 1-s'1 1899
¢ O <
4
>
S'11
5117521812
b '
! 1811822

¢

Stage three : we look for the possible paths going from aj to b'2 :

Microwaves
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a 51 by=a'y 521 b
- O P O P O -
S22 S'l 1
a2=b'1
Stage 4 : we reduce
1
a 521 511592 571 b
> O P O—p—O0 s O >
521571
a l-S'l 1522 b'
1 2
> O B O >
Stage 5 : we look for the possible paths going from a'2 to by :
b2:a'1
522 S11
by 512 ) a')
a2=b'1
Stage 6: we reduce
1
[} a'
by 12 1892811 *12 2
< O < O—a—0O < O <
512512
1 a‘
by 1-8208'11 2
< O < O <
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Stage 7 : we look for the possible paths going from a'2 to bp':

by=a'y S21 b'y
> o >
522 ' $ho
12 )
< O . |
azzb'1
Stage 8 : we reduce
$1 b5
> o >
22
SV
1-s' ;s ' 22
11522 S )
< O ¢
b'2
>
522
5227812871 —
-s' s ,
11°22 a'y
¢
And we get finally the scattering matrix of two cascaded two-ports :
sy + Szlslz:?'n Slzs'l%
{bl}: 1=s11"522 1598 {al}
b' 521521 o4 51282150 |47
I=s"159 1=s"189

5.4.6 Summary of the general characteristics of the scattering matrix

. s;j - transfer function between port j and i
. s;i - reflection coefficient at port i

2 P ) o
. Sij| = e normalized transferred power from j to i
Microwaves

(5.73)
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. The scattering of a reciprocal network is symmetric
. The scattering matrix of a lossless network is of the type [S ][5’ ] =[1]

. The scattering matrix of a matched network has zeros on its main diagonal.

5.5 Voltage standing wave ratio

The voltage standing wave ration, or VSWR, is another useful mean to characterize the
refflection coefficient at the ports of a device. It results from the fact that a reflection at a port
will induced a reflected wave along the feeding line. This reflected wave will combine itself
to the incident wave, in order to form a standing wave (fig. 5.21)

Transmission line

device

A

U]

Z
>
Fig. 5. 21 : standing wave
The voltage in the transmission line is given by :
U; =\JZei (a;+b;) = \[Zei (; + 53707 (5.74)
Thus
Ul-(z): Zciai(z)[1+sii erﬂz} (5.75)

The modulus of the voltage can be written as
|Ui (z)| = \/Z_a-|al- (z)| \/[1+|sl-i|cos(go+2ﬂz)]2 +|Sii|2 sin? (p+2p2)

(5. 76)

Let us now consiider th eminimum and the maximum values of the modulus of the voltage :
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Umax = Zei|a|(1+]si]) en o+2pz =2nx

(5.77)
Umin =+/Zi @i (1-]si) en 9+26z=(2n+1)x

and take the ratio between these values, which is called the voltage standing wave ration :

|Umax | _ 1+ |Sii|

ROS =VSWR = =
|Umin| 1_|Sii|

(5.78)

For a matched load, the reflected vave is equal to zero, and thus the VSWR is equal to 1. For
a total reflection the VSWR is infinite. Examples of standing ewaves for different reflection
coefficients are depicted in figure 5.22.

511 =1
511=0.4

511=0

U]

0 0.5 1 1.5 2 2.5
zllambda

L
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