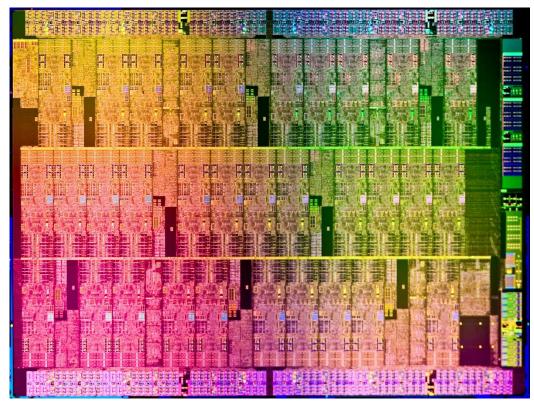

EE-429 Fundamentals of VLSI Design


Organization and Outline of the Course

Andreas Burg, Alexandre Levisse

From <10nm Transistors to a Billion Gates

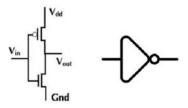
Two trainsistors in Intel **14nm FinFET** process

INTEL Xeon Phi
8 billion transistors
in 14nm FinFET process

Content and Focus of this Course

Contrary to the Digital Systems Design Course, we focus on

- Custom Digital Integrated Circuits
 - Focus on the circuit level rather than only the architecture level
 - Consider the electrical characteristics rather than the functionality and the logic
 - Account for the physical aspects of a design (e.g., layout, parasitics, variations, ...)
 - Understand how to optimize timing, power, and area on the gate-level and transistor level
- and on Very Large Scale Integration (VLSI)
 - Understand how to build a complex design from basic building blocks (design flow)
 - Prepare the basic building blocks to be used by the design tools
 - Handle all aspects of a design that are not described by RTL code
 - Perform the physical design
 - Understand and master and control the design tools that automate the transition between abstraction levels
 - Understand the chip-level design and integration issues and choices



Specific Topics in Two Parts

- Introduction to VLSI design
- Full custom digital design: from transistors to digital gates
 - Design of basic gates and memories on transistor level
 - Analyzing and optimizing digital circuits on transistor level
 - Basic models to understand and account for parasitics
 - Technology scaling and impact of variations

- Economics of VLSI design
- Compiling complex circuits from basic building blocks
- The semicustom design flow (front-end and back-end)
- Circuit and physical design considerations for complex chips

Organization of the Class

The class comprises

- Theory lectures on
 - Principles and methodology of IC design
 - Background on technology and design

- Guided lab sessions to get familiar with the tools
- Apply theoretical concepts in real-world settings
- Two projects, in 1st and 2nd half of the semester (graded)
 - Hands on design experience based on lecture and labs
 - Experience the design process
- Online questions/exercises to check your knowledge (graded)
 - Practice what you have learned and check your knowledge
 - Weekly questions on Moodle

Schedule

• 6 ECTS credit course: 6h in class (+ up to 6h homework)

- Lectures/Labs/Q&A:
 - Lectures:
 - Lab sessions:
 - Q&A sessions:
- Schedule:

Thu: CE1 103 / Fri: ELD 020

CO260 & CO6

during lectures and labs and **on MOODLE**

Thursdays 15:15-18:00 Fridays 11:15-14:00

(ok to bring your lunch)

- CHECK SCHEDULE (Lecture/Lab) REGULARLY ON MOODLE
- ATTEND ALL LECTURE AND LAB SESSIONS as scheduled
- Don't forget to complete the Quiz every week (graded)

Electrical and Electronics Engineering 2024-2025 Master semester 1

- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Fundamentals of VLSI design
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 2 Hour(s) per week x 14 weeks
- Type: optional

Electrical and Electronics Engineering

2024-2025 Master semester 3

Micro- and Nanotechnologies for Integrated ▼ Systems

2024-2025 Master semester 3

	Мо	Tu	We	Th	Fr
8-9					
9-10					
10-11					
11-12					D020 C05 C06
12-13					ELD020 CO6 CO260
13-14					<u>CO6</u> CO260
14-15					
15-16				<u>1104</u> <u>CO6</u> <u>CO260</u>	
16-17				CE1104 CO6	
17-18				<u>CO260</u>	

Exams and Grading

- Grading is based on
 - 2 projects: during the semester
 - Full custom design project: due on Thursday 14.11.2024
 - Semi-custom design project: due on Friday 20.12.2024
 - Final exam:
 - Questions on the lectures & labs
 - Pen-and-paper calculations with results to be entered in moodle quiz

		Weight	
•	Weekly quiz	10%	every week on moodle
•	2 projects:	50%	during the semester (reports) (due dates: 14.11.24 & 20.12.2024)
•	Final exam	40%	during the exam session

Detailed Course Schedule 2024

Week	Day	1st hour	2nd hour	3rd hour
12.9.2024	Thursday	Class	Class	Class
13.9.2024	Friday	Class	Class	Class
19.9.2024	Thursday	FC LAB-1 Tutorisl: Schematic	FC LAB-1 Tutorisl: Schematic	FC LAB-1 Tutorisl: Schematic
20.9.2024	Friday	Class	Class	Class
26.9.2024	Thursday	FC LAB-2 Tutorial: Simulation	FC LAB-2 Tutorial: Simulation	FC LAB-2 Tutorial: Simulation
27.9.2024	Friday	FC LAB-2 Tutorial: Simulation	FC LAB-2 Tutorial: Simulation	FC LAB-2 Tutorial: Simulation
3.10.2024	Thursday	Class	Class	Class
4.10.2024	Friday	Class	Class	Class
10.10.2024	Thursday	Class	FC LAB-3 Tutorial: Layout	FC LAB-3 Tutorial: Layout
11.10.2024	Friday	FC LAB-3 Tutorial: Layout	FC LAB-3 Tutorial: Layout	FC LAB-3 Tutorial: Layout
17.10.2024	Thursday	FC LAB Project	FC LAB Project	FC LAB Project
18.10.2024	Friday	FC LAB Project	FC LAB Project	FC LAB Project
24.10.2024	Thursday			
25.10.2024	Friday			

Detailed Course Schedule 2024

Week	Day	1st hour	2nd hour	3rd hour
31.10.2024	Thursday	Class	Class	Class
1.11.2024	Friday	FC LAB Project	FC LAB Project	FC LAB Project
7.11.2024	Thursday	Class	Class	Class
8.11.2024	Friday	FC LAB Project	FC LAB Project	FC LAB Project
14.11.2024 Project	Thursday	Class	Class	Class
15.11.2024	Friday	LAB Memory / Logical Effort	LAB Memory / Logical Effort	LAB Memory / Logical Effort
21.11.2024	Thursday	Class	Class	Class
22.11.2024	Friday	Class	SC LAB/Project Frontend	SC LAB/Project Frontend
28.11.2024	Thursday	SC LAB/Project Frontend	SC LAB/Project Frontend	SC LAB/Project Frontend
29.11.2024	Friday	SC LAB/Project Frontend	SC LAB/Project Frontend	SC LAB/Project Frontend
5.12.2024	Thursday	Class	Class	Class
6.12.2024	Friday	Class	SC LAB/Project Backend	SC LAB/Project Backend
12.12.2024	Thursday	SC LAB/Project Backend	SC LAB/Project Backend	SC LAB/Project Backend
13.12.2024	Friday	SC LAB/Project Backend	SC LAB/Project Backend	SC LAB/Project Backend
19.12.2024	Thursday	SC LAB/Project Backend	SC LAB/Project Backend	SC LAB/Project Backend
20.12.2024	Friday	SC LAB/Project Backend	SC LAB/Project Backend	SC LAB/Project Backend

Legal considerations

- The use of EDA tools and design kits is subject to NDAs (Non Disclosure Agreements) between EPFL, the Europractice program, EDA vendors and technology providers.
- The use of EDA tools and design kits shall be strictly limited to courses and student projects
 - All files related to EDA tools and design kits shall be kept in EPFL working locations related to courses or projects
 - Electronic documentation (e.g., pdf files) shall not be printed
- Filled documents must be uploaded on moodle. No submission means that you cannot continue the labs.
- You are strictly forbidden from copying any sensitive data from the servers, or release anything online.
- You may be personally liable in case of non-respect of the rules
- Every user of the EPFL information infrastructure agreed on the federal law governing EPFL.
 - LEX 6.5.1 the Information Systems Security Policy
 https://www.epfl.ch/about/overview/wp-content/uploads/2019/09/6.5.1 Politique securite SI an.pdf
 - LEX 6.1.4 the use of Electronic Infrastructure

https://www.epfl.ch/about/overview/wp-content/uploads/2020/01/LEX-6.1.4 EN.pdf

LEX 6.1.5 Use of Software Subject to a License Agreement

https://www.epfl.ch/about/overview/wp-content/uploads/2019/09/LEX-6.1.5_EN.pdf

Associated Disciplinary measures

Fall 2020

Students

https://www.epfl.ch/about/overview/wp-content/uploads/2019/09/2.4.0.2Disciplinary Rules Regulations ang.pdf

Employees

https://www.fedlex.admin.ch/eli/cc/2001/279/fr

In Practice

Statement on the use of FDA Tools and

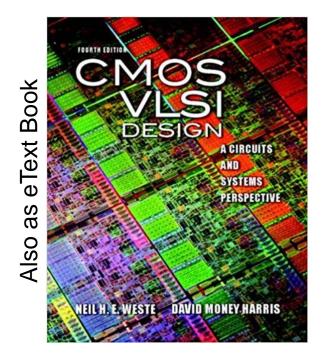
Design Kits for classes in EPFL

- Read and Sign the Statement on **EDA** from moodle
- Submit it on moodle
- Respect the rules and enjoy the lab

The use of EDA tools and design kits is subject to NDAs (Non-Disclosure Agreements) between EPFL, the Europractice initiative, EDA vendors and technology providers. EPFL commits that its users will respect the End User License Agreements (EULA) associated with it. The corresponding EULAs can be freely requested for review to your EDA support team (alexandre.levisse@epfl.ch).

In summary:

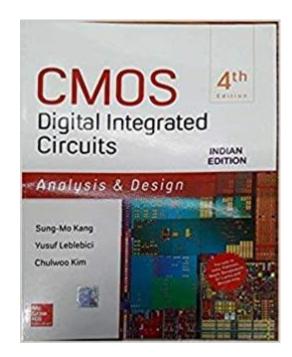
- The technologies and EDA tools licenses which I have access through my edauser account are strictly limited to the needs of courses and student projects.
- · All files related to EDA tools and design kits as well as outputs of EDA tools shall be kept in EPFL working locations related to courses or projects.
- It is forbidden to copy anything from the server to any non-EPFL device (computer, smartphone, hard-drive, usb key etc.), to any cloud service or email box.
- · Only explicitly requested assignments by teachers can be exported for submission on EPFL's
- Electronic documentation (e.g., pdf files) shall not be printed or electronically distributed.


By filling and signing this document,

- I declare that I'm aware and I will comply with the above conditions, and acknowledge that I may be personally liable if I do not respect them.
- I agree that I will only use the edauser account for classes and student projects.

EPFL email:
Section (student) / Unit (researcher): SCIPER nr.:
Name (last, first, PRINTED CHARACTERS):

Literature


- Slides and notes from the lecture will be weekly available on Moodle
- Class follows loosely two books:

CMOS VLSI Design: A Circuits and Systems Perspective Neil Weste, David Harris 4th Edition

ISBN-13: 978-0321547743

ISBN-10: 0321547748

CMOS Digital Integrated Circuits Kang, Leblebici, Kim

4th Edition

ISBN-10: 9352602145

ISBN-13: 978-9352602148

