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Modelling Delay and Sizing Gates

• CMOS logic designers often face the problem of

▪ Sizing gates in multiple stages of logic to minimize delay

▪ Determining the optimum number of logic stages (especially for driving large loads)

▪ Rapidly comparing circuit alternatives with optimal sizing

• Difficulty lies in the impact of sizing one gate to reduce delay on the delay of 

the preceding gate

▪ Up-sizing one gate to reduce delay increases load (delay) on previous gate

▪ Down-sizing one gate increase its delay, but also decreases the load (delay) of the previous gate

• Example: driving a large load starting from a small inverter
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The Logical Effort model

• Logical effort is a method to quickly analyze and optimize logic delay 

▪ Uses a simple linear delay model that includes 

• the impact of load on delay 

• the impact of sizing on the load/delay of the previous gate

▪ Allows back-of-the-envelope calculations

▪ Helps make rapid comparisons between alternatives

• The method is useful for 

▪ Digital circuit designers trying to optimize their (high-speed) designs by hand

▪ CAD tool developers to incorporate the key ideas into their tools for design automation

• Developed in 1999 by Sutherland and Sproull: 
I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS Circuits, San Francisco, CA: 

Morgan Kaufmann, 1999.

• See: http://bibl.ica.jku.at/dc/build/html/logicaleffort/logicaleffort.html
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Technology Independent Delay Model

• Basic idea: decomposition of the delay

▪ Decompose the normalized delay of a gate into two components

• A constant intrinsic delay (stage effort) term 𝑝 that depends only on the gate itself

• A load-dependent effort delay 𝑓 𝑡𝑦𝑝𝑒, load, size

𝑑 = 𝑝(𝑡𝑦𝑝𝑒) + 𝑓 type, load, size

▪ Decompose the load dependent delay term 𝑓 load into a product of two components

• The logical effort 𝑔 which covers the complexity of the gate (effort to drive a load: increases with the 

complexity of the gate)

• The electrical effort ℎ which describes the load and the sizing of the gate

𝑓 type, load, size = 𝑔(𝑡𝑦𝑝𝑒) ∗ ℎ(𝑙𝑜𝑎𝑑, 𝑠𝑖𝑧𝑒)

▪ 𝑝 and 𝑓 express the two delays 𝜏𝑝,𝑓 gate of a gate relative to the delay of a minimum size, 

balanced inverter 𝜏𝑝,𝑓 inv (reference inverter)

Normalized delays: 𝑝 =
𝜏𝑝 gate

𝜏𝑝 inv
and 𝑓 =

𝜏𝑓 gate

𝜏𝑓 inv
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Derivation of the Relative Intrinsic Delay

• Reminder: Intrinsic delay of a gate depends on on-resistance and the intrinsic 

load capacitance 𝑪𝒊𝒏𝒕
𝒈𝒂𝒕𝒆

𝜏𝑝 gate = 0.69 ∙ 𝑅𝑒𝑞
𝑔𝑎𝑡𝑒

𝐶𝑖𝑛𝑡
𝑔𝑎𝑡𝑒

• Normalizing with the delay of the reference inverter

𝑝 =
𝑅𝑒𝑞
𝑔𝑎𝑡𝑒

𝐶𝑖𝑛𝑡
𝑔𝑎𝑡𝑒

𝑅𝑒𝑞
𝑖𝑛𝑣𝐶𝑖𝑛𝑡

𝑖𝑛𝑣

• For a balanced gate that is matched to a reference inverter with the same

current drive capability (𝑹𝒆𝒒
𝒈𝒂𝒕𝒆

= 𝑹𝒆𝒒
𝒊𝒏𝒗)

𝑝 =
𝐶𝑖𝑛𝑡
𝑔𝑎𝑡𝑒

𝐶𝑖𝑛𝑡
𝑖𝑛𝑣
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Balanced (reference) inverter (same 

driving strength as considered gate)

Unloaded: 𝜏𝑝 inv = 0.69 ∙ 𝑅𝑒𝑞
𝑖𝑛𝑣𝐶𝑖𝑛𝑡

𝑖𝑛𝑣

𝐶𝑖𝑛𝑡
𝑖𝑛𝑣: inverter intrinsic load

Driving itself: 𝜏𝑓 inv = 0.69 ∙ 𝑅𝑒𝑞
𝑖𝑛𝑣𝐶𝐼𝑁

𝑖𝑛𝑣

𝐶𝐼𝑁
𝑖𝑛𝑣: inverter input load



Model for the Internal Load 𝐶𝑖𝑛𝑡
?? for Intrinsic Delay

• Internal load is difficult to define precisely, especially since it also depends

significantly on the layout. Nevertheless, we need a basic model.

• Intrinsic load: dominated by the diffusion capacitance

▪ Relative to the diffusion capacitance of a minimum size nMOS 𝐶0
𝑑𝑖𝑓𝑓

▪ Depends linearly on the width of the transistors that contribute to it

▪ Consider only the load that is attached directly to the output node of the gate
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𝑖𝑛𝑣~3 𝐶0
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𝑛𝑎𝑛𝑑~6 𝐶0
𝑑𝑖𝑓𝑓

𝛽 = 2 ∶ 𝐶𝑖𝑛𝑡
𝑛𝑜𝑟~6 𝐶0

𝑑𝑖𝑓𝑓

𝑝𝑖𝑛𝑣 = 1 𝑝𝑛𝑎𝑛𝑑 = 2 𝑝𝑛𝑜𝑟 = 2



Split Effort Delay into Logical- and Electrical-Effort

• Start from the effort delay of a gate

𝜏𝒇 gate = 0.69 ∙ 𝑅𝑒𝑞
𝑔𝑎𝑡𝑒

∙ 𝐶L

• Normalizing with the effort delay of a reference 

inverter with same current drive capability (𝑅𝑒𝑞
𝑔𝑎𝑡𝑒

= 𝑅𝑒𝑞
𝑖𝑛𝑣)

𝑓 𝐶L =
𝑅𝑒𝑞
𝑔𝑎𝑡𝑒

∙ 𝐶L

𝑅𝑒𝑞
𝑖𝑛𝑣 ∙ 𝐶𝐼𝑁

𝑖𝑛𝑣
∗
𝐶𝐼𝑁
𝑔𝑎𝑡𝑒

𝐶𝐼𝑁
𝑔𝑎𝑡𝑒

1

=
𝐶L

𝐶𝐼𝑁
𝑖𝑛𝑣

∗
𝐶𝐼𝑁
𝑔𝑎𝑡𝑒

𝐶𝐼𝑁
𝑔𝑎𝑡𝑒

1

=
𝐶𝐼𝑁
𝑔𝑎𝑡𝑒

𝐶𝐼𝑁
𝑖𝑛𝑣

𝑔

∗
𝐶L

𝐶𝐼𝑁
𝑔𝑎𝑡𝑒

ℎ

▪ Logical effort: complexity of the gate represented by the 

additional input load compared to an equally strong inverter

▪ Electrical effort: difficulty to drive the output relative 

to the difficulty of the previous gate to drive the input

EE-429: Fundamentals of VLSI Design 7

Balanced (reference) inverter (same 

driving strength as considered gate)

Unloaded: 𝜏𝑝 inv = 0.69 ∙ 𝑅𝑒𝑞
𝑖𝑛𝑣𝐶𝑖𝑛𝑡

𝑖𝑛𝑣

𝐶𝑖𝑛𝑡
𝑖𝑛𝑣: inverter intrinsic load

Driving itself: 𝜏𝑓 inv = 0.69 ∙ 𝑅𝑒𝑞
𝑖𝑛𝑣𝐶𝐼𝑁

𝑖𝑛𝑣

𝐶𝐼𝑁
𝑖𝑛𝑣: inverter input load

Logical effort Electrical effort



Deriving the Input Capacitance/Load

• Input capacitance: load that the input of a gate presents to the preceding gate

▪ Relative to gate capacitance of a minimum size nMOS 𝐶0
▪ Depends linearly on the width of the transistors that contribute to it

▪ Value of 𝐶0 is irrelevant when 

• used to calculate g = 𝐶𝐼𝑁
𝑔𝑎𝑡𝑒

/𝐶𝐼𝑁
𝑖𝑛𝑣 (ratio of gate capacitances)

• when the 𝐶L is only the input of other gates since then 𝐶L~𝐶0 and h = 𝐶L/𝐶𝐼𝑁
𝑖𝑛𝑣 independent of 𝐶0
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Logical Effort Gate Delay Summary

• Gate delay is modelled as 

𝑑 = 𝑝 + 𝑔 ∗ ℎ
▪ Intrinsic delay 𝒑: load independent delay

• Depends only on the gate 

• Approximated by the number of unit diffusion capacitances (𝐶0
𝑑𝑖𝑓𝑓

) 

connected to the output of the gate, relative to an equivalent inverter

▪ Logical effort 𝒈: cost for driving an output load (due to the complexity of the gate)

• Depends only on the gate (not on the load), but can be different for different inputs of the gate

• Given by the ratio of capacitances at the input of a gate compared to the 

capacitances of an equivalent inverter

▪ Electrical effort 𝒉: size of the load relative to the load the gate to a previous gate

• Depends on the gate and the load

• Given by the ratio of the load to the input capacitance of the gate
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Logical Effort Gate Delay Examples

• Consider two examples: INV & NAND

▪ NAND has a larger intrinsic delay

▪ Drive capability of NAND is the same as for the 

inverter, hence, delay increase with 

higher absolute load should be the same

• “Normalized delay” reflects how well the gate with the 

same input capacitance as an inverter can drive a load

▪ However, we consider the load relative to the input 

capacitance of the gate (FANOUT):

• This reflects the impact of facilitating drive through 

up-sizing on the previous gate

• Driving a larger relative load, is more “difficult” and leads to larger delay

▪ Delay increase with higher relative (to the input) load is more
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Logical Effort for Popular Gates

• Intrinsic delay and logical effort for frequently used gates with 𝜷 = 𝟐:

▪ Note that Intrinsic delay and logical effort are independent of the gate sizing, 

but they depend on the PMOS/NMOS ratio (𝜷)
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Extracting Delay Constant from Ring Oscillator

• Relating the logical effort “relative” delay to an absolute delay requires two 

delay constants: 𝜏𝑝 inv and 𝜏𝑓 inv

• Delay constants are related by their unit loads (diffusion load vs. gate load) 

Τ𝜏𝑝 inv 𝜏𝑓 inv = ൗ𝐶0
𝑑𝑖𝑓𝑓

𝐶0

▪ For many modern processes, we find that 𝐶0
𝑑𝑖𝑓𝑓

≈ 𝐶0 ➔ 𝝉𝒑 𝒊𝒏𝒗 = 𝝉𝒇 𝒊𝒏𝒗 = 𝝉 𝒊𝒏𝒗

• Experimental setup to extract 𝜏 𝑖𝑛𝑣 : N-stage ring oscillator
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Logical effort delay

𝑝𝑖𝑛𝑣 = 1
𝑔𝑖𝑛𝑣 = 1
ℎ = 1

𝑑𝑜𝑠𝑐 = 𝑁 ∙ 𝑝𝑖𝑛𝑣 + 𝑁 ∙ 𝑔𝑖𝑛𝑣 ∙ ℎ = 2𝑁
Measured oscillator frequency 𝑓𝑜𝑠𝑐 =

1

2∙2𝑁∙𝝉 𝒊𝒏𝒗
➔ 𝝉 𝒊𝒏𝒗 = 𝟒𝑵𝒇𝒐𝒔𝒄



Path Delay Calculation with Logical Effort

• Logical effort model allows to easily calculate path delays

▪ Normalized path delay obtained by summing of normalized gate delays

• Procedure for path delay calculation

1. For each gate 𝑖 calculate input capacitance 𝑪𝑰𝑵
𝒊 and output load 𝑪𝑳

𝒊 relative to min. inverter

• Without branching (drives only one next gate… see later): 𝐶𝐿
𝑖 = 𝐶𝐼𝑁

𝑖+1

• Consider that 𝑪𝑰𝑵
𝒊 scales with size 𝜸 compared to the minimum size gate

2. Evaluate intrinsic delay 𝑝, logical effort 𝑔, and electrical effort ℎ for each gate in the path

3. Compute gate delays and sum up to obtain the path delay
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Path Delay Calculation Examples

• Example 1: compare two AND gate implementations (min. size, 𝛽 = 2)
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Path Delay Calculation Examples

• Example 1: compare two AND gate implementations (min. size, 𝛽 = 2)
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Gate Sizing

• How to adjust the size of gates in a path to minimize delay?

▪ Up-Sizing factors 𝜸𝒊: specifies size of gate 𝑖 relative to the corresponding minimum size gate

▪ Assume that the size of the first gate in a chain is given (e.g., 𝜸𝟏 ≡ 𝟏) and can not be altered

• Implications of up-sizing a gate on a path

▪ Delay (electrical effort ℎ) of the up-sized gate reduces

▪ Delay (electrical effort ℎ) of the previous gate increases

• Local optimization is not sufficient: need to capture impact of sizing on full path
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Impact of Gate Sizing Example

• Two inverters driving a load of  𝐶𝐿 = 𝟒 ∙ 𝐶𝐼𝑁
𝑖𝑛𝑣 (𝛽 = 2)

▪ Consider three configurations
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Impact of Gate Sizing Example

• Two inverters driving a load of  𝐶𝐿 = 𝟒 ∙ 𝐶𝐼𝑁
𝑖𝑛𝑣 (𝛽 = 2)

▪ Consider three configurations
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Topology Analysis

• Consider the following two options to implement the same logic function: 𝑍 =

𝐴 ∙ 𝐵 that drives a large load (Lx INV)

▪ Which option is better (potentially as a function of L)?
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Topology Analysis

• Consider the following two options to implement the same logic function: 𝑍 =

𝐴 ∙ 𝐵 that drives a large load (Lx INV)

▪ Which option is better (potentially as a function of L)?
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Optimum Sizing with Logical Effort (Derivation)

• Consider the schematic and the delay of a generic path

▪ Minimize delay ⇒ minimize 𝒇𝟏 + 𝒇𝟐 +⋯+ 𝒇𝑵 = σ𝒊=𝟏
𝑵 𝒇𝒊 (path effort delay)
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Optimum Sizing with Logical Effort (Derivation)

• How to minimize the path effort delay σ𝒊=𝟏
𝑵 𝒇𝒊

• Trick: consider the path effort 
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▪ Computing  𝑯 =
ต
𝛾2𝐶0

2

𝛾1𝐶0
1

ℎ1

∙
ต
𝛾3𝐶0

3

𝛾2𝐶0
2

ℎ2

∙
ต
𝛾4𝐶0

4

𝛾3𝐶0
3

ℎ3

∙ ⋯ ∙
ถ
𝑪𝑳

𝛾𝑁𝐶0
𝑁

ℎ𝑁

=
𝑪𝑳

𝜸𝟏𝑪𝟎
𝟏

as geometric mean is possible without knowledge of 𝛾2…𝛾𝑁!

• 𝑯 depends only on the first gate and the last load of the path

▪ Exploit ability to compute 𝐻 with theorem of arithmetic mean & geometric mean

𝟏

𝑵
෍

𝒊=𝟏

𝑵

𝑓𝑖 ≥
𝑵
𝑭
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𝑮 is known from 

the topology

𝐶0
𝑖 : input capacitance of 

gate 𝑖 with minimum size
Independent of

internal sizes

Equality if 𝑓1 = 𝑓2 = ⋯ = 𝑓𝑁
Equality minimizes 𝒇𝟏 + 𝒇𝟐 +⋯+ 𝒇𝑵



Delay with Optimum Sizing with Logical Effort

• Effort delay is minimized if 

መ𝑓 = 𝑓1 = 𝑓2 = ⋯𝑓𝑁 =
𝑵
𝑭 =

𝑵
𝑮 ∙ 𝑯

▪ 𝑮 : from gate types given by the path topology

▪ 𝑪𝑳: load given by the problem statement (in same unit as 𝐶0
1)

▪ 𝑪𝟎
𝟏: minimum size input capacitance of first gate type (in same unit as 𝐶𝐿)

▪ 𝜸𝟏: given relative sizing of the first gate 

• Minimum achievable path delay

▪ Can be derived without knowledge of the corresponding gate sizes!

𝑝𝑖: given, 𝑔𝑖 ∙ ℎ𝑖 =
𝑁 𝐶𝐿

𝐶0
1𝛾1

∙ ς𝑖=1
𝑁 𝑔𝑖 = መ𝑓

Total path delay with optimum sizing = σ𝑖=1
𝑁 𝑝𝑖 + 𝑁 ∙

𝑁 𝐶𝐿

𝐶0
1𝛾1

∙ ς𝑖=1
𝑁 𝑔𝑖
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𝑮 = ς𝒊=𝟏
𝑵 𝒈𝒊 𝐇 = ς𝒊=𝟏

𝑵 𝒉𝒊 =
𝑪𝑳

𝑪𝟎
𝟏𝜸𝟏



Calculating Delay with Optimum Sizing (Example)

• Consider the following path (𝛽 = 2) :
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i = 1 i = 2 i = 3 i = 4

𝑝

𝑔

𝐶𝐿 =
256

20
∙
16

3
∙ 𝐶0

𝐻 = 𝐺 = መ𝑓 =𝑁 =

𝐷𝑚𝑖𝑛 =



Calculating Delay with Optimum Sizing (Example)

• Consider the following path (𝛽 = 2) :
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i = 1 i = 2 i = 3 i = 4

𝑝 1 2 2 1

𝑔 1 4/3 5/3 1

𝐶𝐿 =
256

20
∙
16

3
∙ 𝐶0

3 3
3

3 𝐶𝐿/ 𝐶0

𝐻 =

256
20

∙
16
3

3
𝐺 = 1 ∙

4

3
∙
5

3
∙ 1 =

20

9
መ𝑓 =

4
𝐻𝐺 =

8

3
𝑁 = 4

𝐷𝑚𝑖𝑛 = σ𝑝𝑖 + 𝑁 ∙ ෠𝑓 = 6 +
32

3
≈ 16.66



Deriving Optimum Gate Sizes with Logical Effort

• Optimum gate sizes 𝜸𝒊 can be derived from knowledge of ෠𝒇 = 𝑔𝑖 ∙ ℎ𝑖
▪ ℎ𝑖 depends only on 𝛾𝑖 and 𝛾𝑖+1 OR on 𝛾𝑖 and 𝐶𝐿
▪ 𝛾1 and 𝐶𝐿 are known

• Two strategies: 

▪ Input → Output (left to right)

𝑓1 = መ𝑓 = 𝑔1 ∙
𝛾2

𝛾1
∙
𝐶0
2

𝐶0
1 =

𝛾2

𝛾1
∙ 𝑔2 ⟼ 𝛾2 = መ𝑓 ∙

𝛾1

𝑔2

𝑓2 = መ𝑓 = 𝑔2 ∙
𝛾3

𝛾2
∙
𝐶0
3

𝐶0
2 =

𝛾3

𝛾2
∙ 𝑔3 ⟼ 𝛾3 = መ𝑓 ∙

𝛾2

𝑔3
= መ𝑓2 ∙

𝛾1

𝑔2𝑔3

𝑓3 = መ𝑓 = 𝑔3 ∙
𝛾4

𝛾3
∙
𝐶0
4

𝐶0
3 =

𝛾4

𝛾3
∙ 𝑔4 ⟼ 𝛾4 = መ𝑓 ∙

𝛾3

𝑔4
= መ𝑓3 ∙

𝛾1

𝑔2𝑔3𝑔4

𝑓𝑛 = … ⟼ 𝛾𝑛 = መ𝑓𝑛−1 ∙ 𝛾1 ∙ ς𝑖=2
𝑛 𝑔𝑖

−1
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𝐶0
𝑖

𝐶0
𝑗
=
𝑔𝑖
𝑔𝑗

መ𝑓 =
𝑁 𝐶𝐿

𝐶0
1𝛾1

∙ ς𝑖=1
𝑁 𝑔𝑖

𝛾1 = 1



Deriving Optimum Gate Sizes with Logical Effort

▪ Output → Input (right to left)

𝑓𝑁 = መ𝑓 = 𝑔𝑁 ∙
1

𝛾𝑁
∙
𝐶𝐿

𝐶0
𝑁 ⟼ 𝛾𝑁 =

1

መ𝑓

𝐶𝐿

𝐶0
𝑁 ∙ 𝑔𝑁

𝑓𝑁−1 = መ𝑓 = 𝑔𝑁−1 ∙
𝛾𝑁

𝛾𝑁−1
∙

𝐶0
𝑁

𝐶0
𝑁−1 ⟼ 𝛾𝑁−1 =

1

መ𝑓
∙ 𝑔𝑁−1 ∙ 𝛾𝑁 ∙

𝐶0
𝑁

𝐶0
𝑁−1 =

1

መ𝑓2
∙

𝐶𝐿

𝐶0
𝑁−1 ∙ 𝑔𝑁−1 ∙ 𝑔𝑁

𝑓𝑁−2 = መ𝑓 = 𝑔𝑁−2 ∙
𝛾𝑁−1

𝛾𝑁−2
∙
𝐶0
𝑁−1

𝐶0
𝑁−2 ⟼ 𝛾𝑁−2 =

1

መ𝑓
∙ 𝑔𝑁−2 ∙ 𝛾𝑁 ∙

𝐶0
𝑁−1

𝐶0
𝑁−2 =

1

መ𝑓3
∙

𝐶𝐿

𝐶0
𝑁−2 ∙ 𝑔𝑁−2 ∙ 𝑔𝑁−1 ∙ 𝑔𝑁

𝑓𝑛 = … ⟼ 𝛾𝑛 =
1

መ𝑓𝑁−𝑛+1
∙
𝐶𝐿

𝐶0
𝑛 ∙ ς𝑖=𝑛

𝑁 𝑔𝑖

▪ Drive strength scales exponentially with every stage by a factor of መ𝑓, corrected by the logical 

effort of the stage
𝛾𝑛
𝛾𝑛−1

= መ𝑓/𝑔𝑛
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Calculating Delay with Optimum Sizing (Example)

• Consider the following path (𝛽 = 2) :
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i = 1 i = 2 i = 3 i = 4

𝑝 1 2 2 1

𝑔 1 4/3 5/3 1

ℎ 8/3 16/8 24/15 8/3

𝐶𝐿 =
256

20
∙
16

3
∙ 𝐶0

𝐶𝐿/ 𝐶0

መ𝑓 =
4
𝐻𝐺 =

8

3

𝐷𝑚𝑖𝑛 = σ𝑝𝑖 +𝑁 ∙ ෠𝑓 = 6 +
32

3
≈ 16

𝛾2 = መ𝑓
𝛾1
𝑔2

= 2 𝛾3 = መ𝑓
𝛾2
𝑔3

=
16

5
𝛾4 = መ𝑓

𝛾3
𝑔4

=
384

45

3 8
16

384/15

𝐷 = σ𝑝𝑖 + σ𝑔𝑖ℎ = 6 +
8

3
+

4

3

16

8
+

5

3

24

45
+

8

3
≈ 16.66 = 𝐷𝑚𝑖𝑛



Driving Large Loads

• We often face the challenge to drive a large load starting from a small gate

▪ Single large buffer is not efficient as it puts too much load on the small initial gate

• Solution: chain of multiple buffers with increasing size

▪ More buffers, more intrinsic delay, but less effort delay…

▪ How to size those inverters?
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1

መ𝑓 =
4
𝐻𝐺 =

8

3
𝑔 = 1 𝐺 = 1 𝐻 =

𝐶𝐿

𝐶𝐼𝑁
𝑖𝑛𝑣

𝑁 stages

𝐶𝐿: large

𝐷𝑚𝑖𝑛 𝑁 = 𝑁 + 𝑁
𝑁
𝐶𝐿/𝐶𝐼𝑁

𝑖𝑛𝑣

𝛾𝑛 = መ𝑓𝑛−1 =
𝐶𝐿

𝐶𝐼𝑁
𝑖𝑛𝑣

𝑛−1
𝑁

geometric sizing



Driving Large Loads

• How many buffers/inverter stages should we use for min. delay?

▪ Find the minimum of 𝐷𝑚𝑖𝑛 𝑁 with respect to 𝑁
𝜕𝐷𝑚𝑖𝑛 𝑁

𝜕𝑁
= −𝐻

1
𝑁 ln𝐻

1
𝑁 + 𝐻

1
𝑁 + 1 = 0

▪ Difficult to solve for 𝑁!

• Rewrite to find stage effort 𝜌 = 𝐻
1

𝑁 that minimizes 𝐷𝑚𝑖𝑛 𝑁
−𝜌 ln 𝜌 + 𝜌 + 1 = 𝜌 1 − ln 𝜌 = 1

▪ Numerical evaluation leads to 𝜌𝑜𝑝𝑡 ≈ 3.69 (optimum stage effort)

• Reconstruct the optimum number of stages from 𝜌𝑜𝑝𝑡 and 𝐻
෡𝑁 = 1/ log𝐻(𝜌𝑜𝑝𝑡)
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𝐷𝑚𝑖𝑛 𝑁 = 𝑁 + 𝑁
𝑁
𝐻

𝐻
1
𝑁 = መ𝑓

We often use FO4 as a 

reference since is close 

to the optimum stage effort



Driving Large Loads

• Engineering solution: smart trial and error

▪ Useful when for example 𝑝 > 1

▪ Use that only integer choices are allowed for 𝑵

▪ For inverters, may even restrict 𝑁 to be even

▪ A simple procedure with binary search

1. Start with 𝑁 = 1

2. Compute 𝐷𝑚𝑖𝑛 𝑁 and 𝜕𝐷𝑚𝑖𝑛 𝑁 /𝜕𝑁

3. As long as
𝜕𝐷𝑚𝑖𝑛 𝑁

𝜕𝑁
< 0 double 𝑁 and proceed with 2. 

Once 
𝜕𝐷𝑚𝑖𝑛 𝑁

𝜕𝑁
> 0, proceed with a binary search targeting 

𝜕𝐷𝑚𝑖𝑛 𝑁

𝜕𝑁
= 0

EE-429: Fundamentals of VLSI Design 32



Driving Large Loads

• Finding the exact optimal solution for the best number of stages is tricky and 

has many approximations

• How sensitive is the delay to small errors in the solution?

• Consider the delay as a function 

of the deviation from the optimal

number of stages:

▪ Sensitivity of the delay to variations in 

the number of stages is low
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Dealing with Branches

• Digital Circuits are rarely linear, but typically branch out (tree-like, with FO>1)

▪ Path logical effort: 𝐺 = 𝑔1 ∙ 𝑔2 ∙ ⋯ ∙ 𝑔𝑁 not affected

▪ Path electrical effort: 𝐻 = ℎ1 ∙ ⋯ ∙ ℎ𝑖−1 ∙
𝛾𝑖+1𝐶0

𝑖+1 + 𝐶𝑜𝑓𝑓
𝑖+1

𝛾𝑖𝐶0
𝑖

≠ℎ𝑖+1=
𝛾𝑖+1𝐶0

𝑖+1

𝛾𝑖𝐶0
𝑖

∙ ℎ𝑖+1… ∙ ℎ𝑁 ≠
𝐶𝐿

𝐶0
1 is affected 
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𝐶𝑜𝑓𝑓
𝑖+1 : off-path load after stage 𝑖

𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2



Dealing with Branches using Branch Efforts

• Basic idea: for consistency, move branching overhead into separate factor

▪ Keep same definition of 𝐻 =
𝐶𝐿

𝐶0
1 also with branches

▪ Define a per-stage branch effort 𝑐 so that 𝑏𝑖 ∙
𝛾𝑖+1𝐶0

𝑖+1

𝛾𝑖𝐶0
𝑖

ℎ𝑖

=
𝛾𝑖+1𝐶0

𝑖+1 + 𝐶𝑜𝑓𝑓
𝑖+1

𝛾𝑖𝐶0
𝑖

• Path logical effort with branches:

𝐺 = ς𝑖=1
𝑁 𝑔𝑖 H = ς𝑖=1

𝑁 ℎ𝑖 =
𝐶𝐿

𝐶0
1𝛾1

𝐵 = ς𝑖=1
𝑁 𝑏𝑖

Path effort: 𝐹 = 𝐺𝐵𝐻 Stage effort: መ𝑓 =
𝑁
𝐺𝐵𝐻
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Sizing with Branches

• The path branch effort 𝐵 depends on the sizing 𝛾𝑖 at the branches

▪ Calculation of ෠𝒇 =
𝑁
𝐺𝐵 𝛾 𝐻 prior to sizing is no longer possible 

• Trick to re-enable sizing: perform same sizing on all paths on branch

▪ Branch effort becomes again independent of 𝛾𝑖+1

𝑏𝑖 =
𝛾𝑖+1𝐶0

𝑖+1 +𝛾𝑖+1𝐶𝑜𝑓𝑓
𝑖+1

𝛾𝑖+1𝐶0
𝑖+1 =

𝐶0
𝑖+1 +𝐶𝑜𝑓𝑓

𝑖+1

𝐶0
𝑖+1

• Updated sizing rules include 𝒃𝒊 similar to 𝑔𝑖

– Left-to-right:  𝛾𝑛 = መ𝑓𝑛−1 ∙ 𝛾1 ∙ ς𝑖=2
𝑛 𝑏𝑖−1

−1 𝑔𝑖
−1 = መ𝑓 ∙

𝛾𝑛−1

𝑏𝑛−1𝑔𝑛

– Right-to-left:  𝛾𝑛 =
1

መ𝑓𝑁−𝑛+1
∙
𝐶𝐿

𝐶0
𝑛 ∙ ς𝑖=𝑛

𝑁 𝑏𝑖𝑔𝑖 =
𝑏𝑛𝑔𝑛+1

መ𝑓
∙ 𝛾𝑛+1 𝛾𝑁 =

1

መ𝑓
∙
𝐶𝐿

𝐶0
𝑁 ∙ 𝑏𝑁𝑔𝑁

• Not always realistic, but many important circuits are structured and continue similarly after a branch

• Useful also as a starting point, even when branches are finally not scaled as assumed (overdesign)
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𝑖 𝑖 + 1

𝛾𝑖+1𝐶𝑜𝑓𝑓
𝑖+1 𝛾𝑖+1

𝛾𝑖+1

usually 1 unless 𝐶𝐿 is per branch 



Sizing with Branches (Example)

• Consider the 

following circuit:
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𝐶𝐿 = 18 ∙ 𝐶0

i = 1 i = 2 i = 3

𝑝

𝑔

𝑏

𝐻 =

𝐺 =

𝐵 =

መ𝑓 = =

𝐷𝑚𝑖𝑛 = =

𝛽 = 2

𝛾3 = =𝛾2 = =𝛾1 = 1



Sizing with Branches (Example)

• Consider the 

following circuit:
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𝐶𝐿 = 18 ∙ 𝐶0

i = 1 i = 2 i = 3

𝑝 2 2 2

𝑔 4/3 4/3 4/3

𝑏 2 3 1

𝐻 = Τ18 4

𝐺 = Τ4 3 3

𝐵 = 2 ∙ 3 ∙ 1

መ𝑓 =
3
𝐺𝐵𝐻 = 4

𝐷𝑚𝑖𝑛 = 6 + 𝑁 ∙ ෠𝑓 = 22

𝑁 = 3

𝛾3 = 𝛾2
መ𝑓

𝑏2𝑔3
=
3

2
𝛾2 = 𝛾1

መ𝑓

𝑏1𝑔2
=
3

2
𝛾1 = 1

𝛽 = 2
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Logical Effort – Interconnect & Irregularities
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Logical Effort with Routing Capacitance (1/2)

• The logical effort model can not account for routing resistance, but routing 

capacitance is anyway often more relevant

• We often face the following scenario

▪ A path (to be optimized) with some random logic 

contains a very long wire with a high capacitive 

load 𝑪𝒘
▪ Often, this occurs in the location of a branch 

with many nodes which add additional load 

▪ The path continues after the segment with the high load

▪ The path ends with a defined load 𝐶𝐿 (which may also be high)

▪ We would like to optimize the entire path …
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𝐶𝑤 𝐶𝐿



Logical Effort with Routing Capacitance (2/2)

• The common optimization procedure is not applicable 

since the wire load does not scale with the sizing 𝛾.

• Procedure: multi-step iterative process

1. Ignore parasitics 𝐶𝑤 and size all gates from 𝐀 to 𝐂

• Identify the appropriate fanout load on node 𝐁

• Include any rounding-up on the drivers loading 𝐁

2. Optimize the partial path from 𝐀 to 𝐁 with the load defined by 𝐶𝑤 and the fanout from the first 

optimization step.
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𝐶𝑤 𝐶𝐿

𝚨 𝐂
𝐁
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