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Structure of Computing Systems

• Computing systems are constructed from combinatorial logic and memory

▪ Functional units fetch data from memory, process it and write back the result

• Why do we need memory?

▪ Data that needs to be combined arrives one after another

▪ Many computations are performed on a limited number of resources, one after another.

Need to store intermediate results until they are processed further
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Registers are often Inefficient

• Registers are the most basic type of memory in a digital circuit

▪ Parallel read access: data stored in a register is always available

▪ Parallel write access: data can be stored in every register in each clock cylce

• However, when large amounts of data need to e stored, consider that

▪ Each register is quite large (>20 transistors)

▪ Selecting data from one of many registers

requires significant overhead (MUX)

• Further, with few processing resources, 

▪ Parallel access to all memory locations 

is rarely required
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Memory Arrays for Better Density

EE-429: Fundamentals of VLSI Design 4

• To achieve better storage density, memories group storage elements into a 

compact full-custom array with custom access logic for R/W

▪ Full custom design enables a dense layout and allows for less conservative design 

practices that save significant resources (e.g., ratioed-logic)



Many Different Types of Memories

• Different types of memories are optimize for different objectives

▪ Capacity: Bits, Bytes, Words, kBytes - TBytes

▪ Integration: On-chip vs. Off-chip

▪ Persistance:

• Read Only (ROM) – non-volatile

• Read-Write (RWM) – volatile

• NVRWM – Non-volatile

▪ Timing Parameters: read-, 

write-access, cycle time

▪ I/O Architechture:

• Single Port

• Multiport

▪ Access pattern/special fct.:

• Random Access, FIFO, LIFO, 

Shift Register, CAM, IMC

EE-429: Fundamentals of VLSI Design 5

Memory Arrays

Random Access Memory Serial Access Memory Content Addressable Memory

(CAM)

Read/Write Memory

(RAM)

(Volatile)

Read Only Memory

(ROM)

(Nonvolatile)

Static RAM

(SRAM)

Dynamic RAM

(DRAM)

Shift Registers Queues

First In

First Out

(FIFO)

Last In

First Out

(LIFO)

Serial In

Parallel Out

(SIPO)

Parallel In

Serial Out

(PISO)

Mask ROM Programmable

ROM

(PROM)

Erasable

Programmable

ROM

(EPROM)

Electrically

Erasable

Programmable

ROM

(EEPROM)

Flash ROM



Mixing and Matching in Memory Hierarchy

• Many systems have a mix of conflicting requirements: mostly density & speed

• memory hierarchy: 

Mix of different 

memory types
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The Importance of SRAM in IC Design

• SRAM is the most common type 

of on-chip (embedded) memory

▪ Reasonably high density ~15x better 

than a standard FlipFlop!!

▪ High speed ~1GHz in 28nm

▪ Fully CMOS compatible (no special 

process steps required)

• However, SRAMs often still 

occupy >50% of the chip area.
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Logical View of a Memory

• Logical organization of a memory: 2𝑛 words with 2𝑚 bits/word

▪ Total memory capacity: 2𝑛+𝑚 bits 

• Each bit is stored in a bit-cell

• Memory macros organize bit-cells 

in a compact array

• Peripheral circuits provide access to one word at a time

▪ 𝒏 bit memory address selects the word to be accessed

▪ All bits of a word are read/written at the same time

▪ Most memories allow only either a read or a write at the same time

(exception: two-port and dual-port memories)
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Phyiscal Organization of the Bit-Cell Array

• For most memories, the number of words 𝟐𝒏 is significantly larger than the 

number of bits/word 𝟐𝒎 (e.g., 1024 words of 8 bit each)

▪ Straightforward organization with 2𝑛 rows and 2𝑚

columns would be extremely tall

• Extremely tall memories cause issues

▪ Long bit lines connecting bit-cells to peripherals

▪ Difficult to place on in a layout

▪ Height may exceed the height of the chip

• Memory arrays are folded by 𝟐𝒌 to 

obtain an almost square shape

▪ Physical array: 2𝑛−𝑘 rows and 2𝑚+𝑘 columns

▪ Bits of adjacent words are interleaved
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Array Access and Basic Peripherals

• Consider the folded array with its peripherals

▪ Due to the folding the address is split into a 𝑛 − 𝑘
bit row-address and a 𝑘 bit column address

▪ Row decoder decodes the 𝑛 − 𝑘 bit row address 

into 2𝑛−𝑘 one-hot encoded row-select signals 

• Only the selected row of bits is activated

▪ Row-select signals are distributed through 

horizontal word-lines

▪ Vertical bit lines route the data of 2𝑘 interleaved 

words from (read) and to (write) the bit cells

▪ Column muxes select the bits of the selected 

word based on the 𝑘 bit column address

• Interleaving reduces routing to the mux
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The 6T-SRAM Bit Cell

• 6T-SRAM bit cell: based on active feedback of two cross-coupled inverters

▪ Analysis by overlaying the VTCs 

of the two inverters: butterfly curve

▪ Positive feedback and high gain 

correct disturbances from e.g., 

leakage, noise, or coupling
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Accessing Bit Cells for Read and Write

• Bits in a column are connected to the one bit-line

• Read and write access by connecting them 

to the bit-line through access transistors

▪ During write access: bit-line content is forced 

into the cross-coupled inverter pair

▪ During read access: cross-coupled inverter pair 

forces its potential onto the connected bit-line

• Important considerations: 

▪ Minimize number of transistors per bit-cell for access

▪ Bit-lines are long and have a high capacitance

▪ Bit-cell content is mirrored i.e., Q and QB available
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Options for Bit-Cell Access

• Write access: write circuit needs to over-power the bit-cell feedback

• Read access: protect the cell content from accidentally flipping (read-disturb) 
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6-Transistor CMOS SRAM Cell Operation

• Write ‘0’ operation: 𝑩𝑳 = ′𝟎’, 𝐵𝐿𝐵 = ′1′
▪ M2 passes a strong ‘0’ to Q

▪ M5 leaves QB unaffected 

(nMOS passes a weak ‘1’)

▪ Write a ‘0’ to Q

• Write ‘1’ operation: 𝐵𝐿 = ′1’, 𝑩𝑳𝑩 = ′𝟎′
▪ M2 leaves Q unaffected 

(nMOS passes a weak ‘1’)

▪ M5 passes a strong ‘0’ to Q

▪ Write a ‘0’ to QB

• Read operation:

𝐵𝐿 = ′1’, 𝐵𝐿𝐵 = ′1′
▪ M2 and M5 leave Q and QB 

unaffected (both pass a weak ‘1’)
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SRAM Operation Analysis: READ

• Read operation should NOT impact the state: Consider the change in the 

voltage on Q and QB during read (should be small to NOT flip the state)
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SRAM Operation Optimization: READ

• Analysing 𝚫𝑽 yields:

• Impact on QB depends on drive strength 

ratio of M4 and M5

• To keep 𝜟𝑽 low: choose a sufficiently 

strong pull-down keeper (not so difficult since 

competing nMOS can not drive a strong ‘1’)
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SRAM Operation Analysis: WRITE

• Write operation should impact the state: Consider the change in the voltage on 

Q and QB during write (should be sufficient to flip the state)
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SRAM Operation Optimization: WRITE

• Analysing 𝑽𝑶𝑳𝒎𝒊𝒏
:

• Impact on QB depends on drive strength 

ratio of M6 and M5 (pull-up ratio)

• To reach a sufficiently low 𝑽𝑶𝑳𝒎𝒊𝒏
: choose 

a sufficiently strong access transistor M5 

or a weak pull-up transistor (low pull-up ratio)
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Summary – SRAM Sizing Constraints
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Read Constraint

Write Constraint
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4T Memory Cell

• Achieve density by removing the PMOS pull-up

▪ Only used as a keeper (i.e., can be weak) 

• However, this results in static power dissipation.
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SRAM Layout - Traditional

• Two sides of the bitcell symmetric

▪ Share horizontal routing (WWL).

▪ Share vertical routing (BL, BLB).

▪ Share power and ground.

▪ Word line routed double on Poly 

and Metal (reduce resistance)

▪ Uses both horizontal and vertical poly: not good for modern technologies
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SRAM Layout – Thin Cell

• Thin: minimize bitline capacitance (length)

▪ Avoid bends in polysilicon and diffusion 

(easier for lithography)

▪ Orient all transistors in one direction.

▪ Metal word line: reduced resistance
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65nm SRAM
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Sharing between neighbouring cells by flipping every other row/column
Bended design rules



Commercial SRAMs as a Metric for Moore’s Law
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Intel Design Forum 2009



SRAM and the End of Moore’s Law

• Latest publications from TSMC confirm failure to track scaling with SRAM 
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SRAM Peripheral Circuits

• SRAM operation involves various peripherals for read- and write-access

▪ Row decoder

▪ Precharge circuit

▪ Sense amplifier

▪ Column multiplexer

▪ Write driver



Row Decoders

• Row decoder: activate the word-line of the selected row during read and write

▪ One hot decoder that decodes 𝑛 − 𝑘 address bits into 2𝑛−𝑘 word lines

• Important considerations

▪ Two word-lines should never be active at 

the same time (not even for a short period)

▪ Word lines present a considerable load:

• Parasitic wire capacitance

• Fan-out for all 2𝑚+𝑘 bit cells in a row

▪ Similar access timing should be ensured 

across the entire array

▪ Area overhead must be minimized

Folding: 𝑘 times Words: 2𝑛 Bits/word 2𝑚



• One-hot row-decoder can be implemented in a single stage:

▪ Independent row circuit (single stage) for each word-line 

▪ Each row circuit receives a unique combination of either the true or the complemented

version of each address bit (i.e., 𝑛 − 𝑘 bits)

• Important considerations: 

▪ Row circuits need to be pitch 

matched to bit cell hight (pitch)

▪ Each row circuit has 𝒏 − 𝒌
inputs and a single output

• Row decoder is often 

followed by a driver to 

match the word line load

Row Decoder: Single Stage Implementation
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Row Decoder: Single Stage Implementation

• Two options to implement an active high row decoder (+driver)
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Limitations of the Single Stage Decoder

• Single stage decoder is simple and regular

▪ Vertical routing distributes 2 𝒏 − 𝒌 wires for 𝐴0, ҧ𝐴0, … , 𝐴𝑛−𝑘−1, ҧ𝐴𝑛−𝑘−1

▪ Straightforward layout:

• Overhead for vertical routing 

• Height grows with number of bits (rows) in 

the memory

▪ Optimized layout

• Vertical routing on Poly can overlap with row 

circuit to save area

• Need to strap Poly with Metal to keep resistance 

sufficiently low

• Height independent of the number of rows
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Limitations of the Single Stage Decoder

• HOWEVER, for memories with many (typically 128-1024) rows, some 

serious issues arise:

▪ Growing (NAND/NOR) fan-in of the row circuit

• Fan-in of each row circuit: 𝒏 − 𝒌 (typical values ~7-10 bit)

• Difficult solution: multi-stage row circuit has high transistor 

➔ difficult to pitch match with bit cell

▪ Growing fan-out of the true and inverted address lines 

• 𝐴0, ҧ𝐴0, … , 𝐴𝑛−𝑘−1, ҧ𝐴𝑛−𝑘−1 are each tapped by 2𝒏−𝒌/2 gates

• More easy to solve by increasing driver strength
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Multi-Stage Decoder with Pre-Decoding

• Basic idea: identify common sub-expressions between row decoders and share

▪ Consider the row circuits of two adjacent rows (word-lines): W254, W255

▪ Many sub-expressions are common to different word-lines

• These sub-expressions can be computed only once

𝑊𝐿255 = 𝐴7𝐴6𝐴5𝐴4𝐴3𝐴2𝐴1𝐴0 𝑊𝐿254 = 𝐴7𝐴6𝐴5𝐴4𝐴3𝐴2𝐴1𝐴0



Multi-Stage Decoder with Pre-Decoding

• Systematic computation of common sub-expressions:

▪ Binary-tree decoder: sub-expressions 

concern groups of 𝑘 subsequent bits, 

where 𝑔 is a power-of-2 (2, 4, 8, 16, ...)

▪ For a group size of 𝑔 bits, there are 

𝑛 − 𝑘 /𝑔 groups

𝑾 = dec 𝐴0, 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7
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Multi-Stage Decoder with Pre-Decoding

• Systematic computation of common sub-expressions:

▪ Each group of 𝑔 bits is pre-decoded separately 

by a dedicated pre-decoder into 2𝑔 one-hot signals

▪ Each row decoder now receives a unique combination 

of 𝑛 − 𝑘 − 𝑔 bits, one from each pre-decoder. 

▪ Word-line is asserted of the right combination of 

pre-decoded signals is asserted.

Pre-decoder: 𝑷𝑖 = dec 𝐴𝑖∙𝑔, … , 𝐴 𝑖+1 ∙𝑔−1

Post-decoder: 𝑊𝑗 = ς𝑷∅ 𝑖,𝑗
𝑖 where ∅ 𝑖, 𝑗 selects the bit in the output of pre-decoder 𝑖 that 

corresponds to the address 𝑗
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Multi-Stage Decoder with Pre-Decoding: Example

• Consider a memory with 256 rows and a 2-bit pre-decoder

▪ # of row address bits: 8

▪ # of pre decoder: 8/2=4

▪ Fan-in of post decoders: 4

▪ Fan-out of each pre-decoder 

output: 256/4=64
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Alternative Solution: Dynamic Decoders

• Even with extensive pre-decoding, row decoders are still large and slow

▪ Important reason: need of CMOS structures for a complementary PMOS in the post-decoder 

All wordlines precharged to VDD, 
all unselected lines pulled to GND
• Fast (single nMOS pull-down)
• High power consumption

All wordlines precharged to VDD, 
only selected line pulled to GND
• Slow (many nMOS in series)
• Low power consumption

w
ir
e

d
 N

O
R

w
ir
e

d
 N

A
N

D



Column Multiplexer

• First option – PTL Mux with decoder

▪ Fast – only 1 transistor in signal path.

▪ Large transistor count for one-hot decoder
A0A1

B0 B1 B2 B3

Y

Fast, but many transistors in the pre-decoder



4 to 1 tree based column decoder

• Second option – Tree Decoder

▪ For 2k:1 Mux, it uses k series transistors.

▪ Delay increases quadratically 

▪ No external decode logic → big area reduction.

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

A0

A0

A1

A1

A2

A2

Y Y
to sense amps and write circuits

No pre-decoder, but slow due to many transistors in series



Combining the Two

• Combination of small PTL and larger tree-decoder 

based multiplexers are common for larger MUXes



Bit-Line Conditioning

• Pre-charge bitlines high before reads

▪ Variations in transistor drive strength my lead to variations 

in the pre-charge level for a simple pre-charge driver

• Equalize bitlines to minimize voltage difference when using sense amplifiers

▪ Important for differential sense amplifiers

▪ Only minor overhead



bit bit_b



Sense Amplifiers

• During read, BL or BLB are discharged through the access transistor and 

the nMOS of the bit cell inverters
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Differential Sense Amplifier

• SRAM: rapidly detecting already a small initial “swing” in either of the 

differential bit-lines

M 4

M 1

M 5

M 3

M 2

VDD

bitbit

SE

Outy

Regeneration to 
full-swing outputs

Disable when not 
needed to save
power

Basic differential
amplifier: Current 
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differential 
transistors



Clocked Sense Amplifier

• Clocked sense amplifier saves power

▪ Isolation transistors cut off large bitline capacitance

▪ Requires sense_clk to arrive after “sufficient” 

bitline swing

bit_bbit

sense sense_b

sense_clk isolation

transistors

regenerative

feedback
Q QB

QB

Q

bit_b

bit
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Pre-charge



SRAM Reliability Concerns

• Reliability is one of the main concerns in IC design 

• SRAM is particularly prone to reliability issues for two main reasons: 

▪ SRAM has the highest transistor density (and often most of the transistors) on the chip

▪ SRAM relies on ratioed logic (calculated balance of transistor drive strengths) for operation, 

neglecting all best-practice rules of CMOS design

• SRAM has multiple possible failures modes:

▪ Write failure: unable to write the correct value to a bit

▪ Read failure: unable to correctly read a bit that is stored correctly

▪ Read disturb: a read accidentally destroys the state of a stored bit

▪ Hole failure: a bit cell fails to correctly keep the value of a bit
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Static Noise Margin (SNM) - Hold

• SNM is the voltage offset that can be tolerated without compromising 

functionality

▪ Static (pessimistic) metric determined by a DC analysis



Static Noise Margin - Hold

• SNM is evaluated from the VTC of the separated (no feedback) bitcell

inverters

1. Plot both VTCs on the same graph
2. Find the maximum square that fits into the 

VTC (defined by the largest diagonal)
3. The SNM is defined as the side of the 

maximum square.
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Static Noise Margin - Read

• What happens during Read?

▪ Similar to HOLD, but include the access transistors
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Static Noise Margin - Write

• What happens during Write?

▪ The two sides are now different.

M1 M2

M6M3

M2 M5

B
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B
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WL WL
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VDD
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M6

Q
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QB
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Q
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Static Noise Margin - Write
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Q
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M2M3

QB Q
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Q

WSNM

If there is a stable 
point here, the 
wrong data is 

written!



Alternative Write SNM Definition

• Write SNM depends on the cell’s separatrix, therefore alternative definitions 

have been proposed.

• For example, add a DC Voltage (VBLB) to the 0 bitline and see how high it 

can be and still flip the cell.

M1

M2M3

QB Q

M4

M6

Q
QB

M5

VBL QB

Q

VBL=0

VBL=VDD

VBLB



SNM for Variability

• Modern process technologies suffer from parameter uncertainties (i.e., 

transistor parameters can vary over a large rage within a single chip)

Stronger PMOS or NMOS (SP,SN) 

SNM even for typical cell

[Ref: J. Ryan, GLSVLSI’07]



Process Variations affect SNM of Memory Cells

• Static Noise Margin (SNM): Maximum amount of voltage noise on internal 

nodes of SRAM cells before data is lost

▪ Simulation of 6T SRAM Cell in 65nm CMOS

Good SNM: robust 

operation at 400mV

Operation at 250mV is critical 
since SNM diminishes



SNM for Variability

• At low voltages, even ‘off’ transistors play a role, especially when variability

causes large leakage

▪ Degradation of Ion/Ioff ratio

Strong nMOS
with high leakage

Leakage and within die variability
limit minimum operating voltage 
(e.g., data retention voltage)
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Dynamic Random Access Memory (DRAM)

• SRAM typically provides not enough density due to the large bit-cell

▪ Requires 6 transistors for each bit to implement a bi-stable storage and 2 access transistors

• Dynamic storage: significantly more compact bit-cell

▪ Data is stored as charge on some form of capacitor 𝐶𝑆
▪ A single transistor (M1), controlled by the word-line (WL) 

is used to access the storage capacitor from the BL

• Typical DRAM cell size in a special DRAM process 

is  around 6-8 F2 (F: feature size of the process)

▪ For comparison: SRAM cell size in standard CMOS is 

around 120-150 F2 (>32nm) and >200 below 16nm

EE-429: Fundamentals of VLSI Design



1T-1C DRAM Fabrication

• Standard process

▪ Capacitor made from poly/diffusion

▪ Large area required for the capacitor

▪ Used mostly in 1970s and 1980s

• Stacked capacitor

▪ Capacitor based on a special plate 

capacitor on top of the bit cell

• Trench capacitor

▪ 3D capacitor located under the bit-cell

▪ Requires deep trenches which are 

tricky to fabricate

▪ Most often used today in dense DRAMs
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DRAM Read & Write Access

• Write and read through same access transistor

• Write access:

▪ Storage node (SN) capacitor 𝐶𝑆 is charged/dis-charged according 

to BL when WL is asserted

▪ Writing a strong ‘1’ can be achieved by over-driving the WL

▪ Note: between write access cycles, WL returns to an idle (VDD/2) state
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• Read and write through same access transistor

• Read access:

▪ Pre-charge BL to VDD/2

▪ WL is activated connecting 

the SN to the bit line BL 

▪ Charge-sharing between 

𝐶𝐵𝐿 and 𝐶𝑆

▪ Once BL develops a sufficient 

offset, the sense amplifier (SA) 

is enabled with SAE

• Depending on the SA type, the SA feedback may pull the BL 

and the SN to ‘1’ or ‘0’ (restore the SN voltage)

DRAM Read & Write Access
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• Between read and write accesses the DRAM is 

in retention mode

▪ Leakage currents through M1 degrade the SN level over time

• Ideal retention: 

no read/no write

▪ BL is biased to balance both 

0/1 retention leakage optimally

• Not necessarily VDD/2, depending on transistor characteristics

• Non-ideal retention: 

▪ BL is biased only between read- and write-access cycles

▪ During read and write: BL is temporarily at VDD or GND, leading 

to an overall slightly increased leakage

DRAM NEEDS REFRESH!!

DRAM Retention
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DRAM Refresh

• Data retention time (DRT) is determined by storage node capacitor and 

leakage currents

▪ Depends on technology and temperature

▪ Typical DRT for dedicated DRAM chips are in the order of tens of milliseconds

• Dynamic memories (DRAM) need refresh

▪ Refresh = reading data, restoring logic levels and writing 

data back to the storage cells

▪ Refresh rate depends on the DRT

▪ Every refresh cycle refreshes one entire memory row

• Refresh overhead depends on the retention time and the number of rows 
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DRAM Organization

• Large DRAM memories are organized hierarchically
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DRAM Access

• DRAM access is broken into several steps, based on the structure

▪ Row access is slow due to the difficult sensing procedure

▪ Each row contains a large number of bits (fewer rows allow to refresh many bits in parallel)

▪ Destructive read-access: each row access requires restore 

• Access procedure:

▪ Row access: provide row address and read data from 

storage array into the row buffer (latches)

▪ Column access: provide column address and read or 

write data from/to row buffer

▪ Precharge: write row buffer back to storage array and 

prepare for next read by precharging the BLs

• Row access is expensive: often followed by bursts from the row buffer
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DRAM Access Example (Burst Read)
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DRAM Scaling Trends

• DRAM technologies behind CMOS in feature size (today: ~10-12nm, BULK)

& scaling is slowing down significantly

▪ Main issue: shrinking cell capacitor area while maintaining its capacitance (~7f F)

• Use of isolation materials with very high dielectric constants (K>50)

▪ Other concern: keeping access transistor leakage low and compatibility with trench capacitors
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External DRAM is a Bottleneck

External memory should be avoided at all costs and if needed, 
access should be minimized

Embedded 
Memory

Embedded 
Memory

SoC External DRAM

Off-chip data movement

100x-1000x Power

100x-1000x Lower Bandwidth

Significantly higher BOM and
3rd party dependencies



Memory is the Limiting Factor

Memories are the limiting factor for cost and energy

• On-chip memories have a poor area density and often dominate chip area and 

cost in many computing systems

• Memory often accounts for >50% of the active power and for 100% of the power 

during sleep/standby periods in low-power systems
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Gain Cell Embedded DRAM (eDRAM)

• DRAM on a standard CMOS process

▪ Storage capacitor is a parasitic capacitor (gate capacitance + other parasitics)

▪ 1 access transistor for write 

▪ 1-2 access transistors for read
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2T Gain Cell eDRAM: Basic Operating Principle

• Write port (WWL & WBL), storage cap, and read port  (RWL & RBL)

▪ Different combinations of PMOS and NMOS transistors

▪ Use of different threshold options

• Write operation:

▪ Boosted WWL, above VDD for NMOS, 

below VSS for PMOS

• Read:

▪ PMOS MR: Pre-discharge RBL, 

raise RWL -> SN=‘0’: RBL rises

▪ NMOS MR: Precharge RBL, lower RWL
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Gain Cell eDRAM Periodic Refresh

• Dynamic storage mechanism: data deteriorates over time 

• Need for periodic refresh cycles (read/write)

▪ Data arranged in sub-arrays

▪ Parallel refresh in all sub-arrays 

• Array availability

▪ Typical retention times: 𝑇ret = 100us – 1ms

▪ Typical access/refresh cycle-time: 𝑇clk = 10ns

▪ Typical sub-array size 𝑁𝑟 =128-256 rows
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Delivering the Highest Density Volatile 
Embedded Memories in Standard CMOS

Reduced Cost | Longer Battery-Life | Better Performance

Looking for Engineers and Interns

Microphotographs of RAAAM’s GCRAM Technology Implementations in 16nm – 180nm Processes
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