A Mathematical Derivations

A.1 Frame Synchronization

In this section, we give some theoretical background on the frame synchronization problem and
derive the decision rule (2.2).

A.1.1 Problem Statement

The frame synchronization works as follows: Each data frame starts with a known preamble of
N, symbols. Now, in every time step n, the receiver must decide if the most recently received
N, symbols are the preamble, distorted by noise, or if the symbols are noise only.

We denote the known preamble sequence as pli], i = 0,..., N, — 1, summarized in the vector
p. The preamble symbols are assumed to have unit energy, i.e. | p[ ]|> = 1. The N, most recently
received symbols at time instant n are denoted as the vectorr,, = (r[n— N, +1],...,r[n])". In
order to keep the following discussion general, we assume that the signal is attenuated by an un-
known factor and also has an unknown phasing. These effects can be expressed by multiplying
the transmitted signal with a complex channel coefficient h.

The problem is now to decide between the following two hypotheses:
Ho:r, =W
(A.1)
Hyir, = hp +w,

where the entries of the vector w are complex Gaussian distributed random variables with zero
mean and variance o2, denoted as w[n] ~ CAN(0,02). The PDF of the complex Gaussian

distribution is | ‘2
1 w
p(w) = ) exp <—g> : (A.2)

Because the noise symbols are statistically independent, the distribution of the vector w is given
as the product of the distributions of the individual random variables:
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A.1.2 The Generalized Likelihood Ratio Test

The problem (A.1) is a standard problem in detection theory. The approach is to calculate the
likelihood ratio L(r,), which is defined as the ratio of the likelihood that hypothesis H; is true
and the likelihood that hypothesis H, is true, given the received data r,,:

Lir,) = 2Eni#) (A.4)

p<rn; HO)

The likelihood ratio is then compared to a threshold v, and the following decision is made: If
L(r,) > 7, decide that H; is true, otherwise decide that H, is true.

The problem in our case is that the PDF of r,, depends on the unknown noise variance o2,
and in case of H; also on the unknown channel coefficient h. This leads us to the Generalized
Likelihood Ratio Test (GLRT), where the unknown parameters are replaced by their Maximum
Likelihood Estimates (MLEs). The decision rule is as follows: Decide in favor of #; if

p(rn; il, &%7 %1)

L pu—
G(rn) p(rm&g,%o)

> (A.5)

where / and 62 are the MLEs of h and o2 under the assumption of ;.

In the following, we will calculate the PDFs p(r,; 62, Ho) and p(r,,; h, 6%,H1) and finally the
likelihood ratio L. For convenience, we will replace r,, by r, because the time index is not
important here.

A.1.2.1 Distribution of r assuming H,

Under the assumption of H,, i.e. r = w, the joint PDF of r is
52 Ho) = —o Lyt A6
p(r; 05, Ho) = L exp —&81“ r), (A.6)

where 62 is the estimate of 02 that maximizes (A.6). By differentiating (A.6) with respect to 67
and setting it to zero, it can easily be shown that

6o = N%, rfir. (A.7)
Substituting (A.7) into (A.6) yields
9 1
p(r; 65, Ho) = — exp(—N,). (A.8)
(Nlerr

A.1.2.2 Distribution of r assuming 7,

In this case,

~ 1 1 N R
p(r;h, 67, H1) = (5% exp (—g (r — hp)™(r — hp)) ; (A.9)
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where &f and h are the estimates of afv and h, respectively, that maximize (A.9). Since p and w
are uncorrelated, the best estimate of the noise power is

62 = ErHr— |n|?, (A.10)

i.e. the total received power minus the signal power.

The parameter h now has to be chosen in order to maximize

pr; h, Hy) = L e <—5 e he t WNP) , (A11)
A A L
where, for the sake of simplicity, the abbreviations
E=rlr (A.12)
for the energy of the received sequence, and
c=pir (A.13)

for the output of the correlator filter have been introduced. The derivative of (A.11) with respect
to h is'

. £ —Npd & — h*c— he* + |h2N,
Zp(r;h, Hy) = Nyh ( (——WQ)) exp | — 7 2' m
Np ~ — |h

£ A\ Y £ — h*c — he* + |h)2N,
B E_W exp | — = (A.14)

(—¢" + BN (& — |hf?) + (€ = h*e — he* + [hPN,) h
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Setting (A.14) to zero provides

* — & 4 260* — B2
Nymh ¢t k c (A.15)
0 (N% - |h|2> (i _ |h|2>
= —N,hh*? + h*%c — ER* + e =0 (A.16)
with the solution X c
h=— A.17
N (A1)
as can easily be verified.
Substituting (A.10) and (A.17) into (A.9) results in
L 1
p(r;h, 67, Hy) = Ry exp(—N,). (A.18)
(% (¢-%))

'Note that ah = 0 and therefore a‘hl = h*.
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A.1.2.3 Likelihood Ratio

Dividing (A.18) by (A.8) results in the likelihood ratio
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(A.19)

We will now show that the denominator of L is nonnegative and equals zero if and only if

02 =0, i.e. w = 0: Using the Cauchy-Schwarz inequality, we find that

[el* = "Wl < [Ip[I* - [w]* = N, w'w,

(A.20)

with equality if and only if p and w are linearly dependent, i.e. w = A\p with a constant A € C.
But since w is a random vector if 02, > 0, Pr{w = Ap; A € C} = 0. Furthermore, from (A.20)

follows

Ipw|* < N, wlw

(AN, + p'w)(h*N, + wp) < (h*p" + w)(hp + W) N,

<~
— p(hp+w)(rp? +w)p <rfrN,
= (pr)(rp) < r¥r N,
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(A.21)
(A.22)
(A.23)
(A.24)

(A.25)

Since in practice o2 > 0, it can be safely assumed that the denominator of L is always positive.
The GLRT decides in favor of H; if L is larger than a threshold 4. Rearranging (A.19) yields

1 e
<71 EB ) > ’7/
-5
| 2

_ 1
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The GLRT can therefore be stated as follows:

ptrf2
7 Z 7,
Ho

which finally leads us to Equation (2.2) if we reintroduce the time index n.
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