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5 Phase Synchronization
In a previous lab we saw that the real part of the base band signal is modulated onto a cosine
wave at radio frequency, and the imaginary part onto a sine wave. Since the cosine and sine
functions are orthogonal, the two signal parts can be separated in the receiver. However, we
run into a similar problem as the one discussed in the last lab: The receiver merely sees an
oscillating waveform (a sinusoid): r(t) ∝ sin(2πfct + θ) during one symbol duration. Is
it a sine, a cosine, or something in between? In order to differentiate between the two base
functions, the receiver needs a phase reference, i.e. it needs to know the phase offset θ. The
task of the phase synchronization unit is to provide this reference.

5.1 Signal Model
The phase synchronization is performed after the interpolator and thus works on the timing-
corrected symbols

zε[n] = z(nT + ε̂T ). (5.1)

We will assume a perfect timing recovery and interpolation, so that zε[n] = z(nT + εT ).
In the complex baseband, the phase offset θ translates to a multiplication of the received signal
with ejθ. The effect of this is a rotation of the signal space, as illustrated in Figure 5.1. The
left plot shows a sequence of received QPSK symbols after timing correction without any phase
offset, with an SNR of 8 dB. The borders of the decision regions are the x- and y-axis; for
example, the symbol demapper decides that the bits b0b1 = 11 have been transmitted if the
received symbol lies in the upper right quadrant of the complex plane. In Figure 5.1(a) we can
easily recognized the transmitted QPSK constellation, and we see that most symbols will be
correctly detected, even though the clouds extend to the coordinate axes and therefore a few
bit errors will occur. Figure 5.1(b) shows the same sequence with a phase error of 20◦. It is
obvious that the bit error rate will be far worse if we attempt to demap these symbols without
correcting the phase offset. The phase offset is not constant but varies slowly over time, e.g.
due to non-ideal analog components. Since the variation of the phase is a random process, this
effect is called phase noise. The received symbol sequence can now be written as

zε[n] = a[n]ejθ[n] + w′[n]. (5.2)

A simple but realistic phase noise model is the random walk: The first phase offset θ[0] is
uniformly distributed in [0; 2π). Then, over time, the phase offset evolves according to



Figure 5.1: Received symbols without (a) and with (b) phase offset

θ[n] = θ[n− 1] + ∆θ[n] ( mod 2π) (5.3)

where the difference between two successive phase offsets is a Gaussian random variable

∆θ[n] ∼ N (0, σ2
∆θ). (5.4)

Figure 5.2 illustrates a typical phase noise process for a standard deviation of σ∆θ = 0.004 ⋍

0.23◦. We see that the phase drift is rather slow, but still non negligible if the transmission is
longer than about thousand symbols. Therefore, the phase offset must be tracked during the
transmission.

5.2 Synchronization via Rotation
The correction of the phase offset is straightforward. Since the phase offset causes a rotation of
the signal space,zε[n] = a[n]ejθ[n] +w′[n]. , we simply rotate the signal space into the opposite
direction:

zε;θ[n] = zε[n]e
−jθ̂[n]

= a[n]ej(θ[n]−θ̂[n]) + w′′[n]
(5.5)

with w′′[n] = w′[n]e−jθ̂[n]. The phase synchronization unit is illustrated in Figure 5.3.

5.3 The Estimation Algorithm
The estimation algorithm, which is known in the literature as the “Viterbi and Viterbi” algo-
rithm, uses the fact that we have a QPSK modulation. We therefore know that

a[n] ∈ {ej(
π
2
l+π

4
) | l ∈ {0, 1, 2, 3}} (5.6)



Figure 5.2: Typical phase noise process for σ∆θ = 0.004
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Figure 5.3: Phase synchronization unit

for all transmitted symbols a[n], and thus

a[n]4 = e4j(
π
2
l+π

4
) = ej(2πl+π) ≡ −1. (5.7)

The operation (·)4 removes the information from the data symbols. Exploiting this fact, we can
derive the following estimator, which operates on a symbol-by-symbol basis (i.e. does not take
any correlation between the phases into account):

θ̂[n] =
1

4
arg{−zε[n]

4}. (5.8)

This estimator is approximately unbiased if the SNR is high:

E{θ̂[n]} = E{1
4
arg{−zε[n]

4}}
= E{1

4
arg{−(a[n]ejθ[n] + w′[n])4}}

(a)
≈ 1

4
arg{E{−(a[n]ejθ[n] + w′[n])4}}

(b)
= 1

4
arg{ej4θ[n]}

(c)
= θ[n].

(5.9)



The approximation (a) is valid for a high SNR, because then the variation of the argument is
small, and the nonlinear argument operation can be linearized. In this case, the expectation and
the argument operation can be exchanged. Equation (b) holds because the noise has zero-mean
and is uncorrelated with the data sequence.
The step (c) does not allow us to uniquely identify any θ ∈ [0; 2π). To see this, consider, for
example, θ1 = π

4
and θ2 = 3π

4
(we drop the symbol index for simplicity). Then, the estimator

will give us:

θ̂1 =
1
4
arg{ej4θ1} = 1

4
arg{ejπ} =

π

4
= θ1 (5.10)

θ̂2 =
1
4
arg{ej4θ2} = 1

4
arg{ej3π} =

π

4

!

̸= θ2 (5.11)

We can only identify θ correctly if we know which quadrant it is in. One way to have access to
this information is to consider the phase estimate for the previous symbol. Assuming that the
phase changes slowly, the two consecutive phases will most likely be close to each other (BUT:
not necessarily in the same quadrant). However, in order to use this method we need a initial
phase information about which quadrant we can start from.

5.4 Initial Phase Estimation
An initial phase estimate can be obtained by exploiting the preamble that is used for frame
synchronization in the following way. Assume that there is no noise, so that z[n] = a[n]ejθ[n] ,
and let p[n] denote the preamble sequence of length Np . The frame synchronization function
computes the following correlation:

c[n] =

Np−1∑
i=0

p̄∗[i]z[n− i], (5.12)

where p[i] = p[Np − 1 − i] is the reverted preamble sequence. c[n] is maximized when the
sequences z[n − i] and p[i], i = 0, ..., Np − 1, are equal. Let the n which maximizes the
correlation be denoted by nmax . Assuming that θ[nmax − i] ≈ θ over the preamble, we have:

c[nmax] =

Np−1∑
i=0

p̄∗[i]p[nmax − i]ejθ[nmax−i] (5.13)

≈
Np−1∑
i=0

p̄∗[i]p[nmax − i]ejθ (5.14)

= ejθ
Np−1∑
i=0

p̄∗[i]p[nmax − i]. (5.15)

For the phase of c[nmax] we have:

arg{c[nmax]} = θ. (5.16)

Thus, the phase of the peak of the correlator can be used as an initial phase estimate.



5.5 Your Tasks
A5T1 Create phase noise by implementing the random walk described in (5.3).

A5T2 Modify the synchronization unit so that it provides an initial phase estimate accord- ing
to (5.16).

A5T3 Implement the phase synchronization unit and integrate it into your system. Compare
your phase estimates with the true values.

(1) Apply phase noise to signal with awgn noise.

(2) Apply viterbi-viterbi algorithm on the payload data.

(3) Correct the payload with the estimated phase error.

(4) Consider a way to filter the phase according to the nature of random walk, write a
new theta estimation trial in parallel with (2) and (3) to allow a comparison of the
estimate.

Note: MATLAB angle function returns angles in the interval [−π, π]. After step (3), the
image will still experience some erroneous phase jump unless a very high SNR is used
(e.g. 100dB).
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