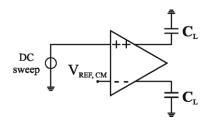

Parameter		Value Extracted	Unit	
17	PMOS	90	A /X 12	
Kp	NMOS	220	$\mu A/V^2$	
TT	PMOS	10	1 7/	W -12W
Ua	NMOS	14	V/µm	$V_{DD}=1.2 \text{ V}$ $V_{ss}=0 \text{ V}$
	V_{T0}	0.4	V	
	PMOS	1.25		
n	NMOS	1.2		
Co	X	13	$fF/\mu m^2$	
C_{c}	OV	0.2	fF/μm	

1. Analyse the functionality of a comparator

Comparator with the internal positive feedback

Describe in your own words how this comparator works taking into account the inverter transfer characteristics reported here and supposing a positive feedback factor k=1.


VOH	1.2 V
VOL	0 V
VM	0.6 V
VIH	~ 0.7 V
VIL	~ 0.5 V

		•••••			
·					
2. Size the comparator					
 Creat the schematic of the comparator and name it (Set the initial transistor sizes in order to minimize the below and explain briefly your calculations. The bias transistor m_{B1} has to be sized to provide the Choose the positive feedback factor k = 1; Set the size positive feedback transistors with minimum 	e parasitic capacitances e differential pair tail on making $W=L=L_{min}=65n$	arrent $I_0 = 4 \mu A$.	-		
$ \begin{tabular}{ll} \bullet & Size the differential pair transistors to operate in stretch \\ \bullet & Size the inverter with minimum size and to have $V_{\rm M}$ \\ \hline \end{tabular} $		and $L = 2L_{\min}$.			
		and $L = 2L_{min}$. W [μ m]	L [µm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$_{\rm M} = { m V}_{ m DD}/2$	T	L [µm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	M = V _{DD} /2 Transistor	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$\mathbf{M} = \mathbf{V}_{DD}/2$ $\mathbf{Transistor}$ $\mathbf{M}_{1,2}$	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$\mathbf{M} = \mathbf{V}_{\mathrm{DD}}/2$ $\mathbf{M}_{1,2}$ $\mathbf{M}_{3,6}$	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$M = V_{DD}/2$ $\begin{array}{c} \textbf{Transistor} \\ \hline M_{1,2} \\ \hline M_{3,6} \\ \hline M_{4,7} \\ \end{array}$	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$M = V_{DD}/2$ $\begin{array}{c} \textbf{Transistor} \\ \hline M_{1,2} \\ \hline M_{3,6} \\ \hline M_{4,7} \\ \end{array}$	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$M = V_{DD}/2$ $\begin{array}{c} \textbf{Transistor} \\ \hline M_{1,2} \\ \hline M_{3,6} \\ \hline M_{4,7} \\ \end{array}$	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$M = V_{DD}/2$ $\begin{array}{c} \textbf{Transistor} \\ \hline M_{1,2} \\ \hline M_{3,6} \\ \hline M_{4,7} \\ \end{array}$	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$M = V_{DD}/2$ $\begin{array}{c} \textbf{Transistor} \\ \hline M_{1,2} \\ \hline M_{3,6} \\ \hline M_{4,7} \\ \end{array}$	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$M = V_{DD}/2$ $\begin{array}{c} \textbf{Transistor} \\ \hline M_{1,2} \\ \hline M_{3,6} \\ \hline M_{4,7} \\ \end{array}$	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$M = V_{DD}/2$ $\begin{array}{c} \textbf{Transistor} \\ \hline M_{1,2} \\ \hline M_{3,6} \\ \hline M_{4,7} \\ \end{array}$	T	L [μm]		
\bullet Size the inverter with minimum size and to have $V_{\rm M}$	$M = V_{DD}/2$ $\begin{array}{c} \textbf{Transistor} \\ \hline M_{1,2} \\ \hline M_{3,6} \\ \hline M_{4,7} \\ \end{array}$	T	L [μm]		

3. Perform the DC analysis

Testbench_COMP_DC

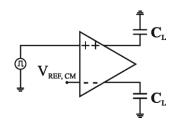
The reference voltage connected to the negative input is equal to 0.6V. The load capacitances correspond to the input parasitic capacitances of a D flip-flop, $C_L = 2fF$.

- Create the Testbench COMP DC cell.
- Choose **DC Analysis** and set the simulation parameters to sweep Vin+ from 0 to V_{DD} .
- In order to plot the transfer curves, use the vs button and then choose in the schematic the corresponding node.

Note: The schematic has hierarchy, to visualize the transistors of the comparator you have to select the COMP FD symbol in the schematic and descend into the transistor level view:

1 - First run Perform the DC analysis for the initial transistor sizes. Descend to schematic view of the COMP cell and plot the following voltages: vs (OUTn), vs (OUTp), vs (OUT+), vs (OUT-). If the comparator does not switch the state. Explain why: 2 - Second run: Same current, different sizes If necessary, resize the positive feedback transistors, keeping I₀ = 4 μA and k=1, in order to correctly switch the states.

(W/L) =	W ₃	$= \mathbf{W}_4 = \mathbf{W}_5 = \mathbf{W}_6 =$	= μm,	$\mathbf{L}_3 = \mathbf{L}_4 = \mathbf{I}$	$L_5 = L_6 = $	μm
Choose the po	es and repeat the ositive (OUTp input of the in-	or negative (OU	Tn) output to	neasure the po	ositive and no	egative saturation
$\mathbf{V}_{\mathrm{SAT+}} = \underline{\hspace{1cm}}$	V,	$V_{SAT-} = \underline{\hspace{1cm}}$	V			
3 - Third ru	n: Same size	s, different curr	ent			
to correctly sv	witch the states	ransistor m _{B1} , keep				
$(I_0)_{\min} = $	μΑ	$\mathbf{W}_{mB1} = \underline{\hspace{1cm}}$	μm,	$L_{mB1} = \underline{\hspace{1cm}}$	μm	
Choose the po	es and repeat the ositive (OUTp input of the investment)	or negative (OU	Tn) output to 1	measure the po	ositive and no	egative saturation
$V_{SAT+} = \underline{\hspace{1cm}}$	V,	$V_{SAT-} = \underline{\hspace{1cm}}$	V			
• Det	termine analy	tically				
Set the positi	ve feedback tr	ansistors to mini	mal dimension	s.		
		o provide the diffe strong, moderate a				ze the differential



I _{F diff pair}	W/L diff pair	W diff pair
20		μm
10		μm
1		μm
0.1		μm

• Perform the transient analysis

Testbench_COMP_TRAN

- Create the **Testbench_COMP_TRAN** cell.
- Choose Transient Analysis and set the simulation parameters.
- Run the simulation.
- In order to plot the transfer curves, use the vt button and then choose in the schematic the corresponding node.
- Determine large signal response delay:

Set the pulse voltage source parameter **Voltage 1** to **0.2V** and **Voltage 1** to **1V**. Perform transient analysis. Plot the following voltages: **vt (IN+)**, **vt (OUTn)**, **vt (OUT+)**.

Fill in the table:

I _{F diff pair}	t _d (IN+, OUT+)	t_d (IN+, OUTn)	t _d (OUTn, OUT+)
20	ns	ns	ns
10	ns	ns	ns
1	ns	ns	ns
0.1	ns	ns	ns

Comment the result	ts:		
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •••••	

			• • • • • • • • • • • • • • • • • • • •		••
•	Determine small	signal response delay:			
		e parameter Voltage 1 to Plot the following voltage			
CITOIII	i transferit anarysis.	That the following voltage	,cs. vt (11 v), vt (0 0 1 h), vi (001+).	
Fill in t	he table:				
	I _{F diff pair}	t _d (IN+, OUT+)	t _d (IN+, OUTn)	t _d (OUTn, OUT+)	
	20	ns	ns	ns	
	-0	115		110	
	10	ns	ns	ns	
	10	ns	ns	ns	
	1	ns	ns	ns	
Comme	0.1	ns ns	ns	ns	
Comme	1	ns ns	ns	ns	
Comme	0.1	ns ns	ns	ns	
Comme	0.1	ns ns	ns	ns	

• Set the differential pair dimensions as calculated for $I_F=1$ and $I_0=8~\mu A$.

Set the pulse voltage source parameter $Voltage\ 1$ to 0.2V and $Voltage\ 2$ to 1V. Compare the response delay for different I_0 values.

I_0	t _d (IN+, OUT+)	t _d (IN+, OUTn)	t _d (OUTn, OUT+)
8 μΑ	ns	ns	ns
16 μΑ	ns	ns	ns
32 μΑ	ns	ns	ns

Comment the results:

