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Fundamental Components of Digital Circuits

+ Combinatorial logic: memoryless ~I>°: ) D:D

= Built from basic Boolean logic gates A QA 8 zfA 8 A B 7 (A B Z

= Output is only a function of the current input 0 1] 0 o0 0Jf0o 0 0] |0 00 .
0 O 0O 1 0 o 1 1 o 1 1
= Combinational logic has no state NOT L 0 o0j)1 0 1y}t 01
1 1 1 1 1 1 1 1 0 . . .
* Nets (wires): memoryless AND OR XOR Any arbitrary

Boolean function

= Connect components, carrying logic signals [:
= One input (driver) and one or multiple outputs

« Storage (sequential) elements: memory
= QOutput depends on current input and on an internal state, defined by previous inputs

D Q 0 - Q QB : i D Q 0O - Qa8 ! i
1 11 0| D /] \ / :' 1 - Qa8 D/:I\ 1
] QB 1 0 0 1 i I > QB 1 0.0 1] i |
Latch Q_/{_\ :4, r 110 —r{ }\_
(high transparent) ' Flip-Flop (positive-edge triggered) = Register

L - . (&)
ECOLE POLYTECHNIQUE EE-334: DIgIta' System Design 2




Why do we need Sequential Elements

* Functional storage:

» Collect data that arrives in sequence
and is required as a whole

FIR filter

 Non-functional storage

» Re-use of logic for different data
over time for resource sharing

= |solation of parts of the logic to
operate in parallel through pipelining
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Naming Conventions

 Two types of sequential elements:

: . transparent transparent
= alatch is level sensitive
opaque ‘ ‘ opaque ‘ - — N
|
= aregister or aflip-flop is edge-triggered
o locked o locked -, af—
o o
1 |
—1

 There are many different naming conventions

= For instance, many books call any bi-stable element
flip-flops (such as an SR Latch)

= However, this leads to confusion, so we will use the convention above (as used in industry).
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Latch Vs. Register

« Alatch istransparent during one phase of the clock and keeps
Its output (irrespective of the input) during the other clock phase.

 However, a Flip Flop only samples the input on the edge.

Clock 1 ‘ 1 ‘ 1

| |
I I
| |
| |
| |
I I
| |
Latch —{p afp— . |
— I I
I | |
| | |
| |
I I
| |
| |
| |
I
| |
| |

Flip Flop
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Static Vs. Dynamic Latch

« Dynamic storage elements store data (the state) as charge on a capacitance
= No active element involved in keeping the state

= Since charge leaks away, the stored data degrades over time

« Static storage elements include a feedback to constantly restore the state
= Active feedback involved in keeping the state: KEEPER

CLK ‘—| >O—

— p —eTe—]a QB
= ®
Dynamic Latch Static Latch
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Ratioed vs. Non-Ratioed Latch

« Writing to the latch involves overriding its internal state
= Driver must prevail over the internal keeper

« Ratioed latch: strong driver overrides a weak keeper
= Sensitive to drive strength of the components

 Non-ratioed logic: deactivate keeper while writing

CLK CLK
D —el o— Q QB D —el o— Q QB
@ /)
4"4 ({F— m— — ,
CLK
Static Static
Ratioed Non-ratioed
Latch Latch
B (

E(PA
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Disconnecting the Feedback Driver

e Using a series transistor as a switch

« Which polarity to use: nMOS or pMOS =» both not very well suited...
= NnMOS can only pass a strong zero

= pMOS can only pass a strong one Vgs drops below Vth:
transistor turns off before
output reaches VDD
vboD e VDD
VDD-Vth - VDD-Vth
1 (VDD) v
S .
|——|—|\ 8 Combine nMOS
svp — e — GND
_ and pMOS
Vsg drops below Vth: to achieve full
transistor turns off before swing output
output reaches GND
VDD - -j ------ VDD
vbD-vth e AT VDD-Vth
0 (GND) v
_o = VS8
-------- - Vth
GND I GND

E(PA
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Transmission (T) Gates and Tristate-Inverter

* Driving both strong ‘0’ and ‘1’ requires a “hybrid” nMOS/pMOS switch

 Two almost identical options:

Transmission Gate

‘G|Er ENb “iEr ENb R

e b END,

A —Q—Y —_ A ::_;J—Y A EN
_|g7 EN _|g7 EN

Break nMOS/pMOS connection

Tristate Inverter

E

BAD
Potential issues due

to charge sharing
Y

_|

Each part of the switch still used where it is most effective (almost no impact on on-resistance)

* Reduced output load
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Robust Latches

* As basic building blocks, latches need to be robust and work in all conditions

X

ol

. . . o ¢
. Ensurlng a clean input interface o &k N
(capacitive load) T T
= Add extra input inverter to T-gate OR
= Use a tristate input inverter ©

<
—
=
<

* Protecting the storage node (SN) d

= Any spikes (e.g., from coupling or kickback) on the
output (from external circuits) can alter the state

= Shield output from the storage node with an inverter

e|—¥|—e
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Latch Polarities

« Latches can be built with different polarities
Low-Transparent

o
| o p_~|>o— Dout e ,_-T—I_q >0 Dout
in —|>c N -
— —

clock

transparent
clock

Tdq

N

Tsu—< Thid
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High-Transparent

clock

transparent opaque

clock /

Tsu—-<Thld
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Master-Slave Register (Flip Flop)

. . : id
 An edge triggered flip-flop can be built by m|'
combining two opposite-polarity latches Input —o af—o af— out
|| 1]
c?/)< c!/k
Input
g I
—
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Master-Slave Register

« Basic ingredients
= Two tristate-based pair of latches
= Qutput buffers to shield the SN
= |nput buffer to present a capacitive load
= Qutput inverters to isolate the storage node

0 0
Qwm

CLK _‘[>° € =1
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Set / Reset

« To reach a known initial state, most FFs need to be set and/or reset
» Set/Reset refer to ASYNCHRONOUS set/reset (state change independent of clock)
= Typically either set or reset (both is rare)

« Circuit design examples:
= Set/reset required on BOTH master and slave latches

0 0
e | reset
> S 5 Q
D I,
T 1> T ;
0 o | O
u |
— reset o
[
RESET SET and RESET
(low active) (low active)
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Flip-Flop Delay and Timing Requirements

* As opposed to logic, Flip-Flops have a delay and timing requirements
= Propagation delay t.,: defined from CLK-input to Q-output
= Setup time tg, : defined from D-input to CLK-input
= Hold time t,,4: defined from CLK-input to D-input

A

A

A tS! ! thQ|d Register
— D Qr—
D DATA
STABLE ¢
" AN
1 ~—d ICLK

Q DATA
STABLE t

y

ECOLE POLYTECHNIQUE 15 ((
FEDERALE DE LAUSANNE




Impact of Timing Requirements

 Timing requirements for all register-to-register paths
» Path starts from the clock pin of a register and ends on the data pin of a register

= Setup condition: latest arrival
FF logic FF
tpd + tpd < lek — tsetup

| )

%max
SS

Determines
maximum
frequency

= Hold condition: earliest arrival
FF logic FF
tcd + tcd > thold

| J

.
min
tS S

/Xd\
LY
w

CLK |— *
iy t,’:;g"c‘
x
|
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Propagation Delay Calculation

« Output changes when slave latch turns transparent after positive clock edge
= New output already stable at node Y (slave latch T-gate input)

 When clock rises, data still has to propagate through pass gate and inverter

>° T2 ¢=‘l>°=‘ >° Ty s 7 g Q
”
’ \
1
-0
D ll ?M Y
—————— I Tll'; “~———-I ] _T3

th:T3+I6+I7+18
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Setup Time Definition

« Setup time is the time the data has to arrive before the clock to ensure correct
sampling

clk | |
— <> <>
tS u tS u tS u

Good! Good! BAD!
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Setup Time Calculation

 Master latch closes on positive clock edge
» Feedback loop of the latch SN must be stable at the new value before opening

« Before the clock edge, data should have propagated to SN to avoid
restoration of the previous state

CLK
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Hold Time Definition

« Hold time is the time the data has to be stable after the clock to ensure
correct sampling.

|
| - ——
clk ' ‘
|
e— > >
Ehold Ehold : f hold
|
|
D |
|
GU’M«"{,“I C“'/")Uﬁ,‘/ BAD.’

. | XXX

« Often (optimally), Hold Time is negative!
B CPri -




Hold Time Calculation

 Master latch closes on positive clock edge
= SN must be stable until driving T-gate closes
= Additional delays in the data path help to keep SN even after the input changes

 The hold time can be negative

|5

-0 QM

_4| o T T
CLK

:E;
&
\

l}
[
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Impact of Setup Violations & Simulation

« Example for setup violation
= SN: storage node (inverted)
= QM: output of the master latch

 We obtain the setup time of the
register using SPICE simulations,
by progressively skewing the
Input with respect to the clock
edge until the circuit fails

3.0 T I T I T I T I T

Volts
Volts

I 1 I 1 I | I 1 | 2 05 | L L 1 1
0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1
time (nsec)

time (nsec)
(a) Tsetupz 0.21 nsec (b) Tsetupz 0.20 nsec Wi

205—
0
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Impact of Marginal Setup Condition

« Setup violations do not always cause a complete failure (error)

» Marginal triggering leads to increase
. : . Clk
In the propagation delay before failing /

» Timing models do not represent this

= Constraints are for accuracy to ensure S~

ol

case properly D / A/ A

!

timing analysis remains valid Q - :5‘?555 E:

Tsu : input setup time
Thold : input hold time
- Tcq : clock to out ]
Tdata to out = Tsu + Tcq f
.g - _
o
1.05(gpq) /- —— N
8 L ] q M
a 10% |\, Teq
/\/1 Tsu Thold— |
minimum Teq
rSu
| | | | | | l | | - -
-250 -200 -150 -100 -50 0 50 100 150 200 250
i e
Data to Clock (picoseconds) ¢
H
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Simulation Based Setup/Hold Characterization

« Setup/hold can not be measured directly (requirements rather than delays)

 Two options to bound these requirements
1. Brute force simulations (trial and error) with

. . CLK
pass fail constraint based on correct output _| —
or clk->Q delay constraint D W
_ Output wrong
Q \ V' (setup failure)

2. Conservative constraint based on delays of — |
data and clock to internal nodes to ensure Dt Ve Panl
sufficient margins for proper operation .

—  Setup: A must be stable (new value) before
Tgate opens:
Tsu=T(D->A) — T(CLK->T2)

— Hold: B must be stable (old value) until T-gate closes:
Tho=T(CLK->T1) — T(D->B)

(gl | | («
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Metastabllity

« Metastability: third, instable
state In bi-stable circuits

« Metastability can happen when
violating setup/hold times

= Metastability is a temporary
phenomenon and resolves by itself
after some time

= Time to resolve must be considered
a random variable (uncertain)

(g

ECOLE POLYTECHNIQUE
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New data
value

New data Old data
value value

New data Old data

Old data
value value value

Signal transition occurs after
clock edge and minimum t,,:
Ball lands on the old data side.

Signal transition meets
register ts;, and t:
Ball lands on the new data side.

Signal violates register tg,, or t;:
Ball balances at top of hill or takes too
long to reach the bottom. Output is
metastable and violates t,,.

Metastable output A
(resolves to new data after t;)

Metastable output B I
(resolves to old data after t;) !
l
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Metastabllity Failure Mechanism

 Time available to resolve a metastability

depends on the available _"D Q_@_)i o—>

* Any metastability reduces this timing slack 2R ya
|
+ If no slack remains (zero or negative slack), /S
timing errors occur in the next flip-flop

= Circuit no longer operates correctly (FAILURE)

ECOLE POLYTECHNIQUE
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Mean-Time-Between-Failure (MTBF)

« Since metastability duration varies, not every metastability leads to an error
 Mean-Time-Between-Failures (MTBF) provides an estimate of the reliability

« The MTBF depends on
= Distribution of the metastability duration

* The available timing slack — - /
.g Pfailure =To " fpara * fcrk - € ts
= How often a potentially metastable data

iInput signal toggles fpara

Failures per second

* How often the data input signal is samples /Ts
(i.e., the sampling clock) f; x MTBF = €

= Some empirically determined constants that To * fpara® fcix
depend on process, operating conditions,
circuit, ... : Ty, 75

(Ul . (@)
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Reasons for Metastabllity Failures

« A well-built synchronous circuit with the right clock should never face
metastability issues (ensured by static timing analysis)

« Unfortunately, still sometimes inputs are not synchronized to their clock
 Examples:

Example 1. Example 2:
asynchronous primary inputs sighals between asynchronous clock domains
(buttons or low-frequency inputs from other chips)

L clk domain 1 clk domain 2
|]<—
—3 Q > o >
r+ r+
LN Hpigipiy

-(I’fl-
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Measures to Reduce Impact of Metastability

If metastability can not be avoided we need to reduce its impact

 Three main principles to reduce impact of metastability (reduce risk of failure)

Avoid any logic in potentially NO FANOUT: only MAXIMIZE time to resolve
metastable signals Impact one subsequent register metastability before
using the signal

/

e D Q p——3yD Q 3D Q
N I I _@
+ -+ +
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The Clock Overlap Problem

« Master/Slave FlipFlops use both CLK and CLK, which is generate from CLK
= Generating CLK from CLK usually involves a delay

= Locally generating CLK may cause this delay when 2 inverters are used

2 inverter clock >o
input used to 2

reduce clock load

and to better define D
internal clocks —>°

s rs
T, D‘)—’ >° Ty
IS . S
T " >° T3
— —

CLK ~[>c\

ECOLE POLYTECHMN
FEDERALE DE LAUSAN

N1auE Fall 2020
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The Clock Overlap Problem

« Delay of CLK leads to clock overlap on both edges

* During the overlaps both Master and Salve latches are briefly open
= Signal can pass directly from input to output causing a race-condition

. .
> 7] r% B D B e D Do D
o | i
CLK 4[>o~~[>o
CLK | | | | |
CLK | | | | |

R !!!.\»™,
Q| | (@)
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Solution 1: Clocked CMOS (C°MOS)

« Master/Slave-FlipFlop from dynamic latches avoids sensitivity to clock overlap

r.’).’) DD
T i
—q [M, —dq M,
CLK ;l, CLK %lh
X
De—e * Q
— _{ ’;}‘ :JE . " _' = I Co INn ——
I S "
28 At
Mns!c: Stage Slave ;agc
Used a lot by IBM
CLK 0 | |
TK |

ECOLE POLYTECHMN ]
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1)

M2

]

M4

_4
4

N

Vop

M6

M3
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Solution 2: True Single Phase Clocked (TSPC) Latch

e C2MOS still requires two clocks a positive and an inverted one (overhead)

 TSPC: different Master/Slave structures for different phases with same clock
» Two subsequent inverters that keep either a ZERO (high-transparent) or a ONE (low-transparent)
» |Input levels of ‘0’ and ‘1" are kept on two different nodes

Negative latch

(transparent when CLK= 0)

In

ECOLE POLYTECH
FEDERALE DE LAL

imioue  Fall 2020
JSANNE

—

54 Cl.ﬁq

O

Vl 2D

In=0’
kept
here

—
CL ﬁq

o

VI)I)

inn

In="1’
kept
here

/ Out
T

Positive latch

(transparent when CLK=1)

—

In_. (.'I.K_|

EE-429: Fundamentals of VLSI Design
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Solution 2: TSPC Latch with Integrated Logic

« TSPC latches allow to replace the initial inverter with any PMOS/NMOS

network to realize an integrated logic function

Vb

PUN

In_. ( 'I.K_{

R

|

Voo

4
L

Arbitrary Logic in an

TSPC Latch (1’ transparent)
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In, —{
In, —{

[ 81

Yoo

e

Example: 2-input AND

35 (((




Solution 2: TSPC FlipFlops

« TSPC FlipFlops are built by two TSPC latches in Master/Slave configuration

 Two center-stages can be combined to remove one stage
» Results in an inverted output

Voo Voo Voo Voo Voo
c—ep— P 17 araniit}? S — , ——
Voo _ Voo CL j\_\ é
—q — — | M M — [ Mo
Y \
riniveNine . oy
(lﬁql \?154 ~ ! | —~———
' R ‘; }—‘ }— D | cLk X CLK =
A ck ||\ | ck —1 _4 M2 | Ms 1 My
I B o , . :
—| “H| "r--1 £ o '
CL5_| /
M M M
1 1 L [ A, L [
4
Compact TSPC FF with
shielded output
)
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Solution 3: Pulsed (dynamic) Latch as FlipFlop

 Build a FlipFlop from a latch that is triggered by a short pulse
» Pulse generator (dynamic EDGE detector) built from delay elements

« Many different forms: static, dynamic, single and double-edge triggered

 Main issue: pulse duration is tradeoff between robustness and hold time

LatCh - Clock chopper - —d

Data Output

Clock = m

ECOLE POLYTECHMN ]
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Dual/Double Edge Triggered FlipFlops

* In single-edge (positive or negative) edge-triggered logic, one (the inactive)
transition of the clock signal has no functional role
= Every “operation” cycle requires two clock transitions => inefficient in terms of power

« Solution:

1 I I I 1

I 1 I 1 I

I I I 1 1
Clock 1‘ l T \l, T

I I I I I

: : I : I

I 1 I 1 I

Input (D) | | | | |

— I I I

I 1 I 1 I

1, ol ] I ! 1 ]

Flip Flop ‘ : ‘ ‘ ‘

1 1 I 1 I

— | | | | |

I 1 I 1 I

)
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Dual/Double Edge Triggered FllpFIops (cont)

- Different realizations of dual-edge ; 4 (B B
triggered FlipFlops are possible ’ | o . EF

* Most straightforward and most ,
practical implementation is based n{m |
on two latches and a MUX |

» Clock load is higher than for a simple
single-edge triggered FlipFlop (power!!)

= Need to avoid sneak-paths through the
MUX between latches during switching

-(I’fl-
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