
Wireless Receivers: Algorithms and Architectures Assignment 04
Fall Semester
Telecommunications Circuits Laboratory
EPFL

4 Timing Synchronization
The timing problem is easily understood: The receiver samples the incoming signal with the
known sampling rate 1/Ts, but how does it know exactly when to sample? It does not know
this, it can only sample the signal with a random time offset, and it is the task of the time
synchronization unit to estimate this time offset and correct it.

4.1 Effect of a Timing Offset
The effect of the timing offset can be modelled by including the filter δ(t−εT) into the effective
channel. The parameter ε denotes the time offset, normalized by the symbol duration T . The
matched filter output then becomes

z(kTs) =
∞∑

n=−∞

a[n]gRC(kTs − nT − εT) + w′(kTs). (4.1)

Take a look at Figure 4.1, where several RC pulses are plotted. Imagine that we want to detect
the data symbol a[0]. If we sample the signal exactly at t = 0, all pulses except of the middle
one are zero, and the received sample is equal to the data symbol plus noise. Now assume that
we have a timing error of, say, ε = 0.1, which means that the signal arrives a bit too late, and
hence our receiver samples the signal at t = −0.1T . At this time, however, the center pulse has
not yet reached its maximum amplitude; furthermore, the contributions of the other pulses do
not vanish, which leads to inter-symbol interference. In order to attain ISI-free reception, we
must attempt to generate symbols

z(nT + ε̂T) =
∞∑

n′=−∞

a[n′]gRC(nT − n′T − εT + ε̂T) + w′(nT + ε̂T) (4.2)

where ε̂ is an estimate of the timing error. If ε̂ = ε, then z(nT + ε̂T) = a[n] + w′(nT + ε̂T)

and the data can be optimally recovered.

4.2 Synchronization via Interpolation
In principle, there are two possibilities to generate the desired symbols z(nT + ε̂T). The first
possibility is to adjust the time instant of A/D conversion. However, this results in an undesired
feedback to the analog part of the system. We will therefore use a different method that works

Figure 4.1: Raised cosine pulses with α = 0.22

Interpolator

ε

Timing

Estimator

^

z(kTs)
Decimator

z(kTs+εT)^ z(nTs+εT)^

Figure 4.2: Time synchronization unit

completely in the digital domain. It is well known that a bandlimited signal is completely
described by time-discrete samples if 1/Ts ≥ 2fmax, where fmax is the highest frequency that
is contained in the signal. Due to the oversampling, this condition is fulfilled in our case. It
is thus possible to calculate arbitrary intermediate values from the sample sequence by means
of an interpolator. Figure 4.2 shows a block diagram of the time synchronization unit. The
timing estimator calculates an estimated timing offset ε̂ using the received samples z(kTs).
The interpolator then generates the time-delayed sample stream z(kTs + ε̂T) which is then
converted to symbol rate by discarding the L − 1 intermediate samples between two adjacent
data symbols. The interpolator has a strong impact on the implementation complexity. An ideal
interpolatory would be implemented as an si-filter, and its impulse response would have to be
of infinite duration. Of course, from a practical point of view, the interpolator is only allowed to
have a finite number of taps. A brief discussion of practical interpolators is given in Appendix
4.6.

4.3 The Estimation Algorithm
The remaining question is how to obtain the estimate ε̂. For the derivation of the estimator we
use the sequence x[k] = x(kTs) which is defined as the instantaneous signal power

x(kTs) = |z(kTs)|2. (4.3)

Appendix 4.5 shows the following relation: if there is no time offset (ε = 0), then the expecta-
tion of x(kTs) is a real-valued and even signal. Accordingly, its spectrum(i.e., the expectation
of X(f)) is then real-valued for all frequencies f . Now, if we introduce a nonzero offset εT in
z(kTs) and, accordingly, in x(kTs), the original real spectrum is multiplied by e−2πjεTf . Eval-
uating the spectrum at the symbol rate f = 1/T then results in a complex value whose phase is
−2πε. We can thus use

ε̂ = − 1

2π
arg {X(1/T)} (4.4)

as an estimator of the timing offset (see Appendix 4.5 for details). The spectral component
X(1/T) can be calculated by performing a discrete Fourier transform (DFT). In general, the
spectrum X(f) is given as

X(f) =
∞∑
k=0

x(kTs)e
−2πjkTsf , (4.5)

where we have assumed that the signal starts at t = 0. The spectral component at f = 1/T is
thus

X(1/T) =
∞∑
k=0

x(kTs)e
−2πjk Ts

T

=
∞∑
k=0

x[k]e−
π
2
jk

=
∞∑
k=0

x[k](−j)k

(4.6)

Due to the oversampling factor of T/Ts = 4, the implementation of the Fourier transform be-
comes very simple, as the exponential term only takes on the values {1,−j,−1, j}. Of course,
Equation (4.6) cannot be implemented in a real system, because we cannot calculate an infinite
sum. We can, however, get an estimate ε̂[n]that is updated every symbol duration by taking all
available samples into account:

ε̂[n] = − 1

2π
arg

{
4n−1∑
k=0

x[k](−j)k
}
. (4.7)

The cumulative sum acts as an averager: During the reception, more samples become available,
and the estimate becomes more and more reliable. It is easily seen that the algorithm (4.7) only
works if the true parameter ε is constant during the whole reception, which is the case in this
lab. In practice, however, the timing offset will change over time, and the estimation accuracy
would be severely degraded if we took all available samples (even old ones that were caused

by a different ε than the current) into account. An important measure here is the coherence
time, which is the duration over which a parameter can assumed to be approximately constant.
Let the coherence time for the timing offset be denoted as Tc;ε = Nc;εT . Then the estimation
algorithm can be implemented as a sliding sumover the 4Nc;ε most recently received samples:

ε̂[n] = − 1

2π
arg


4n−1∑

k=4(n−Nc;ε)

x[k](−j)k
. (4.8)

4.4 Your Tasks
A4T1 Implement the estimation of the timing offset ε̂ as described in (4.7). Note that for each

new sample n, the sum will only include 4 new terms. These terms can be accumulated
to the sum obtained for the sample n− 1.

A4T2 Implement both a linear and a cubic interpolator as presented in the appendix 4.6. The
value of ε̂·(oversampling factor), provides two indications: the integer part indicates be-
tween which samples to perform the interpolation, and the fractional parts indicates the
value that needs to be interpolated.

A4T3 Take advantage of the preamble samples to obtain a better estimate of ε̂.

4.5 Appendix
In this section, we show that 4.4 is an asymptotically unbiased estimator of the timing offset
ε.(An estimator is asymptotically unbiased if it becomes unbiased as the number of observations
goes to infinity.)

4.5.1 Signal Model

We assume M-PSK signaling, which means that the amplitude of the data symbols a[n] is con-
stant. Without loss of generality, set |a[n]| = 1. The symbols are assumed to be uncorrelated,i.e.
E{a[m]a∗[n]} = δ(m− n). The received signal after matched filtering is given as

z(t) =
∞∑

n=−∞

a[n]gRC(t− nT − εT) + w′(t)), (4.9)

where gRC(t)is the combined impulse response of the pulse shaping filter and the matched
filter,and is therefore real-valued and even. In our lab, gRC(t) is a raised cosine pulse. Further-
more, w′(t) is the AWGN with variance σ2

w after matched filtering.
For the digital realization, the signal is sampled at four times the symbol rate: T/Ts = 4.

4.5.2 Continuous Time Consideration

We start with examining the noise-free signal z̃(t) = z(t)− w′(t). Let

x̄(t) = E{|z̃(t)|2} (4.10)

denote the expected value of the instantaneous signal power. Since the data symbols are uncor-
related, x̄(t) becomes

x̄(t) = E


∣∣∣∣∣
∞∑

n=−∞

a[n]gRC(t− nT − εT)

∣∣∣∣∣
2


=
∞∑

n=−∞

∞∑
m=−∞

E{a[m]a∗[n]}gRC(t− nT − εT)g∗RC(t− nT − εT)

=
∞∑

n=−∞

|gRC(t− nT − εT)|2.

(4.11)

The function x̄(t) is periodic with period T

x̄(t+ T) =
∞∑

n=−∞

|gRC(t− (n− 1)T − εT)|2

=
∞∑

n=−∞

|gRC(t− n′T − εT)|2 with n′ = n− 1

= x̄(t)

(4.12)

and can therefore be explained into Fourier series

x̄(t) =
∞∑

n=−∞

cke
2πjk t

T . (4.13)

The Fourier coefficients are given as

ck =
1

T

∫ T

0

x̄(t)e−2πjk t
T dt (4.14)

The first Fourier coefficient, i.e. the spectral component X̄(1/T), is

.

c1 =
1

T

∫ T

0

x̄(t)e−2πj t
T dt

=
1

T

∫ T

0

∞∑
n=−∞

|gRC(t− nT − εT)|2e−2πj t
T dt substitute u = t− εT

=
1

T

∫ T−εT

−εT

∞∑
n=−∞

|gRC(u− nT)|2︸ ︷︷ ︸
real and even

e−2πj u
T du

︸ ︷︷ ︸
:=A∈R

·e−2πjε

= Ae−2πjε.

(4.15)

Thus, we can calculate the timing offset perfectly from the noise-free and time-continuous
received signal:

ε = − 1

2π
arg{X̄(1/T)}. (4.16)

4.5.3 Discrete Time Realization

Now we consider the noisy and sampled signal

x[k] = |z(kTs)|2 (4.17)

and show that
ε̂ = − 1

2π
arg{X̂(1/T)} (4.18)

is an asymptotically unbiased estimate of ε.
We start by calculating the expected value of x[k]:

E{x[k]} = E{|z̃(kTs) + w′(kTs)|2}
= E{|z̃(kTs)|2}︸ ︷︷ ︸

x̄(kTs)

+E{z̃∗(kTs)w′(kTs)}︸ ︷︷ ︸
0

+E{z̃(kTs)w
′∗(kTs)}︸ ︷︷ ︸

0

+E{|w′(kTs)|2}︸ ︷︷ ︸
σ2
w

= x̄(kTs) + σ2
w

(4.19)

with the noise-free signal x̄(t) that we have examined in the previous section. Assuming that
the signal starts at k = 0, the corresponding spectrum is

E{X(f)} =
∞∑
k=0

x̄(kTs)e
−2πjkTsf +

σ2
w

2πTs

∞∑
k=−∞

δ(f − k/Ts). (4.20)

Evaluating this for f = 1/T yields

E{X(1/T)} =
∞∑
k=0

x̄(kTs)e
−2πjk/4. (4.21)

If we approximateE{X(1/T)} at time t = nT by using the 4Nc;ε most recently received sam-
ples (the Nc;ε most recently received symbols), we get the estimate

E{X̂(1/T)} =
4n−1∑

k=4(n−Nc;ε)

x̄(kTs)e
−2πjk/4. (4.22)

Since x̄(t) is bandlimited to±2/T we can calculate this from x̄(t), rather than from the discrete
x̄(kTs):

E{X̂(1/T)} =
4n−1∑

k=4(n−Nc;ε)

x̄(kT/4)e−2πjk/4

=
4Nc;ε

T

∫ T

0

x̄(t)e−2πjk/4dt

= 4Nc;εc1,

(4.23)

with c1 calculated in (4.15).
We can now calculate the expected value of ε̂:

E{ε̂} = − 1

2π
E{arg X̂(1/T)}

≈ − 1

2π
argE{X̂(1/T)}

= − 1

2π
arg{4Nc;ε}

= ε.

(4.24)

Due to the “approximately equal” sign, the estimator is strictly speaking biased. However, if the
number of samples is very large, the variance of X̂(1/T) becomes small, and the expectation
and argument operations can be exchanged. Our estimator is therefore asymptotically unbiased.

4.6 Appendix
4.6.1 Perfect Interpolator

Let f(x) be a (possibly complex-valued) function of one real-valued parameter. Assume that
we only know f(x)for x ∈ Z, i.e. a series of samples. If f is bandlimited with a maximum
frequency of 1/2, then the function is completely described by the samples. The problem of
finding f(x) for x 6∈ Z is called interpolation.
The ideal interpolator is a lowpass filter, i.e. the function can be calculated from its samples as

f(x) =
∞∑

n=−∞

f(n)si(π(x− n)). (4.25)

However, this interpolator is not realizable because it has infinitely many taps.

4.6.2 Linear Interpolator

The simplest possible interpolator is the linear one. Assume without loss of generality that
we are interested in the intermediate value f(x) with x ∈ (0; 1). The linear interpolator then
calculates f(x) using the two closest samples f(0) and f(1) according to

f(x) = (1− x)f(0) + xf(1). (4.26)

The linear interpolator can be implemented very efficiently, but its accuracy can be problematic.
Consider the situation illustrated in Figure 4.3. Given are the function f(x) = sin(π

2
x+ π

4
) and

the samples f(0) = f(1) = 1/
√

2. Now, for all x ∈ (0; 1), the linear interpolator returns
f(x) = 1/

√
2, which is obviously a very bad approximation of the true value if x is around 0.5.

On the other hand, if we wanted to estimate a value with x ∈ (−1; 0) using the samples f(−1)

and f(0), the linear estimation would be quite good. We see that the linear interpolator yields
especially bad results if the function has a local maximum or minimum between the two con-
sidered samples.

Figure 4.3: Linear interpolator for f(x) = sin(π
2
x+ π

4
)

4.6.3 Cubic Interpolator

The interpolation can be improved by taking one additional sample on each side into account,
which leads us to the cubic interpolator. Again we assume that we want to estimate f(x) with
x ∈ (0; 1), this time using the samples f(−1), f(0), f(1) and f(2). The idea is to approximate
f(x) with a cubic polynomial f̃(x) and then evaluate it at the desired point.
In general,

f̃(x) = ax3 + bx2 + cx+ d, (4.27)

where the coefficients a, b, c, d must satisfy
−1 1 −1 1

0 0 0 1

1 1 1 1

8 4 2 1



a

b

c

d

 =


f(−1)

f(0)

f(1)

f(2)

 . (4.28)

With a matrix inversion we get the result
a

b

c

d

 =
1

6


−1 3 −3 1

3 −6 3 0

−2 −3 6 −1

0 6 0 0



f(−1)

f(0)

f(1)

f(2)

 . (4.29)

	Timing Synchronization
	Effect of a Timing Offset
	Synchronization via Interpolation
	The Estimation Algorithm
	Your Tasks
	Appendix
	Signal Model
	 Continuous Time Consideration
	 Discrete Time Realization

	Appendix
	Perfect Interpolator
	 Linear Interpolator
	Cubic Interpolator

