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5. Microwave network analysis 
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5.1 Introduction 
 
We will see in this chapter how the concepts of low-frequency circuit analysis can be 
extended to microwave circuits and networks. We will reconsider familiar concepts like 
current, voltage and impedance, find out if and when they can be used in microwave circuit 
analysis. We will learn to view currents and voltages as sums of incident and reflected waves. 
We will then introduce generalized waves and the scattering matrix as very efficient and 
practical tools for microwave circuit analysis.  

5.2 Voltage, current and impedance  
 
Currents and voltages are difficult to define in the microwave bands, excepted for the case of 
transmission lines supporting only a TEM wave. In all other cases, it is not possible to define 
these quantities in a univocal way. Moreover, they are extremely difficult to measure in a 
reliable way. Nevertheless, Kirchhoff's model is a very convenient tool for describing a 
circuit, and we would like to retain it. We will thus try to define equivalent currents and 
voltages on transmission line, remembering that excepted for the TEM case, these values are 
concepts without physical meaning and are not uniquely defined.  
Each propagating mode will be described by a separate voltage current pair. 
 

5.2.1 TEM Modes  
The measurement of currents and voltages is very difficult if not impossible at microwave 
frequencies, excepted when access ports can be clearly defined. This is the case only for TEM 
or quasi TEM modes. 
Figure 5.1 illustrates the electric and magnetic fields for an arbitrary TEM transmission line.  

 
Fig. 5. 1 : Arbitrary TEM line 
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The voltage difference between the two conductors is defined as :  
 

 
V

−

+
= ⋅∫ E dl

 (5. 1) 
 
In the case of a TEM wave, the field has a static behaviour, and the voltage will not depend 
on the integration path, as long as the latter goes from conductor + to conductor -. Thus, the 
voltage is uniquely defined and there is no ambiguity.  
The total current in conductor + is defined by Ampere's law :   

 
  

C
I

+
= ⋅∫ H dl
  (5. 2) 

 
where C+ is a closed integration path containing conductor +, but not conductor -. The 
characteristic impedance is the written as :  
 

 
c
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(5. 3) 

 
Where L is the inductance per unit length of the TEM line and C its capacitance per unit 
length.  
 
 

5.2.2 Non TEM modes 
The situation is less clear for non-TEM modes, as a simple example can show :  
The transverse fields of the  TE10 mode of a rectangular waveguide are given by :   
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(5. 4) 

 
The voltage should thus be defined as  
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(5. 5) 

 
This voltage would depend on the x position we place the integration path in the guide, and of 
the geometry of this path. The result is clearly different if we choose a path 0<y<b at x=a/2 or 
at x=0. So what is the voltage ? 
The answer is that in this case there is no "correct" voltage, which could be measured. We 
may however define a voltage and a current in many different ways for a non-TEM mode.  
In order to obtain useful results, we will follow the following rules in our definition :  

• The voltage and current are defined for one mode only. We decide (arbitrarily) that 
the voltage has to be proportional to the amplitude of the transverse electric field, 
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while the current has to be proportional to the amplitude of the transverse magnetic 
field. 

• In order to enable the use of Kirchhoff's model, the product of the current and the 
voltage should yield the power flux of the considered mode.  

• The voltage divided by the current should be equal to the characteristic impedance of 
the line. The latter should also be equal to the mode impedance of the considered 
mode. 

 
 
In an arbitrary guide, the transverse fields can be expressed as a function of an incident and a 
reflected wave. The voltage and current must thus be expressed in the same way :  
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We write thus :  
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(5. 7) 

 
The characteristic impedance of this wave is defined (by analogy to the TEM case) as  
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(5. 8) 

 
If we want moreover that the characteristic impedance is equal to the wave impedance of the 
mode, we get :  

 
1

mod
2

C Z
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=
 

(5. 9) 

 
 

5.2.3 Impedance concepts 
It is important to make the difference between : 

• The characteristic impedance of the medium. It depends only on the material 
constituting the medium : 
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 oZ µ
ε

=  (5. 10) 

• The wave impedance of a mode. It will depend on the type of the mode (TE, TM, 
TEM), on the guide, and on the materials used. It is also dependent on the frequency 
and the geometry :  

 modZ = t

t

E
H

 (5. 11) 

• The characteristic impedance, defined as the voltage divided by the current. It is 
univocally defined only for a TEM transmission line :  

 c
V V LZ

CI I

+ −

+ −
= = =  (5. 12) 

 

5.3 The impedance matrix 
The concepts of voltage, current and impedance defined for transmission lines above can also 
be used to characterize microwave components, circuits and systems. The latter will then be 
defined by an impedance matrix, obtained from the voltage and current waves flowing on the 
transmission lines which are linked to the ports of the element.  
 
References: 
R.E. Collin, "Foundations for Microwave Engineering", Mc Graw Hill, 1992. 
 

5.3.1 Impedance of a single port element 
 
The simplest possible microwave component has only one access. Its impedance matrix 
reduces to a scalar, defined as the voltage divided by the current, both "measured" at the 
access of the component, the reference plane.  
 

Circuit with a single
accessaccess

refernce plane

Zin

I

V

n

S
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Fig. 5. 2 : Single port element 
 

 
Zin =

V
I  (5. 13) 

 
 

5.3.2 Impedance characteristics of a single port element 
The complex power supplied to the element is given by Poynting's vector :  
 
 ( )e2r m

s
P P j W Wω= × ⋅ = + −∫ *E H ds  (5. 14) 

 
The E and H fields on the transmission line are by definition linked to the voltage and the 
current :  
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 (5. 15) 

 
Thus, with the chosen definition for voltage and current :  
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Thus 
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Moreover, the input impedance can be written as a function of the mean power :   
 

 
( )( )

*

2 2

e
2

2

in

r m

V VI PZ R jX
I I I

P j W W

I

ω

= + = = =

+ −
=

 (5. 18) 

 
Where Pr is the real mean power, Wm is the stored magnetic energy and We  the stored electric 
energy. We can deduce from the above relation :  
 
• R is proportional  to the real power dissipated in the system (losses) 
• X is proportional to the mean reactive energy stored in the system 
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5.3.3 Impedance and admittance matrices 
Let us consider the generic element depicted in figure 5.3. It is characterized by a certain 
number of accesses defined by reference planes located on the transmission lines linking the 
component to the outside world. These planes, noted tn, are the reference planes between 
which the component is defined.  
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Fig. 5. 3 : Multi-port  microwave component and its access ports 

 
An axis of coordinates zi is linked to each transmission line i. By definition, the origin of this 
axis is located in the reference plane. We have thus at ports t1, t2, ..., tn 
 

 n n n

n n n

V V V
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+ −

+ −

= +

= −
 (5. 19) 

 
The impedance and admittance matrices characterizing the component are defined by :  
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 (5. 20) 
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with 
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 (5. 21) 

 
In consequence,   
• The impedance matrix is obtained in open circuit conditions. 
• The admittance matrix is obtained in short circuit conditions.  
 
The impedance matrix is the inverse of the admittance matrix 
 

 [ ] [ ] 1Y Z −=  (5. 22) 
 
 

5.3.4 Properties of the impedance and admittance matrix 

5.3.4.1  Reciprocity 
Let us consider the case where the basic conditions for Lorentz' reciprocity theorem are 
respected, thus the case where the component is isotropic, linear and passive. Consider the 
component depicted in figure 5.4, where all the accesses excepted for two are short circuited. 
Consider now Ea, Ha, Eb, et Hb which are due to independent sources located somewhere in 
the circuit. Lorentz' reciprocity theorem states that : 
 
 

s s
× ⋅ = × ⋅∫ ∫a b b aE H ds E H ds

 

 (5. 23) 

 
where s is a closed integration surface enclosing the component. 
We select the closed surface s as the external limit of the component passing through the 
reference planes, such that Etan=0, excepted for reference planes 1 and 2. (If the transmission 
lines are made of conductors, this is always true. Otherwise, we can always select a surface 
sufficiently far away so that Etan is negligible).  
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Fig. 5. 4 :  Illustration of the reciprocity principle 
 
The only contributions to the integrals come then from reference planes 1 and 2, the only ones 
which are not short circuited.  
We write on these planes : 
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 (5. 24) 

 
And the reciprocity theorem becomes : 
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But, by definition 
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Thus  
 
 1 1 1 1 2 2 2 2 0a b b a a b b aV I V I V I V I− + − =  (5. 27) 
We have 

 1 11 1 12 2

2 21 1 22 2

I Y V Y V
I Y V Y V

= +
= +

 (5. 28) 

 
Thus 
 ( )( )1 2 1 2 12 21 0a b b aV V V V Y Y− − =  (5. 29) 
 
This relation has to hold for any sources, thus for any voltage. This means that  : 
 
 12 21Y Y=  (5. 30) 
 
This relation can be generalized to all the ports of the component. We can thus write in a 
general way, for a circuit or component having neither active elements, plasmas or ferrites 
that : 
 

 
ij ji

ij ji

Y Y

Z Z

=

=
 (5. 31) 

 
Thus the impedance and admittance matrices are symmetric for a reciprocal component. 
 
 

5.3.4.2 Lossless circuit 
Let us consider a lossless component with N ports. We can write that for this component the 
average power consumed by the circuit is zero 
 
 { }Re 0avP =  (5. 32) 
 
By definition of the voltages and the currents at the ports, the mean power delivered to the 
component is given by :  
 

 [ ] [ ]*t
avP V I=  (5. 33) 
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Which can be written in term of the impedance matrix as 
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 (5. 34) 

 
The currents In are independent, thus the real part of each m=n term has to be zero : 
 
 { } { }2*Re Re 0n nn n n nnI Z I I Z= =  (5. 35) 

 
We deduce from this that the diagonal terms of the impedance matrix of a lossless circuit 
must be purely imaginary. 
 { }Re 0nnZ =  (5. 36) 
 
We suppose now that all the currents flowing into the circuit are equal to zero, excepted for 
 In and Im. We write 
 
 ( ){ } ( ) { }* * * *Re Re 0n m m n mn n m m n mnI I I I Z I I I I Z+ = + =  (5. 37) 

 
From which we deduce that 

 Re Zmn{ }= 0 (5. 38) 
 
We have thus shown that the impedance (and admittance) matrix of a lossless component has 
to be purely imaginary 
 
 

5.3.5 Examples of impedance matrices 
1) Transmission line 
Consider the transmission line section depicted in figure 5.5 
 

d
I(0) I(d)

U(0) U(d)

 
 

Fig. 5. 5 : Transmission line of length d 
 
Its equivalent two-port is given by 
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Fig. 5. 6 : Equivalent two-port 
 
Where, by definition  
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Knowing that 
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We write 
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 (5. 41) 

 
The impedance and admittance matrices are then written as 
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2) Equivalent T circuit of a reciprocal two-port 
A reciprocal two-port has the following impedance matrix :  
 

 11 12

12 22

Z Z
Z Z

 
 
 

 (5. 43) 

 
It can be represented by an equivalent T circuit 
 

 
 

Fig. 5. 7 : Equivalent T circuit of a reciprocal two-port 
 
where 
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 (5. 44) 

 
 
example : equivalent T circuit of a transmission line section 
 

 
 

Fig. 5. 8 : Equivalent T circuit of a transmission line section 
 
with  
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3) Equivalent Π circuit of a reciprocal two-port 
A reciprocal two-port has the following admittance matrix : 
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 (5. 46) 

 
Such a two port can be represented by an equivalent Π circuit  
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Fig. 5. 9 : Equivalent Π circuit of a reciprocal two-port 
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Example : equivalent Π circuit of a transmission line section 
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Fig. 5. 10 :  Equivalent Π circuit of a transmission line section 
 
With  
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5.4 The scattering matrix 
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F. E. Gardiol, "Hyperfréquences", volume XIII du Traité d'Electricité, Presses Polytechniques Romandes, chap. 
6 
 
We have seen in the preceding sections that voltages and currents are not really well suited 
for the microwave range. One of the direct consequences of the non uniqueness of these 
values are that they are often not measurable. They can thus be used for the theoretical 
characterization of circuits and components, as we have seen above, but these theoretical 
impedances and admittances cannot be corroborated by measured results. This is why we 
introduce normalized wave amplitudes, which are linked to power, in order to characterize 
microwave circuits.  
 

5.4.1 Normalized wave amplitudes 
We define the normalized waves amplitudes a and b as 
 

   ,  
2 2
i ci i i ci i

i i
ci ci

v Z i v Z ia b
Z Z

+ −
= =  (5. 49) 

 
 
Note : These normalized wave amplitudes have the dimension of the square root of the power, 
and power is easily measurable in microwaves.  
 
The inverse relation is given by 
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These normalizes amplitudes are defined on the transmission lines linking the ports of a 
component. But on these transmission lines, we have : 
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From which we deduce 

 

e

e

j zi
i

ci

j zi
i

ci

va
Z

vb
Z

β

β

+
−

−
+

=

=

 (5. 52) 

 
Thus 
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• ai :  is a purely progressive (incident) wave giving the signal (square root of the power) 
flowing into the port i 

• bi :  is a purely retrograde (reflected) wave, giving the signal flowing out of the port i.  
 

5.4.2 Reference planes 
A microwave component is defined between its ports, which are planes transverse to the 
transmission lines linking the component to the outside world. On these planes are located the 
origin of the longitudinal coordinate zi related to the transmission line  i (figure 5.11) 
 

 
 

Fig. 5. 11 :  Microwave component with its reference planes 
 
By definition, the reference planes have to satisfy the following criteria : 
• The reference planes are sufficiently far away from the component, to ensure that all 

evanescent modes have decayed. 
• The transmission lines support only the dominant mode. 
• The transmission lines are lossless 
 
The active power at port i is given by 
 
 ( )( ) 2 2* * *Re Rei i i i i i i i iP v i a b a b a b  = = + − = −    

 (5. 53) 

 
|ai|2 is thus the active power flowing into the component at port i, while |bi|2 is the active 
power flowing out of the component at port i. 
 

5.4.3 Scattering matrix of a component 
A microwave component is characterized as a function of the generalized wave amplitudes 
flowing on the transmission lines at the reference planes (figure 5.12). It is then characterized 
by its scattering matrix as :  
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Fig. 5. 12 : Microwave component with its reference planes 

 
 
 [ ] [ ][ ]b S a=  (5. 54) 
 
with 

 
0 , k

i
ij

j a k j

bs
a

= ≠

=  (5. 55) 

 
 

5.4.4 Properties of the scattering matrix 
 
• The impedance matrix characterizes a component between open-circuits (Zij = vi/ij, ik=0 

for k≠j), while the admittance matrix characterizes a component between short-circuits (Yij 
= ii/vj, ik=0 for k≠j). The scattering matrix characterizes a component between matched 
loads  (Sij = bi/aj, ak=0 for k≠j). 

• The term sij is the transfer function of the signal between port j and port i.  
• The scattering matrix depends on the component itself, but also on the environment of the 

component through the transmission lines.  
• Changing the characteristic impedance of the transmission lines means changing also the 

scattering matrix. 
 
 

5.4.4.1 Reciprocity 
In the case of a passive, linear and isotropic component, we have seen that 
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 ij jiz z=  (5. 56) 
 
It is easy to show through matrix transforms that for a reciprocal circuit  
 

 ij jis s=  (5. 57) 
 
Thus, a reciprocal circuit has a symmetrical scattering matrix. 
 
 

5.4.4.2 Lossless circuit  
A lossless circuit is circuit where no active power is dissipated. This means that for such a 
circuit, the sum of the active power flowing into the circuit must be equal to the active power 
flowing out of the circuit :  
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In a matrix notation, this is equivalent to  
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(5. 59) 

 
Where the tilde sign means the transpose complex conjugate of a matrix :  
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(5. 62) 

 
This can be written as  
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5.4.4.3 Moving the reference plane 
The origins of the axes zi, thus the position of the reference plane, are arbitrarily defined, as 
long as we are in single mode propagation. It can thus be interesting to study the effect of a 
translation of the reference plane along the axis on the scattering matrix (figure 5.13). 
 

 
 

Fig. 5. 13 :  Translation of the reference plane 

 
The normalized wave amplitudes a'i et b'i linked to the translated coordinates system can be 
expressed in term of the normalized wave amplitudes  ai et bi, linked to the original 
coordinate system, by 

 

' e

' e

i

i

j
i i

j
i i

i i i

a a

b b
z

ϕ

ϕ

ϕ β

−=

=

= − ∆  

(5. 64) 

But we have also  

 [ ] [ ][ ] [ ] [ ][ ]' ' '   e   b S a t b S a= =  (5. 65) 
 
We write 
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 2' e ij

ii iis s ϕ=  (5. 66) 
And in general 
 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

 e '

'  e

 e '

'  e

j

j

j

j

a diag a

a diag a

b diag b

b diag b

ϕ

ϕ

ϕ

ϕ

−

−

 =  
 =  

 =  
 =    

(5. 67) 

 
With 
 

 

1

2

e 0 ... 0

0 e : e
:

0 ... e

j

j
j

j n

diag

ϕ

ϕ
ϕ

ϕ

 
 
   =     
 
   

(5. 68) 

 
Thus 
 

 

[ ] [ ] [ ]

[ ] [ ]

( )

'  e  e '

'  e  e

' e i j

j j

j j

j
ij ij

b diag S diag a

S diag S diag

s s

ϕ ϕ

ϕ ϕ

ϕ ϕ+

   =    
   =    

=  

(5. 69) 

 
 

5.4.4.4 Relation between impedance matrix and scattering matrix 
 
We define the two diagonal matrices 
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[ ] [ ]

[ ]

1

2

1

2

0 ... 0
0 :

 
:
0 ...

1 0 ... 0
2

10 :1 2 
2

:
10 ...

2

c

c
ci

cn

c

c
ci

cn

Z
Z

G diag Z

Z

Z

ZF diag
Z

Z

 
 
 = =
 
 
 

 
 
 
 

   
= =   

    
 
 
 
 

 

(5. 70) 

 
 and use the definition of the normalized wave amplitudes to write  
 
 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

1

1 1

S F Z G F Z G

F Z G Z G F

−

− −

    = − +    

   = − +     

(5. 71) 

 
and 
 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ][ ]11 1 1Z F s s F G−−    = + −     (5. 72) 
 
where [1] is the identity matrix. 
 
 

5.4.5 Flow charts 
The terms of the scattering matrix are transfer functions, linking an input port to an output 
port. They can be represented graphically by flow charts. 
 
example 1 : two-port 
 

a1

b1

b2

a2

s11

s21

s22
s12

 
 

Fig. 5. 14 :  Flow chart of a two-port 
 
example 2 : three-port 
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Fig. 5. 15 : Flow chart of a three-port 

 
 
example 3 : two two-ports cascaded 
 

a1

b1

b'2

a'2

s11

s21

s22
s12

s'11

s'21

s'22
s'12

b2='a1

a2='b1  
 

Fig. 5. 16 : Cascaded two-ports 
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5.4.5.1 Flow chart reduction rules 
 
1) multiplication 
 

a
b

s1 s2

a s1•s2 b

 
Fig. 5. 17 : Two flow chart in series 

 
2) addition 
 

a b

s1

s2

a b

s1+s2  
Fig. 5. 18: Two flow charts in parallel 

 
3) retroaction 
 

a b

s1

s2

a b

1-s1s2

s1

 
Fig. 5. 19 : Retroaction of two flow charts 

 
 

5.4.5.2 Example 
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Find the reflection coefficient at the input of a reciprocal two-port terminated by a short 
circuit 
 

a1

b1

b2

a2

s11

s21

s22
s12

Γ=-1Γin= ?

 
 

a1

b1

s11

s21

s21
Γin= ? 1+s22

-1

 
 

a1

b1

s11
Γin= ?

1+s22

-s21
2

 
 

a1

b1
s11+

1+s22

-s21
2

Γin=

 
 

Fig. 5. 20 : Reduction of flow chart 
 
 

5.4.5.3 Example : two cascaded two-ports 
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a1

b1

b'2

a'2

s11

s21

s22
s12

s'11

s'21

s'22
s'12

b2=a'1

a2=b'1  
 
First stage : we look for the possible paths going from a1 to b1 : 
 

a1

b1

s11

s21

s22
s12

s'11

b2='a1

a2=b'1  
 
Stage two : we reduce 
  

a1

b1

s11

s21

s'11

1-s'11s22

s12

a1

b1

s11+s21s12

s'11

1-s'11s22

 
 
 
Stage three : we look for the possible paths going from a1 to b'2 : 
 



Microwaves  

 
26 

a1 b'2s21

s22 s'11

s'21b2=a'1

a2=b'1  
 
Stage 4 : we reduce 
 

a1 b'2
s21 s'21

1

1-s'11s22

a1

s21

1-s'11s22

s'21

b'2
 

 
Stage 5 :  we look for the possible paths going from a'2 to b1 : 
 

b1 a'2

s22
s12

s'11
s'12

b2=a'1

a2=b'1  
 
Stage 6: we reduce 
 

a'2

b1
a'2s12 s'12

1

1-s22s'11

s12s'12

1-s22s'11b1
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Stage 7 :  we look for the possible paths going from a'2 to b2' : 
 

b'2

a'2

s22 s'11

s'21

s'22
s'12

b2=a'1

a2=b'1  
 
Stage 8 : we reduce 
 

b'2

a'2

s'21

s'22
s'12

s22

1-s'11s22

b'2

a'2

s'22+s'12s'21

s22

1-s'11s22

 
 
And we get finally the scattering matrix of two cascaded two-ports : 
 

 

21 12 11 12 12
11

11 22 22 111 1

2 221 21 12 21 22
22

11 22 11 22

' '
1 ' 1 '

' '' ' '
'

1 ' 1 '

s s s s s
s

s s s sb a
b as s s s s

s
s s s s

 + − −    =       + − −   

(5. 73) 

 

5.4.6 Summary of the general characteristics of the scattering matrix 
 
• sij : transfer function between port j and i 
• sii : reflection coefficient at port i 

• 
2 i

ij
j

P
s

P
=  normalized transferred power from j to i  
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• The scattering of a reciprocal network is symmetric 
• The scattering matrix of a lossless network is of the type [ ] [ ]1S S  = 

  

• The scattering matrix of a matched network has zeros on its main diagonal. 
 

5.5 Voltage standing wave ratio 
 
The voltage standing wave ration, or VSWR, is another useful mean to characterize the 
refflection coefficient at the ports of a device. It results from the fact that a reflection at a port 
will induced a reflected wave along the feeding line. This reflected wave will combine itself 
to the incident wave, in order to form a standing wave (fig. 5.21) 
 

z

|U|

Transmission line
device

 
Fig. 5. 21 : standing wave 

 
 
The voltage in the transmission line is given by : 
 ( ) ( )i ci i i ci i ii iU Z a b Z a s a= + = +  (5. 74) 
Thus 
 ( ) ( ) 21 e j z

i ci i iiU z Z a z s β = +   (5. 75) 

The modulus of the voltage can be written as 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

2

1 cos 2 sin 2

1 2 cos 2

i ci i ii ii

i ci i ii ii

U z Z a z s z s z

U z Z a z s s z

ϕ β ϕ β

ϕ β

 = + + + + 

= + + +
 (5. 76) 

 
 
 
 
Let us now consiider th eminimum and the maximum values of the modulus of the voltage : 
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( )
( ) ( )

max

min

1     e   2 2

1     e   2 2 1
ci i ii i

ci i ii i

U Z a s n z n

U Z a s n z n

ϕ β π

ϕ β π

= + + =

= − + = +
 (5. 77) 

 
and take the ratio between these values, which is called the voltage standing wave ration :  
  

 max

min

1
1

ii

ii

U s
ROS VSWR

U s
+

= = =
−

 (5. 78) 

 
For a matched load, the reflected vave is equal to zero, and thus the VSWR is equal to 1. For 
a total reflection the VSWR is infinite. Examples of standing ewaves for different reflection 
coefficients are depicted in figure 5.22. 
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