
EE-429

Fundamentals of VLSI Design

The Semi-Custom

Frontend: Synthesis

EE-429: Fundamentals of VLSI Design 1

Andreas Burg

Semi-Custom (Digital) ASIC Design Flow

• Semi-custom design flow:

▪ Starts from a Register Transfer Level

description in a hardware description

language (HDL)

▪ Front-end flow: handles the transition

from RTL to the gate level

▪ Back-end flow: handles the transition from

a netlist to physical design data

• Each step is always accompanied by

verification

▪ Check functionality, timing, and physical constraints

EE-429: Fundamentals of VLSI Design 2

RTL Design

HDL Description

RTL Synthesis

Gate Level Netlist

Physical Design

Layout

Sign-Off & Tapeout

Fr
o

n
t-

en
d

B
ac

k-
e

n
d

V
e

ri
fi

ca
ti

o
n

Front-End Design Flow Details

• Provide a functional netlist for the backend flow that has a chance (with

further optimization) to meet requirements after physical design

EE-429: Fundamentals of VLSI Design 3

Logic Synthesis

• Logic synthesis converts a generic RTL design into a technology-specific

(gate-level) netlist of standard-cells

EE-429: Fundamentals of VLSI Design 4

standard-cell libraries IPs Technology Files

Timing
constraints

Floorplan
Clock tree

constraints
Power

planning

Synthesis
scripts

Backend
scripts

RTL code netlist

Synthesis in the Design Flow

• When designing a chip, you iterate between

▪ updating/improving a design

▪ synthesizing the design

▪ analysing the design parameters (e.g., area/timing)

• The analysis of design characteristics is a part of

the synthesis process

▪ Static timing analysis

▪ Area analysis

▪ Power analysis

• Synthesis and analysis of a complex design can take days and involve

hundreds of steps and commands

▪ Trust me: you will do every step more than once even when you think the design is finished

EE-429: Fundamentals of VLSI Design 5

area, timing, power

SYNTHESIS

ANALYSIS

REPORTING

Synthesis in the Design Flow

• Synthesis process needs to be automated to be efficient and reproducible

▪ All modern EDA tools support extensive scripting, usually based on TCL

• EDA is always a transition from interactive work to automated scripts

▪ First iteration: develop your commands and constraints interactively and keep in scripts

• Sometimes done using the GUI, but usually much faster and more flexible on the command line

▪ Later: run and modify your scripts

EE-429: Fundamentals of VLSI Design 6

Interactively develop

and build your scripts

Copy/paste from scripts

for step-by-step debug,

then run in batch mode

RTL Synthesis Objectives

• RTL synthesis is an optimization process with various objectives:

▪ Functionality: turn an abstract behavioural description of logic into a

▪ Design rules: assure compliance with basic electrical design rules that ensure accuracy and

compliance with library and process specifications

▪ Timing (set by the designer): meet requirements on speed/timing (e.g., clock period)

▪ Area (set by the designer): minimize area (or even meet a maximum area requirement)

▪ Power (set by the designer): minimize active and leakage power consumption

EE-429: Fundamentals of VLSI Design 7

RTL Synthesis Steps (Overview)

• Synthesis process is broken into steps

▪ Tool setup defines technology information and libraries

▪ Read and expand the HDL design into a form that can be

processed further and is more structured than the HDL code

▪ Definition of the design requirements and constraints

by the designer

▪ Synthesis and optimization process mostly done “inside” the tool

with some options to break it up into parts for complex designs

▪ Analysis and reporting to inspect the results and

enable insights into issues to guide design improvements

EE-429: Fundamentals of VLSI Design 8

Read Technology Files

Analyze the Design

Define Environment
& Constraints

Generic Synthesis &
Logic Optimization

Technology Mapping
& Optimization

Reporting & Export

Elaborate

Iterations: Synthesis and Static Timing Analysis

• Static timing analysis (STA) determines the delay of a circuit, checks timing

requirements, and identifies bottlenecks for optimization

• STA is a key component of digital circuit design

▪ Mostly managed by automatic EDA tools

▪ Used in several stages of the design

• during synthesis to drive logic optimization

• during placement to optimize cell locations

• during routing to consider parasitics

• during sign-off to confirm timing requirements

• Need an efficient way to rapidly analyse

timing of large designs

Fall 2020 EE-429: Fundamentals of VLSI Design 9

Logic Synthesis
& Optimization

Timing Driven
Placement

Timing Driven
Routing

Sign-Off

Static Timing Analysis

Static Timing Analysis

Static Timing Analysis

Static Timing Analysis

Timing View with Liberty (.lib) Files

• Analog simulation is too complex, but models such as the logical effort

model are not sufficiently accurate

▪ .lib files provide abstract timing information about a library or a single cell

• Lib files are comprised of various parts:

▪ General information about the library:

• Operating conditions, wireload models,

general information on the delay models

▪ Cell information that is specific to each cell:

• Cell function, Cell area and footprint

▪ Pin information for each pin of a cell:

• Propagation delays, transition times (slopes),

timing requirements (setup/hold), capacitance,

active power, leakage power, direction, type

Fall 2020 EE-429: Fundamentals of VLSI Design 10

STA: Delay Calculation

• Computing cell delays requires an abstract model of the cell delay that is

adjusted to the “context” of the cell

• Non-linear delay model (NLDM):

▪ Cell-delay (and constraints for FFs)

depends on

• Input slope : output slope of

the preceding cell

• Output load

▪ Cell-delays and output-slopes are

pre-computed and stored

11

Input

slope
Output

loads

Delay depends on:

• Output load

• Input slope

Slope depends on

• Output load

• Input slope

NLDM Delay Information in .lib Files

• .lib files provide delay information in plain-text (ASCII) tables

▪ Tables are parameterized on slope and transition of related input pin

▪ For combinational cells we use

• Propagation delays for

rising and falling edges

• Slopes as rise and fall times

▪ For sequential cells, we use

• Setup and hold constraints

for rising and falling inputs

related to

12

in
p

u
t tra

n
s
itio

n

output load

cell_rise cell_fall

rise_transition fall_transition

Modelling Power Consumption in .lib File

• Power consumption is also modelled with LUTs

• We distinguish between Static Power and Dynamic Power

• Dynamic Power is further partitioned into

▪ Internal power: all the power consumed inside the cell boundary is independent of the context

and can be tabulated in the .lib file

▪ Switching power: depends on the context and is computed during power analysis

• Caveat: power consumed by switching “output capacitance” can either be part of

the internal (output capacitance set to zero) or switching power (output

capacitance set to its actual value)

Fall 2020 EE-429: Fundamentals of VLSI Design 13

𝐸𝐴𝑂𝐼
𝐴 𝐵, 𝐶, 𝐷, 𝑡𝑟𝑓

𝐸𝐴𝑂𝐼
𝐵 𝐴, 𝐶, 𝐷, 𝑡𝑟𝑓

𝐸𝐴𝑂𝐼
𝐶 𝐴, 𝐵, 𝐷, 𝑡𝑟𝑓

𝐸𝐴𝑂𝐼
𝐷 𝐴, 𝐵, 𝐶, 𝑡𝑟𝑓

𝐸𝐴𝑂𝐼
𝑍 𝐶

𝐶𝐴𝑂𝐼
𝑍 𝐶𝐼𝑁𝑉

𝐴

𝐶𝑛𝑒𝑡

Covering Different PVT Corners

• Electrical (timing and power) characteristics of integrated circuits vary with
▪ Process corner

▪ Temperature

▪ Supply voltage

• Circuits need to work under all conditions
▪ Timing properties do not change equally

across corners!!

▪ Difficult/impossible to predict behavior/
timing from corner model to another corner

• Characterization needed for each cell for each relevant corner
▪ Old technologies (down to 65nm: usually 2-4 corners are sufficient (SS/FF)

▪ Modern technologies <65nm: hundreds of corners

14

PVT

corners

Automatic Characterization of Standard Cells

• Standard cells are characterized with extensive simulations

• Tools automate this

flow with generated

testbenches and

scripts

15

.lib => .dB (for Synopsys)

The Synthesis Environment

• RTL synthesis runs in a dedicated sub-directory and your project

• In this directory, you find typically

▪ Setup/configuration files for the synthesis tool (e.g., .synopsys_dc.setup)

▪ Folders for synthesis reports & outputs: RPT, TIM

▪ Folders for synthesis scripts (command sequences): BIN

▪ Folders for constraint files: SDC

▪ Links to HDL files and library views of standard cells and IP macros.

▪ Temporary design libraries

Fall 2020 EE-429: Fundamentals of VLSI Design 16

The Simulation Environment & Libraries

• RTL synthesis work with temporary libraries, an internal (in memory)

database and references to abstract models of standard cells and IP macros

Fall 2020 EE-429: Fundamentals of VLSI Design 17

.v,.vhd

.db

.lib

.db

.lib

Synthesis setup file(s)
(e.g., .synopsys_dc.setup)

analyze elaborate

compile

Link libraries

for IP macros &

standard cells

Target libraries

for standard cells

.ddc

Write or

read design

database

Tool Setup: Reading Libraries and IPs

• Synthesis relies on libraries for the synthesis process and designs often

include other designs as IP macros (e.g., memories)

▪ Similar to the simulator (and following the HDL convention) we use libraries as a resource

• Tool setup is handled in a start-up script:

▪ .synopsys_dc.setup : located in the run-directory of design compiler

▪ Setup script defines (among other things):

• Target libraries : libraries of standard-cells cells used for

technology mapping during synthesis

• Link libraries : libraries containing descriptions of leaf cells, macros and IPs instantiated in the design

(e.g., memories or IO cells) – generals includes also the target libraries

• Synthetic libraries : libraries of complex

functions generated during synthesis (e.g., arithmetic)

• Design libraries : libraries containing the design itself

(i.e., the synthesis result)

EE-429: Fundamentals of VLSI Design 18

Reading the HDL Design

• HDL designs are first compiled into an internal representation

▪ Reads an HDL source file and performs HDL syntax checking and Synopsys rule checking

▪ Checks file for errors without building generic logic for the design

▪ Creates HDL library objects in an intermediate format, stored in the design_library

• Elaboration maps a design from the design_library to a technology-

independent, unoptimized/un-timed logical structure (GTECH elements)

▪ Substitutes design parameters (GENERICS)

▪ Bind all leaf cells to provided libraries

▪ Evaluates and unrolls loops and generate statements

▪ Replaces arithmetic operators with DesignWare components from the synthetic_library

▪ Converts RTL into Boolean structure and infers registers

EE-429: Fundamentals of VLSI Design 19

analyze -library work -format VHDL|verilog <VHDL or Verilog File Name>

elaborate <Entity Name> -library work

Checking the Elaboration Report

• Elaboration generates a data base in the memory (can be saved as .ddc file)

• Elaboration reports many interesting points:

▪ Provides details on design hierarchy

▪ Reports missing instances for which no HDL was available and which could not be found in

• the database of previously analyzed HDL files

• in the memory database of the tool (not loaded)

• in any of the link libraries

▪ Provides details on the inferred registers (and possibly inferred latches)

Fall 2020 EE-429: Fundamentals of VLSI Design 20

Example from

EDA Labs

Design Objects

• Designs are comprised of several objects that carry particular names

▪ Design: A circuit description that performs

one or more logical functions (i.e Verilog module)

▪ Cell: An instantiation of a design within another

design (i.e. VHDL/Verilog instance)

▪ Reference: The original design that a cell "points to"

(i.e. VHDL/Verilog sub-module)

▪ Port: The input, output or inout port of a Design

▪ Pin: The input, output or inout pin of a Cell in the Design

▪ Net: The wire that connects Ports to Pins and/or Pins

to each other.

▪ Clock: Port of a Design or Pin of a Cell explicitly defined

as a clock source

EE-429: Fundamentals of VLSI Design 21

Static Timing Analysis (STA)

• STA drives the synthesis process and checks after synthesis if constraints are met

• Reminder: STA checks timing constraints for four path groups:

▪ Register-to-register paths

▪ Input-to-register paths

▪ Register-to-output paths

▪ Input-to-output paths

22

𝑡𝑠𝑠
𝑚𝑎𝑥 < 𝑇𝐶𝐿𝐾 − 𝑡𝑠𝑢 𝑡𝑠𝑠

𝑚𝑖𝑛 > 𝑡ℎ𝑜

𝑡𝑖𝑜
𝑚𝑖𝑛

𝑡𝑖𝑜
𝑚𝑎𝑥

𝑡𝑠𝑢
𝑡ℎ𝑜

𝑡𝑠𝑢
𝑡ℎ𝑜

𝑡𝑖𝑠
𝑚𝑎𝑥 𝑡𝑖𝑠

𝑚𝑖𝑛

𝑡∆
𝑚𝑎𝑥 𝑡∆

𝑚𝑖𝑛

𝑡∆
𝑚𝑎𝑥 𝑡∆

𝑚𝑖𝑛

𝑡𝑠𝑠
𝑚𝑖𝑛

𝑡𝑠𝑠
𝑚𝑎𝑥

𝑡∆
𝑚𝑎𝑥 + 𝑡𝑖𝑠

𝑚𝑎𝑥 < 𝑇𝐶𝐿𝐾 − 𝑡𝑠𝑢 𝑡∆
𝑚𝑖𝑛 + 𝑡𝑖𝑠

𝑚𝑖𝑛 > 𝑡ℎ𝑜

𝑡∆
𝑚𝑎𝑥 + 𝑡𝑖𝑜

𝑚𝑎𝑥 + 𝑡𝑜𝑢𝑡
𝑚𝑎𝑥 < 𝑇𝐶𝐿𝐾 𝑡∆

𝑚𝑖𝑛 + 𝑡𝑖𝑜
𝑚𝑖𝑛 + 𝑡𝑜𝑢𝑡

𝑚𝑖𝑛 >0

𝑡𝑜𝑢𝑡
𝑚𝑎𝑥 𝑡𝑜𝑢𝑡

𝑚𝑖𝑛

𝑡𝑜𝑢𝑡
𝑚𝑎𝑥 𝑡𝑜𝑢𝑡

𝑚𝑖𝑛
𝑡𝑠𝑜
𝑚𝑎𝑥 𝑡𝑠𝑜

𝑚𝑖𝑛

𝑡𝑠𝑠
𝑚𝑎𝑥 + 𝑡𝑜𝑢𝑡

𝑚𝑎𝑥 < 𝑇𝐶𝐿𝐾 𝑡𝑠𝑠
𝑚𝑖𝑛 + 𝑡𝑜𝑢𝑡

𝑚𝑖𝑛 > 0

Specifying Timing Constraints

• Synthesis is heavily driven by timing

▪ Need to define expectations to enable timing analysis

• We usually define our expectations (optimization objectives) in three ways

▪ Clock definitions : define the clock signals and periods

▪ Modelling the world external to the chip : define delays of connected designs

▪ Explicit timing requirements : define explicit delay expectations

▪ Timing exceptions : define unusual timing conditions (USE ONLY WITH GREAT CARE)

EE-429: Fundamentals of VLSI Design 23

Specifying Clocks

• Clocks are the basis for different constraints

• Clocks are defined by

▪ Clock period : basic timing requirement

▪ Clock name : used later to relate other timings to a clock)

▪ Pin to which it is attached : to identify affected sequential elements

• Some designs can have multiple clocks (use with care)

▪ Clocks can be derived from a mother clock with a ratio

▪ Clocks can be fully independent clocks

EE-429: Fundamentals of VLSI Design 24

create_clock –period <period> –name <clock name> [get_ports <clock root port>]

create_generated_clock –name <clock name> -source [get_ports <from clock>]
–divide_by <factor> [get_pins <clock root pin|port>]

from

clock

new clock

root

Anticipating Non-Ideal Clocks

• Clock signals must be distributed to the connected sequential elements

▪ During synthesis, high quality clock distribution is not possible (no knowledge on layout)

▪ Clock-tree insertion (clock distribution) is deferred to the layout stage

• Two common approaches to model clocks during synthesis

EE-429: Fundamentals of VLSI Design 25

Assume ideal clocks Anticipate clock non-idealities

set_clock_transition <value> <clock>
set_clock_latency <value> <clock>
set_clock_uncertainty <value> <clock>
set_clock_jitter <value> <clock>

set_ideal_network <port|net>

set_dont_touch <port|net>

Specifying Input/Output Timing Conditions

• Constraints for input- and output-logic are defined by surrounding blocks

▪ Input-to-register constraint: depend on output delay of previous block

▪ Register-to-output constraint: depend on input delay of next block

▪ Delays can be defined for each input/output individually or for multiples (see example)

▪ Input and output delays must be defined relative to a clock

▪ Pay attention not define input delays for clock ports

EE-429: Fundamentals of VLSI Design 26

set_input_delay <value> –clock <clock> [remove_from_collection [all_inputs] [get_ports <clock port>]]
set_output_delay <value> –clock <clock> [all_outputs]

Specifying Electrical Boundary Conditions

• Any circuit or sub-circuit is always connected

to other circuits

▪ Electrical characteristics of the interface influence the timing

and of the circuit under considerations

• Need to define boundary conditions

▪ Load on the outputs that must be driven to provide sufficient drive strength for the outputs

▪ Drive strength of the inputs to avoid overly large fanout of the inputs

EE-429: Fundamentals of VLSI Design 27

loaddrive

set_load <load_capacitance> [all_outputs]
set_load [load_of lib/cell/pin] [all_outputs]

set_driving_cell –lib_cell <cell name> –pin <pin_name> [remove_from_collection [all_inputs] [get_ports <clock>]]

set_drive <driver resistance> <port> # NOT RECOMMENDED (INACCURATE with NLDM)
set_input_transition <transition time> <port>

Synthesis and Optimization

• Once the design is elaborated and constraints are defined, we can start the

actual synthesis & optimization

• Design compiler integrates the entire synthesis into one command with

many options to control the optimization

▪ compile vs. compile_ultra : different optimizations turned on, depending on your license

▪ - exact_map : skip many optimizations to obtain a mostly exact RTL mapping

▪ - incremental : re-run the logic optimization on an already compiled design to improve further

▪ - map_effort [low|medium|high] : tradeoff between run-time and quality

▪ - retime : allow moving registers to balance pipelines (works only when registers are already in

a good place (only small moves allowed)

▪ ‐ boundary_optimization : allow optimization across hierarchy boundaries

EE-429: Fundamentals of VLSI Design 28

Synthesis of Datapath Operations

• Complex datapath operations are implemented in a special way

▪ Initially, they are not part of the logic synthesis (no immediate translation into logic)

▪ Many people have spent their time on optimal arithmetic circuits

• Special datapath libraries/compilers are used to generate arithmetic ops.

• Synopsys and cadence refer to these as DesignWare and ChipWare IP

EE-429: Fundamentals of VLSI Design 29

Reporting

• We are interested in various design metrics which can be reported:

EE-429: Fundamentals of VLSI Design 30

report_area

report_timing

Exporting Design Data

• Design database and further design information can be saved in different

formats to restore later or to proceed to other steps in the design flow

EE-429: Fundamentals of VLSI Design 31

.db

.v

NETLIST

Delay Information

from timing analysis

Timing constraints

for layout tool

.sdf

.sdc

Exporting the Design Data

• Writing out a complete design database to be used in design compiler

• Exporting a Verilog netlist

▪ Structural Verilog is the de-facto standard for digital netlists

▪ Change names in the design to meet Verilog conventions

EE-429: Fundamentals of VLSI Design 32

change_names ‐rules verilog ‐hierarchy ‐verbose
write -hierarchy -format verilog –output <file name>

Exporting the Design Data

• Writing out a complete design database to be

used in design compiler

• Exporting timing information for simulations

▪ The SDF file contains timing information for all timing

arcs

▪ This information is used by the Verilog models of

standard cells and IPs to behave accordingly in

the gate-level simulation

EE-429: Fundamentals of VLSI Design 33

write_sdf -version 2.1 <file name>

(DELAYFILE
(SDFVERSION "OVI 2.1")
(DESIGN "alu32top")
(DATE "Wed May 9 11:47:29 2018")
(VENDOR "fsd0a_a_generic_core_ss0p9v125c")
(PROGRAM "Synopsys Design Compiler cmos")
(VERSION "J-2014.09-SP5")
(DIVIDER /)
(VOLTAGE 1.10:0.90:0.90)
(PROCESS "BCCOM:WCCOM:WCCOM")
(TEMPERATURE -40.00:125.00:125.00)
(TIMESCALE 1ns)
...
(CELL

(CELLTYPE "INVX2")
(INSTANCE U3)
(DELAY

(ABSOLUTE
(IOPATH I O (0.229:0.483:0.483)

(0.118:0.268:0.268))
)

)
)
...

Post Synthesis Gate Level Simulations

• Simulate the design (netlist) after synthesis to

▪ Verify correct functionality: in most cases unnecessary as synthesis rarely makes mistakes

when RTL code is written “properly” according to the rules of synchronous design

▪ Obtain initial indication of toggle activity for initial power analysis

• Post-synthesis simulation results should be taken with lots of care:

▪ Timing is far from accurate as layout parasitics are not yet included

▪ No clock or reset tree included in the design (ideal clock)

▪ Backend will still heavily modify the design to account for parasitics (buffer insertion, re-

synthesis of critical path, addition of a clock tree, …)

Fall 2020 EE-429: Fundamentals of VLSI Design 34

Post Synthesis Gate Level Simulations

• For a Gate level simulation, the following information is requires

▪ The netlist of the synthesized design: provided by the synthesis tool

▪ The delay information for each gate (per instance) in the design: provided by the synthesis tool

▪ Models for the instantiated leaf-cells (e.g., standard-cell or memories):

provided as part of the IP (standard-cell libraries and IP macros)

• Beahvioral model for these cells in VHDL or Verilog

• Models must also model the timing/delay and check potential constraints (e.g., setup/hold times)

• Timing parameters (delays/constraints) must connect to the timing provided by the SDF

=> BACKANNOTATION

Fall 2020 EE-429: Fundamentals of VLSI Design 35

Post Synthesis Gate Level Simulations

• When calling the simulator, we must provide all this information and “link”

the timing to the relevant part of the design

Fall 2020 EE-429: Fundamentals of VLSI Design 36

> vsim
-L .../MGC_QSIM/DLIB/umc_65nm_ll_uk65lscllmvbbr_sdf21_vlog
-sdftyp duv=.../SNPS_DC/TIM/alu32top_rtl_clk3ns_mapped_vlog.sdf
ALU32-MAPPED.alu32top_tb_conf_mapped
-t ps -voptargs=+acc

vhdl/.vTestbench &

Netlist

Delay

information
.sdf

.v
Leaf-cell

models
From

Synthesis

From IP/Std.Cell

libraries

Compiled library of Verilog models

for the standard cells

Timing information for

every instance of the design entity “duv”

duvTB

	Slide 1: EE-429 Fundamentals of VLSI Design
	Slide 2: Semi-Custom (Digital) ASIC Design Flow
	Slide 3: Front-End Design Flow Details
	Slide 4: Logic Synthesis
	Slide 5: Synthesis in the Design Flow
	Slide 6: Synthesis in the Design Flow
	Slide 7: RTL Synthesis Objectives
	Slide 8: RTL Synthesis Steps (Overview)
	Slide 9: Iterations: Synthesis and Static Timing Analysis
	Slide 10: Timing View with Liberty (.lib) Files
	Slide 11: STA: Delay Calculation
	Slide 12: NLDM Delay Information in .lib Files
	Slide 13: Modelling Power Consumption in .lib File
	Slide 14: Covering Different PVT Corners
	Slide 15: Automatic Characterization of Standard Cells
	Slide 16: The Synthesis Environment
	Slide 17: The Simulation Environment & Libraries
	Slide 18: Tool Setup: Reading Libraries and IPs
	Slide 19: Reading the HDL Design
	Slide 20: Checking the Elaboration Report
	Slide 21: Design Objects
	Slide 22: Static Timing Analysis (STA)
	Slide 23: Specifying Timing Constraints
	Slide 24: Specifying Clocks
	Slide 25: Anticipating Non-Ideal Clocks
	Slide 26: Specifying Input/Output Timing Conditions
	Slide 27: Specifying Electrical Boundary Conditions
	Slide 28: Synthesis and Optimization
	Slide 29: Synthesis of Datapath Operations
	Slide 30: Reporting
	Slide 31: Exporting Design Data
	Slide 32: Exporting the Design Data
	Slide 33: Exporting the Design Data
	Slide 34: Post Synthesis Gate Level Simulations
	Slide 35: Post Synthesis Gate Level Simulations
	Slide 36: Post Synthesis Gate Level Simulations

