
1. Fully differential folded cascode OTA: Procedural sizing

The purpose of this section is to provide the sizing procedure of the following OTA step-by-step. Starting by choosing circuit-level parameters (specifications) and propagating them to transistor level.

The technology used is CMOS 80nm 1.8V devices and their parameters are:

Parameter		Unit		
		Extracted		
PMOS		40	. mr	
Kp	NMOS	208	μ A/V ²	
T T	PMOS	16	T 7/	
Ua	NMOS	5	V/µm	
	PMOS	1.3		
n	NMOS	1.2	-	
	Cox	8.3	fF/μm²	

The OTA, have to meet the following specifications.

Doromatar	Value	I Init		
Parameter	Specification		Unit	
Open-loop gain	> 70		dB	
GBW	60		MHz	
Slew rate [SR]	50		V/µs	
Load capacitors $[C_L]$	100		fF	

Family Name:	First Name:	
Test	29/11/2019	8h15/10h45

1.1. Bias currents

_		Parameter	Expression	Value	Unit	Guideline
	ias	I_0	I_0		μΑ	
	В	I_1	$1,2 imes rac{I_o}{2}$		μΑ	

1.2. Differential pair

Determine the transconductance, inversion factor and W/L ratio of the differential pair.

	Parameter	Expression	Value	Unit	Guideline
Differential pair	$g_{m1,2}$			μS	
	$I_{f1,2}$			-	
Diff	$rac{W_{1,2}}{L_{1,2}}$			-	

1.3. Folded cascade load

The 8 transistors composing the folded cascode stage will now be sized.

Determine the inversion factor and W/L ratio of these transistors to:

- Keep all saturation voltages of m 9,10, m 7,8, m 5,6 small
- Minimize the noise and offset contribution of m₃ and m₄
- For simplification, only two values will be chosen for the inversion factor: $I_F = 10$ or $I_F = 1$.

	Parameter	Expression	Value	Unit	Guideline
olded	$rac{W_{5}}{L_{5}}$				
Fol	$rac{W_7}{L_7}$				

Family Name:	First Name:	<u>.</u>	
Cest	29/11/2019	8h15/10h45	

$rac{W_9}{L_9}$		
$rac{W_3}{L_3}$		

Calculate the output resistance necessary to meet the open-loop gain specification.

-	Parameter	Expression	Value	Unit	Guideline
Rout	R _{out}			ΜΩ	

Neglecting the conductance of the differential pair (assume $g_{ds1} \approx 0.5 g_{ds3}$), determine the conductance and length of all transistors so that:

- The specified open-loop gain is achieved
- The NMOS and PMOS resistances at the output node are balanced ($R_{up} = R_{down}$)
- The total area of the folded cascade stage is minimized (in the order of $85 \mu m^2$)
 - m₇ and m₉ have the same length
 - The length of m_3 is two times the one of m_5

	Parameter	Expression	Value	Unit	Guideline
	$n_{n,p} \times g_{m5,7}$			μS	
	R_{up}			МΩ	
Rout	$L_7 \times L_9$			μm ²	
RC	L_9			nm	$L_7 = L_9$
	L_7			nm	$L_7 = L_9$
	R_{down}			ΜΩ	

$L_3 \times L_5$		μm ²	
L_5		μm	$L_3 = 2L_5$
L_3		μm	$L_3 = 2L_5$

Calculate the width of all transistors.

	Parameter	Expression	Value	Unit	Guideline
	W_3	$\frac{W_3}{L_3} \times L_3$		μm	
Rout	W_5	$\frac{W_5}{L_5} \times L_5$		μm	
Rc	W_7	$\frac{W_7}{L_7} \times L_7$		μm	
	W_9	$\frac{W_9}{L_9} \times L_9$		μm	

1.4. Differential pair finalization & Current source

Find the length and the width of the differential pair.

Parameter	Expression	Value	Unit	Guideline
L_1			nm	$g_{ds1} \le 0.5 g_{ds3}$
W_1			μm	

Parameter	Expression	Value	Unit	Guideline
L_{B1}			nm	
W_{B1}			μm	

Family Name:	First Name:	<u>.</u>
Test	29/11/2019	8h15/10h45

1.5 Offset Estimation:

In case of the above folded cascade, give the expression of the input referred offset that include the contribution of Differential pair: m_{1,2}; Folded cascode: m_{3,4} and Active load: m_{9,10}

$$\sigma_{Vos}^{2} =$$

$$\sigma_{I_{D}(\beta,V_{T0})}^{2} = \sigma_{\beta}^{2} \left(\frac{\partial I_{D}}{\partial \beta}\right)^{2} + \sigma_{V_{T0}}^{2} \left(\frac{\partial I_{D}}{\partial V_{T0}}\right)^{2}$$

$$= \sigma_{\beta}^{2} \left(\frac{I_{D}}{\beta}\right)^{2} + \sigma_{V_{T0}}^{2} \left(g_{m}\right)^{2}$$

$$= \sigma_{\beta}^{2} \left(\frac{I_{D}}{\beta}\right)^{2} + \sigma_{V_{T0}}^{2} \left(g_{m}\right)^{2}$$

1.6 Common-mode feedback CMFB

Propose a CMFB circuit that use two differential pairs to tune the gate voltage of MB1 and set the common-mode output voltage to $V_{DD}/2$. Show how this CMFB circuit is connected to the fully differential cascode OTA (i.e. give the name of its input and output nodes):

CMFB schematic:

Family Name:	First Name:	<u> </u>
Test	29/11/2019	8h15/10h45

1.7 Propose and size an optimal biasing circuit for V_{Bias0-3}