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3 Pulse Shaping and Matched Filtering

Up to now we have only considered the transmission of complex data symbols over an AWGN
channel. Of course, in reality there is no such thing as a complex symbol coming out of the
antenna. Instead, the symbols have to be transformed into a time-continuous waveform. This

transformation is called modulation.

3.1 Modulation
3.1.1 Transmission at Radio Frequency (RF)

The principle of digital communication systems is that only a finite number M of different
symbols can be transmitted. Each symbol a; is mapped onto a pulse g;(t),i = 1,..., M. Since
only finitely many pulses are possible, the receiver can recover the transmitted data if the signal
is not too heavily distorted by the channel.

In this lab course, we only consider linear modulation schemes, where the pulses g;(t) can be
expressed as scaled versions of the same base pulse: g;(t) = a;9(t). Hence, the magnitude of
the data symbol determines the amplitude of the transmitted pulse, and the argument determines
its phase. (An example of a nonlinear modulation scheme is frequency shift keying, where the
information lies in the frequency of the transmitted signal.)

Let 7" denote the duration of one data symbol, i.e., a new pulse is transmitted each 7" seconds.
Note that the pulse g(¢) can still be longer than 7" ; the pulses are allowed to overlap. The
signal s(t) can then be written as the superposition of the pulses, scaled by the data symbols

and delayed by multiples of 7" :

oo

s(t) = Z a[n]g(t —nT). (3.1)

n=—oo

The signal s(t) is called a complex baseband signal, because it is complex-valued and its spec-
trum is centered at f = 0. In order to transmit the signal over the air, it must be transformed
into a real-valued signal and its spectrum must be shifted to a carrier frequency f. > B, where

B is the bandwidth of the signal. This operation can be written as follows:

sge(t) = R{s(t)e?™ e}

(3.2)
= R{s(t)} cos(2m f.t) — I{s(t)} sin(27 f.t).
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Figure 3.1: Block diagram of a digital transmission system
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Figure 3.2: Equivalent baseband system

The real part of the signal is modulated onto a cosine wave, and the imaginary part onto a sine
wave. Due to the orthogonality of sin and cos, the two signals can be separated by the receiver.
The receiver converts the received signal rrg(t) back into the baseband by multiplying it with
e~ 2™/t and filtering the result with a lowpass filter in order to eliminate the spectral components
around 2 f. . The baseband signal r(¢) is then sampled with the sampling rate 1/7} , so that the
remaining signal processing can be done by digital processors. The sampling duration is chosen
to be shorter than the symbol duration, 7y = T'/ L, where L is the oversampling factor. We will
explain later why the signal must be oversampled. The remaining task of the receiver is now to
recover the transmitted data by means of the received data samples r[k]. (We use the time index

k in order to denote samples of duration 7 , and the index n for data symbols of duration 7).

3.1.2 Equivalent Baseband Model

We have seen that a description of the received samples is quite inconvenient if the digital/analog
conversion and the upconversion to radio frequency is taken into account. Fortunately, it is
possible to describe the whole system as a time-discrete model in the complex baseband (as
long as one is not interested in the effects of the RF components, of course).

A block diagram of this simplified model is shown in Figure 3.2. First, the symbol stream is
converted to sample rate by inserting L — 1 zeros between the symbols. (This implies that L
is an integer, which can generally be assumed. In the lab, we use an oversampling factor of
L = 4.) The sequence a[k] is then processed by the pulse shaping filter g[k|. The time-discrete
transmitted signal s[k| is then transmitted over a time-discrete baseband channel and filtered
by the receiver filter gy/r[k]. Now the sample stream can be converted back to symbol rate by
simply discarding three out of four samples. If the channel is an AWGN channel, which we
assume up to now, the received symbols can then be written as z[n] = a[n] +w’[n], where w'[n]

is the filtered noise.



3.2 Pulse Shaping Filters
3.2.1 Ideal Lowpass

We have not yet discussed the question how the pulse g(¢) (or its time discrete version g[k] =
g(kTy)) should look like. In order to use the available spectrum as efficiently as possible, we
would like to use a pulse whose spectrum is as narrow as possible. In order to transmit at a
symbol rate R = 1/T, the bandwidth B of the signal must be at least as large as R. The
optimum filter would therefore be an ideal lowpass with the spectrum G(f) = rect(f/R),
whose impulse response is known to be g(t) = si(nt/T), with si(z) = sin(z)/z. With an ideal

lowpass, the transmitted signal can be written as

oo

sty="Y afn]si <7rt _T"T> . (3.3)

n=—oo

It is important to note that g(¢) becomes zero at multiples of the symbol duration 7", except of
t=0:
g(nT) =0, VYn#D0. (3.4)

This is called the Nyquist criterion. If we sample this signal at the correct time instances t = n7’,
only the n-th pulse contributes to this sample, and we have recovered the transmitted symbols
(except of noise).

The ideal lowpass however suffers from the drawback that the impulse response converges quite
slowly towards zero. If we want to implement g[k| as a digital finite impulse response (FIR)
filter, we need to implement many filter taps before the impulse response can be considered to
be zero. (Strictly speaking, the impulse response of the ideal lowpass is infinitely long, so we
can always only approximate its behavior). Another problem is that we must sample the signal
exactly at the ideal time instants. If we have a slight timing error, as will always be the case
in practical systems, the contribution of the other pulses is not zero anymore and our received
symbols are distorted by inter-symbol interference (ISI). (The timing problem will be discussed
in the next chapter.) Due to these two reasons, we are looking for a filter that still fulfills the

Nyquist criterion, but whose impulse response converges to zero more rapidly.

3.2.2 Raised Cosine Filter

Such a filter is the raised cosine (RC). Its spectrum is given as

1 fl < 5(1—a)
Gre(f) ={ t+beos(£ (Hh-1+0a)) Za-a)<|f<Z(+a). G5
0 [fl= 31 +a)

The parameter « is the rolloff factor and determines the filter bandwidth. The two-sided band-
width of the RC is B = R(1 + «). Thus, the bandwidth of the RC is by a fraction of « larger

than that of the ideal lowpass. Figure 3.3 shows the transfer function and the impulse response
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Figure 3.3: Transfer function (a) and impulse response (b) of the raised cosine filter

of the raised cosine filter for « € {0.2,0.5,0.8}. We see that the bandwidth increases with in-
creasing rolloff factor, but the impulse response converges faster to zero. For a = 0, the raised
cosine becomes an ideal lowpass. Note that the raised cosine fulfills the Nyquist criterion, i.e.

becomes zero at multiples of the symbol duration.

3.2.3 Matched Filtering and Root Raised Cosine Filter

In the receiver, the signal is filtered by another filter. It can be shown that in case of an AWGN
channel, the SNR after the receive filter is maximized if this filter is the complex conjugated

and reverted (in time direction) transmit filter:

This filter is matched to the transmit filter and is therefore called the matched filter (MF). The
total effective filter of the transmission stem is then the combination of transmit and receive filter
g(t) * gmr(t), where * denotes convolution. It is important to note that this effective filter (and
not the individual filters) must fulfill the Nyquist criterion. We can achieve this if both filters
have a transfer function that is equal to the square root of that of the raised cosine filter. Such a
filter is therefore called a root raised cosine (RRC). The combination of both RRC filters then
becomes a raised cosine and thus fulfills the Nyquist criterion. Furthermore, since the filters
are real-valued and symmetric, the RRC is its own matched filter. The impulse response of the

RRC filter is
4?"‘ cos(m(1+ a)t/T) + (1 — a)si(m(1 — O‘>%)

grre(t) = T~ (dalp (3.7)
T

sin(7x)
T

Note that si(7z) = sinc(z) =

3.2.4 Summary

When we use the RRC both as pulse shaping filter and matched filter, the effective filter fulfills
the Nyquist criterion (3.4) and makes ISI-free reception possible. Also, the RRC converges



faster to zero than an ideal lowpass and therefore suffers less from the drawbacks of the ideal
lowpass discussed above.

The output of the matched filter can be written as

2(t) = Y aln]gre(t — nT) +w'(t) (3.8)
or in time-discrete samples as
2k = ) aln]gre(k — nL) + w'k], (3.9)

where the noise term w’[k] denotes the AWGN w/[k] after the matched filter. Due to (3.4), every
L-th sample corresponds to a data symbol, z[k = nL] = grc[0]a[n] (in the following we assume
that the filters are normalized so that grc[0] = 1) and hence the transmitted data can easily be
recovered.

Unfortunately, (3.9) only holds if the receiver is perfectly synchronized to the incoming signal,
which is never the case in a real system. In the next chapters, we will therefore examine some

synchronization algorithms.

3.3 Your Tasks

A3T1 For the first task we provide an already shaped signal. The system model is slightly dif-
ferent as we now use a oversampling factor of L = 4. The pulses are RRC shaped with a
roll-off factor of & = 0.22 and the AWGN is already added to the signal. Write a matched
filter (MF) to demodulate the pulses and returns the filtered signal as well as the refer-
ence pulse. The frame synchronization that you implemented in the previous exercise can
not be used with oversampled signals. For this reason, a modified frame synchronization
function is provided. We also provide a function rrc that can be used to generate the root

raised cosine filter.

A3T2 Now implement a complete baseband transmission system to measure the BER:

(a) Generate a random bitstream.

(b) Convert to QPSK symbols.

(c) Upsample by a factor L = 4.

(d) Shape RRC pulses with a roll-off factor of o = 0.22 and 41 filter taps.
(e) Add AWGN.

(f) Apply matched filter (MF) with a variable number of filter taps.

(g) Revert upsampling (i.e., downsample by a factor L = 4).

(h) Demap the symbol stream.

(i) Calculate the BER.



Note: Convolutions introduce heads and tails. Take special care to have a correct symbol
alignment for BER calculations.

A3T3 A longer FIR receive filter (i.e., a filter having more taps) will lead to a lower bit error
rate, but will also require more multiplications, which increases the energy consumption
of the (battery driven) device. Your task is to determine the minimum length of the MF
that exceeds a specified BER performance. The provided script compute the BER ob-
tained at an SNR of 8dB for different filter length. Choose the minimum MF length so
that the BER is better than 7 - 103 , i.e. the implementation loss is less than 0.2 dB (c.f.
BER of assignment 1).!

At 8 dB, the best uncoded BER that you can achieve is 6 - 1072, and a BER of 7 - 1072 is ideally achieved at
7.8dB
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