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A Mathematical Derivations

A.1 Frame Synchronization

In this section, we give some theoretical background on the frame synchronization problem and

derive the decision rule (2.2).

A.1.1 Problem Statement

The frame synchronization works as follows: Each data frame starts with a known preamble of

Np symbols. Now, in every time step n, the receiver must decide if the most recently received

Np symbols are the preamble, distorted by noise, or if the symbols are noise only.

We denote the known preamble sequence as p[i], i = 0, . . . , Np − 1, summarized in the vector
p. The preamble symbols are assumed to have unit energy, i.e. |p[i]|2 = 1. TheNp most recently

received symbols at time instant n are denoted as the vector rn = (r[n−Np+1], . . . , r[n])T . In
order to keep the following discussion general, we assume that the signal is attenuated by an un-

known factor and also has an unknown phasing. These effects can be expressed by multiplying

the transmitted signal with a complex channel coefficient h.

The problem is now to decide between the following two hypotheses:

H0 : rn = w

H1 : rn = hp+w,
(A.1)

where the entries of the vectorw are complex Gaussian distributed random variables with zero

mean and variance σ2

w, denoted as w[n] ∼ CN (0, σ2

w). The PDF of the complex Gaussian
distribution is

p(w) =
1

πσ2
w

exp

(

−
|w|2

σ2
w

)

. (A.2)

Because the noise symbols are statistically independent, the distribution of the vectorw is given

as the product of the distributions of the individual random variables:

p(w) =

Np−1
∏

i=0

p(w[i])

=
1

(πσ2
w)

Np
exp

(

−
1

σ2
w

Np−1
∑

i=0

|w[i]|2

)

=
1

(πσ2
w)

Np
exp

(

−
wHw

σ2
w

)

.

(A.3)
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A.1.2 The Generalized Likelihood Ratio Test

The problem (A.1) is a standard problem in detection theory. The approach is to calculate the

likelihood ratio L(rn), which is defined as the ratio of the likelihood that hypothesisH1 is true

and the likelihood that hypothesisH0 is true, given the received data rn:

L(rn) =
p(rn;H1)

p(rn;H0)
. (A.4)

The likelihood ratio is then compared to a threshold γ, and the following decision is made: If

L(rn) > γ, decide that H1 is true, otherwise decide that H0 is true.

The problem in our case is that the PDF of rn depends on the unknown noise variance σ
2

w,

and in case of H1 also on the unknown channel coefficient h. This leads us to the Generalized

Likelihood Ratio Test (GLRT), where the unknown parameters are replaced by theirMaximum

Likelihood Estimates (MLEs). The decision rule is as follows: Decide in favor ofH1 if

LG(rn) =
p(rn; ĥ, σ̂

2

1
,H1)

p(rn; σ̂2

0
,H0)

> γ (A.5)

where ĥ and σ̂2

i are the MLEs of h and σ
2

w under the assumption ofHi.

In the following, we will calculate the PDFs p(rn; σ̂
2

0
,H0) and p(rn; ĥ, σ̂

2

1
,H1) and finally the

likelihood ratio LG. For convenience, we will replace rn by r, because the time index is not

important here.

A.1.2.1 Distribution of r assumingH0

Under the assumption ofH0, i.e. r = w, the joint PDF of r is

p(r; σ̂2

0
,H0) =

1

(π σ̂2

0
)Np

exp

(

−
1

σ̂2

0

rHr

)

, (A.6)

where σ̂2

0
is the estimate of σ2

w that maximizes (A.6). By differentiating (A.6) with respect to σ̂
2

0

and setting it to zero, it can easily be shown that

σ̂2

0
= 1

Np
rHr. (A.7)

Substituting (A.7) into (A.6) yields

p(r; σ̂2

0
,H0) =

1
(

π
Np

rHr

)Np
exp(−Np). (A.8)

A.1.2.2 Distribution of r assumingH1

In this case,

p(r; ĥ, σ̂2

1
,H1) =

1

(π σ̂2

1
)Np

exp

(

−
1

σ̂2

1

(r− ĥp)H(r− ĥp)

)

, (A.9)
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where σ̂2

1
and ĥ are the estimates of σ2

w and h, respectively, that maximize (A.9). Since p andw

are uncorrelated, the best estimate of the noise power is

σ̂2

1
= 1

Np
rHr− |h|2, (A.10)

i.e. the total received power minus the signal power.

The parameter h now has to be chosen in order to maximize

p(r; h,H1) =
1

(

π
(

E
Np

− |h|2
))Np

exp

(

−
E − h∗c− hc∗ + |h|2Np

E
Np

− |h|2

)

, (A.11)

where, for the sake of simplicity, the abbreviations

E = rHr (A.12)

for the energy of the received sequence, and

c = pHr (A.13)

for the output of the correlator filter have been introduced. The derivative of (A.11) with respect

to h is1

∂
∂h
p(r; h,H1) =Npπh

∗

(

π

(

E

Np

− |h|2
))−Np−1

exp

(

−
E − h∗c− hc∗ + |h|2Np

E
Np

− |h|2

)

−

(

π

(

E

Np

− |h|2
))−Np

exp

(

−
E − h∗c− hc∗ + |h|2Np

E
Np

− |h|2

)

×
(−c∗ + h∗Np)(

E
Np

− |h|2) + (E − h∗c− hc∗ + |h|2Np) h
∗

(

E
Np

− |h|2
)

2
.

(A.14)

Setting (A.14) to zero provides

Npπh
∗

π
(

E
Np

− |h|2
) −

− E
N
c∗ + 2Eh∗ − h∗2c
(

E
Np

− |h|2
)2

= 0 (A.15)

⇐⇒ −Nphh
∗2 + h∗2c− Eh∗ + E

Np
c∗ = 0 (A.16)

with the solution

ĥ =
c

Np

, (A.17)

as can easily be verified.

Substituting (A.10) and (A.17) into (A.9) results in

p(r; ĥ, σ̂2

1
,H1) =

1
(

π
Np

(

E − |c|2

Np

))Np
exp(−Np). (A.18)

1Note that ∂h
∗

∂h
= 0 and therefore

∂|h|2

∂h
= h

∗.
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A.1.2.3 Likelihood Ratio

Dividing (A.18) by (A.8) results in the likelihood ratio

LG =





π
Np

E

π
Np

(

E − |c|2

Np

)





Np

=

(

1

1− |c|2

ENp

)Np

.

(A.19)

We will now show that the denominator of LG is nonnegative and equals zero if and only if

σ2

w = 0, i.e. w = 0: Using the Cauchy-Schwarz inequality, we find that

|c|2 = |pHw|2 ≤ ‖p‖2 · ‖w‖2 = Npw
Hw, (A.20)

with equality if and only if p andw are linearly dependent, i.e.w = λp with a constant λ ∈ C.

But sincew is a random vector if σ2

w > 0, Pr{w = λp;λ ∈ C} = 0. Furthermore, from (A.20)
follows

|pHw|2 ≤ Npw
Hw (A.21)

⇐⇒ (hNp + pHw)(h∗Np +wHp) ≤ (h∗pH +wH)(hp+w)Np (A.22)

⇐⇒ pH(hp+w)(h∗pH +wH)p ≤ rHrNp (A.23)

⇐⇒ (pHr)(rHp) ≤ rHrNp (A.24)

⇐⇒
|c|2

ENp

≤ 1. � (A.25)

Since in practice σ2

w > 0, it can be safely assumed that the denominator ofLG is always positive.

The GLRT decides in favor ofH1 if LG is larger than a threshold γ
′. Rearranging (A.19) yields

(

1

1− |c|2

ENp

)Np

> γ′ (A.26)

⇐⇒
|c|2

E
> Np

(

1− γ′−
1

Np

)

= γ. (A.27)

The GLRT can therefore be stated as follows:

|pHr|2

rHr

H1

≷

H0

γ, (A.28)

which finally leads us to Equation (2.2) if we reintroduce the time index n.


