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Content of these slides

Recap of last class main messages

Solutions to last week exercises 5-7

Some additional elements on equivalent circuit models (ECMs)
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ECM of battery cell: two-time-constant model
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Voltage dynamics: physical interpretation
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Self-assessment of understanding of last week - Question 5

Prove by way of equations that a capacitor, in steady-state conditions, can be replaced by an
open circuit. (not seen in this class; recall elements from linear circuit theory courses).

Two ways of doing this:

Impedance Z of a capacitor is

Z =
1

jωC
.

Steady-state conditions occurs when ω → 0 (ie,
variations are extremely slow); this results in an
impedance of Z → ∞, which is an open-circuit.

The voltage-to-current (vc -to-ic) relation in a
capacitor is:

ic = C
dvc
dt

Steady state occurs, by definition, when time
derivative terms are 0, thus ic = 0, open circuit.
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Cell internal voltage vs. state of charge (SOC)
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Self-assessment of understanding of last week - Question 6

In the internal-resistance model, the cell internal voltage E can be estimated easily by
measuring the battery terminal voltage v in open-circuit conditions (so called OCV):
why? Can you say the same about the TTC model? With the TTC model, which
conditions do you need to make sure that v reflects E?
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Self-assessment of understanding of last week - Question 7

Prove that the TTC model
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has the following state-space formulation:
ẋ = Ax + Bu
v = Cx +Du

where state vector, input, and state-space matrices
are as follows
x =

[
vC1 vC2

]
, u =

[
i 1

]T
A =

[
−1/(R1C1) 0

0 −1/(R2C2)

]
, B =

[
1/C1 0

1/C2 0

]
,

C =
[
−1 −1

]
, D =

[
−Rs E

]
.

Let’s take the first RC branch. The current into
the capacity is iC1 , the voltage across the capacitor
is vC1 , the voltage on the resistance is also is vC1

(KVL), and the current into the resistance is iR1 .
The current in the capacity is by iC1 = i − iR1

(KCL), iC1 = i − vC1

R
. Current-to-voltage in C1 is:

dvC1

dt
=

1

C1
iC1 = − 1

C1R1
vC1 +

1

C1
i .

For the second branch, it is the same but with
subscript 2 instead of 1. These two equations can
be used to write the state dynamics of the state
space.
Writing KVL to the whole circuit yields:

v = −vC1 +−vC2 − Rs i + E ,

that one can use to derive the output equation of
the state space.
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All this fuss about battery voltage... why do we even bother?

Power (what we are interested in extracting from the battery) is voltage times current.

Battery limits are in voltage and current, not in power. Voltage models give us a way
to map power into voltages and current and vice-versa.

Display of an electric car showing an estimation of the maximum (charging and
discharging) power available.
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If voltage is so important, why omitting it in the scheduling problem?

Great question!

Week 3’s scheduler formulation

minimize
B0,B1,...,BT−1

{
∆

T−1∑
t=0

p(t) · (B(t) + D(t))

}
subject to − P̄ ≤ B(t) ≤ P̄, t = 0, . . . ,T − 1

0 ≤ SOE(0) + ∆
t∑

τ=0

B(τ) ≤ Ē , t = 0, . . . ,T − 1

Tacit assumption: battery terminal voltage is constant → we can omit voltage constraints.

Approximation deemed acceptable in scheduling, but not in real-time control.

Control and
protections

Scheduling Planning

Time frame of the action
Subseconds ÷ seconds

(real time)
Hours ÷ days Years
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Final notes on ECMs

ECMs are typically estimated from measurements: one performs an experiment and then
uses some numerical methods (eg, least squares estimation, LSE) to find the value of the
model parameters that minimizes the estimation error.

Why 2 states and not 3? Or 100? From grey-box modeling and system identification
theory, the appropriate number of states is the lowest one that results in a time series of
the model estimation error that is randomly and independently distributed (i.e., white
noise).

The value of the parameters of the TTC model depends on many variables: cell
temperature, current itself, and aging.

Compared to a physical model, the value of the parameters of the TTC model might not
be (most of the time, it is not) directly linkable to a specific physical quantity or
phenomenon, and that’s a drawback.



Check the exercises on the slides uploaded on Moodle
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