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Semi-Custom (Digital) ASIC Design Flow

• Semi-custom design flow: 

▪ Starts from a Register Transfer Level 

description in a hardware description 

language (HDL)

▪ Front-end flow: handles the transition 

from RTL to the gate level

▪ Back-end flow: handles the transition from 

a netlist to physical design data

• Each step is always accompanied by 

verification

▪ Check functionality, timing, and physical constraints
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Front-End Design Flow Details

• Provide a functional netlist for the backend flow that has a chance (with 

further optimization) to meet requirements after physical design 
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Logic Synthesis

• Logic synthesis converts a generic RTL design into a technology-specific 

(gate-level) netlist of standard-cells
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Synthesis in the Design Flow

• When designing a chip, you iterate between 

▪ updating/improving a design

▪ synthesizing the design 

▪ analysing the design parameters (e.g., area/timing)

• The analysis of design characteristics is a part of 

the synthesis process

▪ Static timing analysis

▪ Area analysis 

▪ Power analysis

• Synthesis and analysis of a complex design can take days and involve 

hundreds of steps and commands

▪ Trust me: you will do every step more than once even when you think the design is finished

EE-429: Fundamentals of VLSI Design 5

area, timing, power

SYNTHESIS

ANALYSIS

REPORTING



Synthesis in the Design Flow

• Synthesis process needs to be automated to be efficient and reproducible

▪ All modern EDA tools support extensive scripting, usually based on TCL

• EDA is always a transition from interactive work to automated scripts

▪ First iteration: develop your commands and constraints interactively and keep in scripts

• Sometimes done using the GUI, but usually much faster and more flexible on the command line

▪ Later: run and modify your scripts
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RTL Synthesis Objectives

• RTL synthesis is an optimization process with various objectives:

▪ Functionality: turn an abstract behavioural description of logic into a 

▪ Design rules: assure compliance with basic electrical design rules that ensure accuracy and 

compliance with library and process specifications

▪ Timing (set by the designer): meet requirements on speed/timing (e.g., clock period)

▪ Area (set by the designer): minimize area (or even meet a maximum area requirement)

▪ Power (set by the designer): minimize active and leakage power consumption
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RTL Synthesis Steps (Overview)

• Synthesis process is broken into steps

▪ Tool setup defines technology information and libraries

▪ Read and expand the HDL design into a form that can be 

processed further and is more structured than the HDL code

▪ Definition of the design requirements and constraints 

by the designer

▪ Synthesis and optimization process mostly done “inside” the tool 

with some options to break it up into parts for complex designs

▪ Analysis and reporting to inspect the results and 

enable insights into issues to guide design improvements
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Iterations: Synthesis and Static Timing Analysis

• Static timing analysis (STA) determines the delay of a circuit, checks timing 

requirements, and identifies bottlenecks for optimization

• STA is a key component of digital circuit design

▪ Mostly managed by automatic EDA tools

▪ Used in several stages of the design 

• during synthesis to drive logic optimization

• during placement to optimize cell locations

• during routing to consider parasitics

• during sign-off to confirm timing requirements

• Need an efficient way to rapidly analyse 

timing of large designs
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Timing View with Liberty (.lib) Files

• Analog simulation is too complex, but models such as the logical effort 

model are not sufficiently accurate

▪ .lib files provide abstract timing information about a library or a single cell

• Lib files are comprised of various parts: 

▪ General information about the library:

• Operating conditions, wireload models, 

general information on the delay models

▪ Cell information that is specific to each cell:

• Cell function, Cell area and footprint

▪ Pin information for each pin of a cell:

• Propagation delays, transition times (slopes), 

timing requirements (setup/hold), capacitance, 

active power, leakage power, direction, type
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STA: Delay Calculation

• Computing cell delays requires an abstract model of the cell delay that is 

adjusted to the “context” of the cell

• Non-linear delay model (NLDM): 

▪ Cell-delay (and constraints for FFs) 

depends on 

• Input slope : output slope of 

the preceding cell

• Output load

▪ Cell-delays and output-slopes are 

pre-computed and stored
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NLDM Delay Information in .lib Files

• .lib files provide delay information in plain-text (ASCII) tables

▪ Tables are parameterized on slope and transition of related input pin

▪ For combinational cells we use 

• Propagation delays for 

rising and falling edges

• Slopes as rise and fall times

▪ For sequential cells, we use 

• Setup and hold constraints 

for rising and falling inputs 

related to 
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Modelling Power Consumption in .lib File

• Power consumption is also modelled with LUTs

• We distinguish between Static Power and Dynamic Power

• Dynamic Power is further partitioned into 

▪ Internal power: all the power consumed inside the cell boundary is independent of the context

and can be tabulated in the .lib file

▪ Switching power: depends on the context and is computed during power analysis 

• Caveat: power consumed by switching “output capacitance” can either be part of 

the internal (output capacitance set to zero) or switching power (output 

capacitance set to its actual value)
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Covering Different PVT Corners

• Electrical (timing and power) characteristics of integrated circuits vary with
▪ Process corner

▪ Temperature

▪ Supply voltage

• Circuits need to work under all conditions
▪ Timing properties do not change equally

across corners!!

▪ Difficult/impossible to predict behavior/
timing from corner model to another corner

• Characterization needed for each cell for each relevant corner 
▪ Old technologies (down to 65nm: usually 2-4 corners are sufficient (SS/FF)

▪ Modern technologies <65nm: hundreds of corners
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Automatic Characterization of Standard Cells

• Standard cells are characterized with extensive simulations

• Tools automate this 

flow with generated 

testbenches and 

scripts
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The Synthesis Environment

• RTL synthesis runs in a dedicated sub-directory and your project

• In this directory, you find typically

▪ Setup/configuration files for the synthesis tool (e.g., .synopsys_dc.setup)

▪ Folders for synthesis reports & outputs: RPT, TIM

▪ Folders for synthesis scripts (command sequences): BIN

▪ Folders for constraint files: SDC

▪ Links to HDL files and library views of standard cells and IP macros.

▪ Temporary design libraries
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The Simulation Environment & Libraries

• RTL synthesis work with temporary libraries, an internal (in memory) 

database and references to abstract models of standard cells and IP macros
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Tool Setup: Reading Libraries and IPs

• Synthesis relies on libraries for the synthesis process and designs often 

include other designs as IP macros (e.g., memories)

▪ Similar to the simulator (and following the HDL convention) we use libraries as a resource

• Tool setup is handled in a start-up script: 

▪ .synopsys_dc.setup : located in the run-directory of design compiler 

▪ Setup script defines (among other things):

• Target libraries : libraries of standard-cells cells used for 

technology mapping during synthesis

• Link libraries : libraries containing descriptions of leaf cells, macros and IPs instantiated in the design 

(e.g., memories or IO cells) – generals includes also the target libraries

• Synthetic libraries : libraries of complex 

functions generated during synthesis (e.g., arithmetic)

• Design libraries : libraries containing the design itself 

(i.e., the synthesis result)

EE-429: Fundamentals of VLSI Design 18



Reading the HDL Design

• HDL designs are first compiled into an internal representation

▪ Reads an HDL source file and performs HDL syntax checking and Synopsys rule checking

▪ Checks file for errors without building generic logic for the design

▪ Creates HDL library objects in an intermediate format, stored in the design_library

• Elaboration maps a design from the design_library to a technology-

independent, unoptimized/un-timed logical structure  (GTECH elements)

▪ Substitutes design parameters (GENERICS) 

▪ Bind all leaf cells to provided libraries

▪ Evaluates and unrolls loops and generate statements

▪ Replaces arithmetic operators with DesignWare components from the synthetic_library

▪ Converts RTL into Boolean structure and infers registers
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analyze -library work -format VHDL|verilog <VHDL or Verilog File Name>

elaborate <Entity Name> -library work



Checking the Elaboration Report

• Elaboration generates a data base in the memory (can be saved as .ddc file)

• Elaboration reports many interesting points:

▪ Provides details on design hierarchy 

▪ Reports missing instances for which no HDL was available and which could not be found in 

• the database of previously analyzed HDL files

• in the memory database of the tool (not loaded)

• in any of the link libraries

▪ Provides details on the inferred registers (and possibly inferred latches)
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Design Objects

• Designs are comprised of several objects that carry particular names

▪ Design: A circuit description that performs 

one or more logical functions (i.e Verilog module)

▪ Cell: An instantiation of a design within another 

design (i.e. VHDL/Verilog instance)

▪ Reference: The original design that a cell "points to" 

(i.e. VHDL/Verilog sub-module)

▪ Port: The input, output or inout port of a Design

▪ Pin: The input, output or inout pin of a Cell in the Design

▪ Net: The wire that connects Ports to Pins and/or Pins 

to each other.

▪ Clock: Port of a Design or Pin of a Cell explicitly defined 

as a clock source
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Static Timing Analysis (STA)

• STA drives the synthesis process and checks after synthesis if constraints are met

• Reminder: STA checks timing constraints for four path groups: 

▪ Register-to-register paths

▪ Input-to-register paths

▪ Register-to-output paths

▪ Input-to-output paths
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Specifying Timing Constraints

• Synthesis is heavily driven by timing

▪ Need to define expectations to enable timing analysis

• We usually define our expectations (optimization objectives) in three ways

▪ Clock definitions : define the clock signals and periods

▪ Modelling the world external to the chip : define delays of connected designs

▪ Explicit timing requirements : define explicit delay expectations

▪ Timing exceptions : define unusual timing conditions (USE ONLY WITH GREAT CARE)
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Specifying Clocks

• Clocks are the basis for different constraints

• Clocks are defined by 

▪ Clock period : basic timing requirement

▪ Clock name : used later to relate other timings to a clock)

▪ Pin to which it is attached : to identify affected sequential elements

• Some designs can have multiple clocks (use with care)

▪ Clocks can be derived from a mother clock with a ratio

▪ Clocks can be fully independent clocks
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create_clock –period <period> –name <clock name> [get_ports <clock root port>]

create_generated_clock –name <clock name> -source [get_ports <from clock>] 
–divide_by <factor> [get_pins <clock root pin|port>]

from

clock

new clock

root



Anticipating Non-Ideal Clocks

• Clock signals must be distributed to the connected sequential elements

▪ During synthesis, high quality clock distribution is not possible (no knowledge on layout)

▪ Clock-tree insertion (clock distribution) is deferred to the layout stage

• Two common approaches to model clocks during synthesis
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Assume ideal clocks Anticipate clock non-idealities

set_clock_transition <value> <clock>
set_clock_latency <value> <clock>
set_clock_uncertainty <value> <clock>
set_clock_jitter <value> <clock>

set_ideal_network <port|net>

set_dont_touch <port|net>



Specifying Input/Output Timing Conditions

• Constraints for input- and output-logic are defined by surrounding blocks

▪ Input-to-register constraint: depend on output delay of previous block

▪ Register-to-output constraint: depend on input delay of next block

▪ Delays can be defined for each input/output individually or for multiples (see example)

▪ Input and output delays must be defined relative to a clock

▪ Pay attention not define input delays for clock ports
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set_input_delay <value> –clock <clock> [remove_from_collection [all_inputs] [get_ports <clock port>]]
set_output_delay <value> –clock <clock> [all_outputs]



Specifying Electrical Boundary Conditions

• Any circuit or sub-circuit is always connected 

to other circuits

▪ Electrical characteristics of the interface influence the timing 

and of the circuit under considerations

• Need to define boundary conditions

▪ Load on the outputs that must be driven to provide sufficient drive strength for the outputs

▪ Drive strength of the inputs to avoid overly large fanout of the inputs
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loaddrive

set_load <load_capacitance> [all_outputs]
set_load [load_of lib/cell/pin] [all_outputs]

set_driving_cell –lib_cell <cell name> –pin <pin_name> [remove_from_collection [all_inputs] [get_ports <clock>]]

set_drive <driver resistance> <port> # NOT RECOMMENDED (INACCURATE with NLDM)
set_input_transition <transition time> <port>



Synthesis and Optimization

• Once the design is elaborated and constraints are defined, we can start the 

actual synthesis & optimization

• Design compiler integrates the entire synthesis into one command with 

many options to control the optimization

▪ compile vs. compile_ultra : different optimizations turned on, depending on your license

▪ - exact_map : skip many optimizations to obtain a mostly exact RTL mapping

▪ - incremental : re-run the logic optimization on an already compiled design to improve further

▪ - map_effort [low|medium|high] : tradeoff between run-time and quality

▪ - retime : allow moving registers to balance pipelines (works only when registers are already in 

a good place (only small moves allowed)

▪ ‐ boundary_optimization : allow optimization across hierarchy boundaries
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Synthesis of Datapath Operations

• Complex datapath operations are implemented in a special way

▪ Initially, they are not part of the logic synthesis (no immediate translation into logic)

▪ Many people have spent their time on optimal arithmetic circuits

• Special datapath libraries/compilers are used to generate arithmetic ops.

• Synopsys and cadence refer to these as DesignWare and ChipWare IP
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Reporting

• We are interested in various design metrics which can be reported: 
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report_area

report_timing



Exporting Design Data

• Design database and further design information can be saved in different 

formats to restore later or to proceed to other steps in the design flow
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Exporting the Design Data

• Writing out a complete design database to be used in design compiler

• Exporting a Verilog netlist

▪ Structural Verilog is the de-facto standard for digital netlists

▪ Change names in the design to meet Verilog conventions
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change_names ‐rules verilog ‐hierarchy ‐verbose
write -hierarchy -format verilog –output <file name>



Exporting the Design Data

• Writing out a complete design database to be 

used in design compiler

• Exporting timing information for simulations

▪ The SDF file contains timing information for all timing 

arcs

▪ This information is used by the Verilog models of 

standard cells and IPs to behave accordingly in 

the gate-level simulation

EE-429: Fundamentals of VLSI Design 33

write_sdf -version 2.1 <file name>

(DELAYFILE
(SDFVERSION "OVI 2.1")
(DESIGN "alu32top")
(DATE "Wed May  9 11:47:29 2018")
(VENDOR "fsd0a_a_generic_core_ss0p9v125c")
(PROGRAM "Synopsys Design Compiler cmos")
(VERSION "J-2014.09-SP5")
(DIVIDER /)
(VOLTAGE 1.10:0.90:0.90)
(PROCESS "BCCOM:WCCOM:WCCOM")
(TEMPERATURE -40.00:125.00:125.00)
(TIMESCALE 1ns)
...
(CELL

(CELLTYPE "INVX2")
(INSTANCE U3)
(DELAY

(ABSOLUTE
(IOPATH I O (0.229:0.483:0.483) 

(0.118:0.268:0.268))
)

)
)
...



Post Synthesis Gate Level Simulations

• Simulate the design (netlist) after synthesis to 

▪ Verify correct functionality: in most cases unnecessary as synthesis rarely makes mistakes 

when RTL code is written “properly” according to the rules of synchronous design

▪ Obtain initial indication of toggle activity for initial power analysis

• Post-synthesis simulation results should be taken with lots of care:

▪ Timing is far from accurate as layout parasitics are not yet included

▪ No clock or reset tree included in the design (ideal clock)

▪ Backend will still heavily modify the design to account for parasitics (buffer insertion, re-

synthesis of critical path, addition of a clock tree, …)
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Post Synthesis Gate Level Simulations

• For a Gate level simulation, the following information is requires

▪ The netlist of the synthesized design: provided by the synthesis tool

▪ The delay information for each gate (per instance) in the design: provided by the synthesis tool

▪ Models for the instantiated leaf-cells (e.g., standard-cell or memories): 

provided as part of the IP (standard-cell libraries and IP macros)

• Beahvioral model for these cells in VHDL or Verilog

• Models must also model the timing/delay and check potential constraints (e.g., setup/hold times)

• Timing parameters (delays/constraints) must connect to the timing provided by the SDF

=> BACKANNOTATION
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Post Synthesis Gate Level Simulations

• When calling the simulator, we must provide all this information and “link” 

the timing to the relevant part of the design
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> vsim
-L .../MGC_QSIM/DLIB/umc_65nm_ll_uk65lscllmvbbr_sdf21_vlog 
-sdftyp duv=.../SNPS_DC/TIM/alu32top_rtl_clk3ns_mapped_vlog.sdf 
ALU32-MAPPED.alu32top_tb_conf_mapped 
-t ps -voptargs=+acc

vhdl/.vTestbench &

Netlist

Delay

information
.sdf

.v
Leaf-cell

models
From

Synthesis

From IP/Std.Cell

libraries

Compiled library of Verilog models 

for the standard cells

Timing information for 

every instance of the design entity “duv”

duvTB
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