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Control, scheduling, and planning of energy storage
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Control, scheduling, and planning of energy storage: Examples

Action Electric Vehicle Grid application
Control Battery management sys- Satisfy application requirements (e.g., maxi-
tem setting the maximum mize PV self-consumption)
discharging power
Scheduling Route planning/deciding on Designing a suitable state-of-charge trajectory
charging stops so that the system has energy when needed
Planning How large of a battery one Size (power rating and energy capacity), site

needs?

(if that's an option), technology (ageing)

Because the state of charge/energy availability of an energy storage resource depends on the control
history and application (the problem has time-coupling constraints), these procedures are somehow
intertwined, requiring to design about these actions in an unified setting.



Work example: Optimizing consumption
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with a time of use-electricity tariff

@ Time-of-use tariff (ToU) p(t):

— ToU — FiT
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@ Power demand D; is inflexible and
random (at best, it can be forecasted).

@ Battery B; is controllable (while
respecting its the physical constraints).

Problem statement: Find the battery charging/discharging power that minimizes the cost of electricity
over an operational time horizon (say, the next 24 hours).



Convex optimization problems

minimize f(x)

subject to gi(x) =0, i=0,...,/

hi(x) <0, j=0,...,J
The problem above is convex if f(x) is a convex function in x, all g;(x) are linear
functions in x, and all hj(x) are convex functions in x. x must be a real number
(scalar) or a vector (an order set of scalars).

A local minimum f(x°), provided that it exists, is a global minimum.

Reference on convex optimization (pdf freely available): S. Boyd and L. Vandenberghe, Convex Optimization.


https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Problem formulation
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@ t: index of the time interval, with duration A (in hours).
@ p(t): price of electricity ($/kWh).

@ B(t): battery charging power (kW); when negative, the
battery discharges.

@ D(t): power demand, assumed known from forecast (kW).

All quantities assumed piecewise constant in the time interval A.

Problem objective: minimize electricity cost over an optimization horizon t =0,..., T — 1, with T

number of intervals.

T-1

Electricity cost over the optimization interval = A Z p(t) - (B(t) + D(t))

t=0



Problem formulation (cont'd)
The constraints of the problem are:
@ The charging/discharging power of the battery should not exceed the power rating P (kW):

|B(t)| <P, t=0,...,T —1. (1)

@ The battery's state of energy should be non-negative and not exceed the energy capacity E in

kWh (as a first approximation; one should have customizable margins). Recalling the ideal SOE
model seen previously (*)

SOE(t+ 1) = SOE(0) + A i B(r),
T7=0

where SOE(0) is given, the SOE constraints read as:
0<SOE(t)<E, t=1,...,T. (2)
Assumptions: ideal battery efficiency, constant power capability, and no reactive power. Non-ideal efficiency will

be introduced next; other assumptions will be progressively replaced by more appropriate physical constraints
throughout the course.



Problem formulation (cont'd)

The problem formulation (cost + constraints) reads as:

where SOE(0) is given.

Linear optimization problem (also convex) because all functions (cost, equalities, and
inequalities) are linear functions in the problem variable B(t) for all t.

One could use algebraic modelling languages (GAMS, CVX, YALMIP and others) to compile a
problem understandable by a solver and solve it.



Conversion to standard matrix form

Documentation Examples Functions  Apps Videos Answers o Optlmlzatlon SOlVerS (On the IEft' the dOC page
of linprog in Matlab) often accept matrices
linprog as way to specify an optimization problem.

Solve linear programming problems

@ Matrix form is typically the way that solvers
Syntax “attack” the problem.

Linprog(f,A,b)
linprog(f,A,b,Aeq,beq)
linprog(f,A,b,Aeq,beq, lb,ub)
Linprog(f,A,b,Aeq,beq, lb,ub,options)
X Linprog{problem)

[x,fvall = linprog{ __)

x X X %

[x, fval,exitflag,output] = linprog(__)
[x, fval,exitflag,output,lambdal = linprog{ __)
Description

Linear programming solver
Finds the minimum of a problem specified by
A-x=bh
min 7 x such that § Aeq - x = beq.
! b < x < ub.

£, x, b, beg, Ib, and ub are vectors, and A and Aeg are matrices.



Conversion to matrix form: Cost function

T-1
Electricity cost = A » p(t) - (B(t) + D(t)) =

t=
By grouping the scalar values into vectors, one can render the expression above as:
B(0) + D(0)
B(1) + D(1)
=A[p(0) p(1) p(2) ...p(T —1)] B(2) + D(2) -
B(T-1)+D(T-1)
and finally
= Apyo, 1y Bpo, 71 + Appo, 71 Do, 71 (3)

where T denotes transpose, and the notation X[o,7] denotes a vector with T elements, starting
from time interval 0.



Conversion to matrix form: SOE Constraints

Rendering
t
SOE(t +1) = SOE(0) + A B(7)
=0

explicit for t =0,1,2,..., T — 1 yields:

SOE(1) = SOE(0) + AB(0
SOE(2) = SOE(0) + A (B(
SOE(3) = SOE(0) + A (B(0) + B(1) + B(2))

SOE(T). =SOE(0)+ A(B(0)+B(1)+ B(2)+---+ B(T — 1))



Conversion to matrix form: SOE Constraints (cont'd)

In matrix form, the former expression becomes:

SOE(1) 1 100 0 B(0)
SOE(2) 1 110 0 B(1)
SOE(3) = SOE(0) Il 4 A 1 11 0 B(2)
SOI:i(T) 1 111 1| |B(T=1)

and more compactly as:
SOE[LT] = SOE(O) . ].T + A¢T . B[O,T]’

where ¢ is the all-one full-rank lower triangular matrix of size T. Using the expression above
to render the SOE constraints in (2) gives:

OTjSOE(O)-IT—FA(bT-B[OJ—] jElT (4)

where < denotes component-wise inequalities.



Conversion to matrix form: SOE Constraints (cont'd)

Rearranging the terms of the right-hand-side inequality constraints of (4) reads as:
At - By, 1) = (E — SOE(0)) - 17 (5)
Consider now the left-hand-side inequalities of (4). Rearranging and multiplying by -1 yield:
—A¢T - Bp, 1) = SOE(0) - 17 (6)
Assembling (5) and (6) together yields :

[AA(ZZJ Bo.m = [(E S O'5EO(€)(0)1)T 17

which is an expression in the form Ax =< b, compatible with what 1inprog expects as an input
argument.



Conversion to matrix form: Power constraints

Power constraints

can be written in matrix form as:

O O
o~ O

0 0

0

t=0,....,T—1
0] [ B(0)

ol | B(1)

ol | B(2)

: B(T:— 1)

By applying the same reasoning as before, one can derive:

|:1T><T

where 174 1 is the identity matrix of size T.



Formulation of the optimization problem in matrix form

The optimization problem can be written as follows (1):

B[B,T] =arg min {P[E)T]B[O,T]}

subject to:
Aor (E — SOE(0)) -1+ (7)
—AoT SOE(0)- 17
B < =
lrer .7 = P-1r
—lrxr P-1r

B* is the battery power that minimizes the cost of electricity.

!Compared to the cost function enunciated in (3), rescaling and translation terms can be neglected
because the argument of the minimization problem is invariant under them (not the cost, though).



Inclusion of power efficiency



State-of-energy with efficiency

When including efficiency, assuming the efficiency is constant with the power (it is not,
but in scheduling applications, that's a convenient choice to avoid further modeling
complication), the model can be modified as this (as seen, already):

SOE(t+1) = SOE(0) + A <77 [B(r)]" — 1[5(7)]> :
=0 U

This function is non-convex and its inclusion in the constraints of the previous
optimization problem will render the problem non-convex.



Charging and discharging power

A modeling alternative widely adopted is to separate charging and discharging power
into (non-negative) independent variables, which we call B*(t), and B~ (t).

SOE(t+1) = SOE(0) + A <773+(T) - 7173—(7)> . (8)

7=0

This way restores the linearity of the models in the power(s). However, because the
battery cannot charge and discharge at the same time, one should ensure that these
variables are mutually exclusive. Two ways of doing this are:

@ using an additional set of binary variables; and

@ penalizing the norm-2 of the sum of the variables in the cost so as to penalizing
mutual activation.

We will see the first way.



Mutually exclusive charging/discharging power with binary variables

Say c(t) € {0,1} for t =0,..., T — 1 is an additional set of binary variables added to the
optimization problem. Mutually exclusive charging and discharging behavior of the battery can
be enforced with the following constraints:

B*(t) >0, t=0,1,..., T -1
B~(t) >0, t=0,1,...,T—1
BT (t) < c(t)- P, t=0,1,....,T—1
B~(t)<(1—c(t))-P, t=0,1,...,T—1

For example, say c(1) = 1, only the charging power can be positive; discharging power is
bound to zero by the second and fourth constraints here above.



1. Mutually exclusive ... (cont'd)

When reformulating the optimization model seen above, one should now consider that

the battery power is given by the sum of two (mutually exclusive) contributions to
readjust cost function and constraints.

For example, the electricity cost for battery operations (the cost function) is now:

T—

H
I
X

p(t) (BT (t) =B~ (t)) = > {p(t)BF(t) — p(t)B™(t)}.

t= t=0



1. Mutually exclusive ... implementation

The (column) vector of decision variables now consists of:

_ T T T T
x= [B[RT] Bio, 1 C[O,T]]
where both B[g ok B[E oL and cp, 77 are column vectors of T real and binary variables, respectively.

The modified optimization problem reads as:

min{ (o~ 07 %)
subject to:

Apr —AgT OrxT (E - SOE(0)) - 17
“Apr  Dér Orxr gt SOE(0) - 17
—lrx7  Orxrt Orxr ©.71 < 0r
Orxr  —1l7x71 Orxt 0.7 = 0r

lrxr  Orxr  —lryr- P LAOT] 0r

Orxr 1rxr lrxr-P x P-1r



Closing remarks

@ The problem computes the battery's charging/discharging operations that minimize the
cost of electricity.

@ The formulation can be applied in practice by using a receding-horizon policy: at each
time interval, the problem is re-computed using updated information for the new time
horizon. This allows for producing a “control action” at each time interval (sent for
actuation) as well as accounting for forecast errors and new prices (e.g., new electricity
prices). Same spirit as model predictive control (if you have seen this in other courses).

@ The control action is sent to the battery. The real-time controller will take care of
implementing this on a best-effort basis given the current conditions of the battery (see
initial slides).

@ If battery operative limits are well modelled within the scheduling problem, probably the
control action commanded by the scheduler will be feasible, and the real-time controller
will allow it.

@ More constraints and models can be added ..



Exercise 3.1

@ Implement in Matlab the problem (7) to schedule charging/discharging operations of a battery
system. Use input information given in the next slide and the linprog function.

@ Compute the electricity cost over the horizon and specify whether it is a revenue or a loss.
© It is not a good idea to bring the battery near its state of energy limits, for various reasons.
Modify the former formulation so as to have tighter bounds on the allowed SOE constraints:

0< SOE(t)< E,forallt — 0.15E- < SOE(t) <0.85- E,for all t

and compare the electricity cost against the former case.

@ Plot the optimal charging/discharging trajectory of the battery. Do you have any concern with
it? What's the fundamental (mathematical) reason for it?

@ If you spot a problem, what can you do to solve it? Try it out in Matlab and verify the result.



Exercise 3.1 (cont'd)

% Copy and paste in Matlab

E_bar = 15; J, Energy capacity [kW]

P_bar = 10; ’ Power capacity [kWh]

SOE_0 = 7; % [kwWh]

T = 24; % number of samples and look-ahead time

Delta = 1; % [hours]

% ToU electricity tariff ($/kWh) - if in doubt, assume it to be valid for both consuming
% and generating power. If not in doubt, ignore this comment (to be rediscussed in class).
c(1:7) = 0.05;

c(8:10) = 0.08;

c(11:17) = 0.15;
c(18:21) = 0.35;
c(22:24) = 0.05;
stairs(c);

xlabel (’Time [hours]’);
ylabel(’Tariff ($/kWh)’)

title(’A peek to the price signal’)
% .. now it is on you!



Exercise 3.2

You are the head of the electrical infrastructure of the company ACME. You bought and
programmed a battery system to optimize electricity consumption with ToU tariffs (or
spot-market electricity prices if the company is large enough to access the electricity market),
saving your company many thousands of CHF in electricity bills. That was so good that ACME
awarded a public holiday to all their people on your birthday. Now, ACME’s process department
has bought a new piece of equipment that, when activated, consumes a large amount of power
for a short time interval, which could exceed the rating of the substation transformer, requiring
a new expensive transformer. You think that perhaps your battery can help to mitigate this
peak of power (i.e., performing so-called peak shaving), avoiding replacing the transformer.

@ Modify the formulation of the scheduling problem so as to limit the power below a
customizable threshold D.

@ Verify results using a toy example in Matlab (use the former case study as a start).

@ What other input information is required for the problem formulation that was not present
before?



