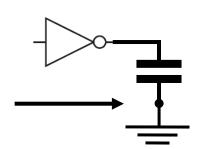
EE-429 Fundamentals of VLSI Design

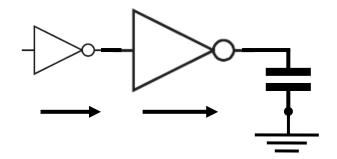
Logical Effort – Modelling and Analysis

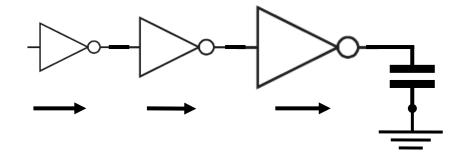
Andreas Burg

Modelling Delay and Sizing Gates

- CMOS logic designers often face the problem of
 - Sizing gates in multiple stages of logic to minimize delay
 - Determining the optimum number of logic stages (especially for driving large loads)
 - Rapidly comparing circuit alternatives with optimal sizing
- Difficulty lies in the impact of sizing one gate to reduce delay on the delay of the preceding gate
 - Up-sizing one gate to reduce delay increases load (delay) on previous gate
 - Down-sizing one gate increase its delay, but also decreases the load (delay) of the previous gate
- Example: driving a large load starting from a small inverter







The Logical Effort model

- Logical effort is a method to quickly analyze and optimize logic delay
 - Uses a simple linear delay model that includes
 - the impact of load on delay
 - the impact of sizing on the load/delay of the previous gate
 - Allows back-of-the-envelope calculations
 - Helps make rapid comparisons between alternatives
- The method is useful for
 - Digital circuit designers trying to optimize their (high-speed) designs by hand
 - CAD tool developers to incorporate the key ideas into their tools for design automation
- Developed in 1999 by Sutherland and Sproull:
 - I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS Circuits, San Francisco, CA: Morgan Kaufmann, 1999.
- See: http://bibl.ica.jku.at/dc/build/html/logicaleffort/logicaleffort.html

Technology Independent Delay Model

- Basic idea: decomposition of the delay
 - Decompose the normalized delay of a gate into two components
 - A constant intrinsic delay (stage effort) term p that depends only on the gate itself
 - A load-dependent effort delay f(type, load, size)

$$d = p(type) + f(type, load, size)$$

- Decompose the load dependent delay term f(load) into a product of two components
 - The **logical effort** *g* which covers the complexity of the gate (effort to drive a load: increases with the complexity of the gate)
 - The electrical effort h which describes the load and the sizing of the gate

$$f(type, load, size) = g(type) * h(load, size)$$

• p and f express the two delays $\tau_{p,f}(\text{gate})$ of a gate relative to the delay of a minimum size, balanced inverter $\tau_{p,f}(\text{inv})$ (reference inverter)

Normalized delays:
$$p = \frac{\tau_p(\text{gate})}{\tau_p(\text{inv})}$$
 and $f = \frac{\tau_f(\text{gate})}{\tau_f(\text{inv})}$

Derivation of the Relative Intrinsic Delay

• Reminder: Intrinsic delay of a gate depends on on-resistance and the intrinsic load capacitance C_{int}^{gate}

$$\tau_p(\text{gate}) = 0.69 \cdot R_{eq}^{gate} C_{int}^{gate}$$

Normalizing with the delay of the reference inverter

$$p = \frac{R_{eq}^{gate} C_{int}^{gate}}{R_{eq}^{inv} C_{int}^{inv}}$$

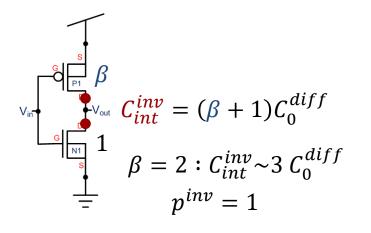
Balanced (reference) inverter (same driving strength as considered gate) Unloaded: $\tau_p(\text{inv}) = 0.69 \cdot R_{eq}^{inv} C_{int}^{inv}$ C_{int}^{inv} : inverter intrinsic load Driving itself: $\tau_f(\text{inv}) = 0.69 \cdot R_{eq}^{inv} C_{IN}^{inv}$ C_{IN}^{inv} : inverter input load

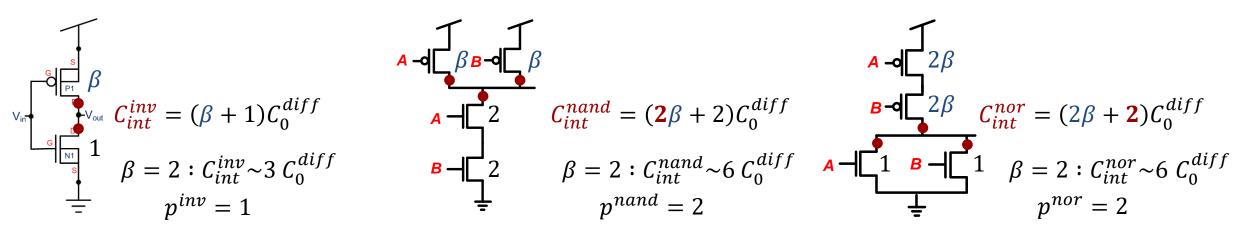
• For a balanced gate that is matched to a reference inverter with the same current drive capability ($R_{eq}^{gate} = R_{eq}^{inv}$)

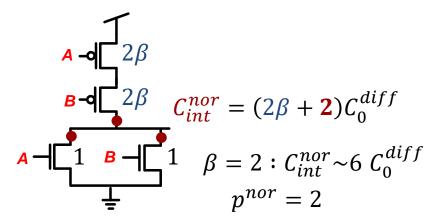
$$p = \frac{C_{int}^{gate}}{C_{int}^{inv}}$$

Model for the Internal Load $C_{int}^{??}$ for Intrinsic Delay

- Internal load is difficult to define precisely, especially since it also depends significantly on the layout. Nevertheless, we need a basic model.
- Intrinsic load: dominated by the diffusion capacitance
 - Relative to the diffusion capacitance of a minimum size nMOS C_0^{diff}
 - Depends linearly on the width of the transistors that contribute to it
 - Consider only the load that is attached directly to the output node of the gate







Split Effort Delay into Logical- and Electrical-Effort

Start from the effort delay of a gate

$$\tau_f(\text{gate}) = 0.69 \cdot R_{eq}^{gate} \cdot C_{\text{L}}$$

Normalizing with the effort delay of a reference inverter with same current drive capability $(R_{eq}^{gate} = R_{eq}^{inv})$

Balanced (reference) inverter (same driving strength as considered gate) Unloaded:
$$\tau_p(\text{inv}) = 0.69 \cdot R_{eq}^{inv} C_{int}^{inv}$$
 C_{int}^{inv} : inverter intrinsic load Driving itself: $\tau_f(\text{inv}) = 0.69 \cdot R_{eq}^{inv} C_{IN}^{inv}$ C_{IN}^{inv} : inverter input load

$$f(C_{L}) = \frac{R_{eq}^{gate} \cdot C_{L}}{R_{eq}^{inv} \cdot C_{IN}^{inv}} * \frac{C_{IN}^{gate}}{C_{IN}^{gate}} = \frac{C_{L}}{C_{IN}^{inv}} * \frac{C_{IN}^{gate}}{C_{IN}^{gate}} = \frac{C_{IN}^{gate}}{C_{IN}^{inv}} * \frac{C_{L}}{C_{IN}^{inv}} * \frac{C_{L}}{C_{IN}^{gate}}$$

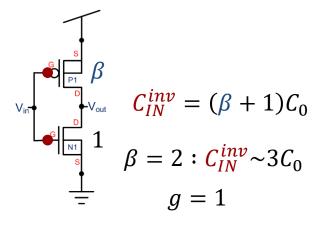
- Logical effort: complexity of the gate represented by the additional input load compared to an equally strong inverter
- **Electrical effort**: difficulty to drive the output relative to the difficulty of the previous gate to drive the input

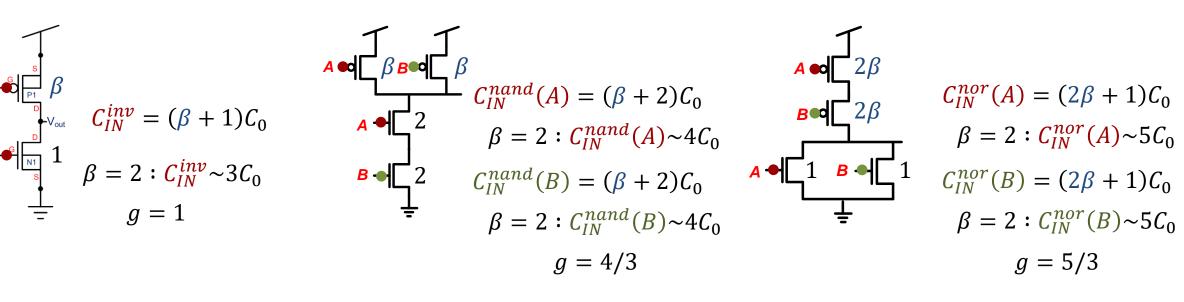
Logical effort

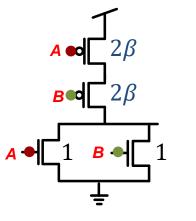
Electrical effort

Deriving the Input Capacitance/Load

- **Input capacitance:** load that the input of a gate presents to the preceding gate
 - Relative to gate capacitance of a minimum size nMOS C_0
 - Depends linearly on the width of the transistors that contribute to it
 - Value of C_0 is irrelevant when
 - used to calculate $g = C_{IN}^{gate}/C_{IN}^{inv}$ (ratio of gate capacitances)
 - when the C_L is only the input of other gates since then $C_L \sim C_0$ and $h = C_L / C_{IN}^{inv}$ independent of C_0







$$C_{IN}^{nor}(A) = (2\beta + 1)C_0$$

$$\beta = 2 : C_{IN}^{nor}(A) \sim 5C_0$$

$$C_{IN}^{nor}(B) = (2\beta + 1)C_0$$

$$\beta = 2 : C_{IN}^{nor}(B) \sim 5C_0$$

$$g = 5/3$$

Logical Effort Gate Delay Summary

Gate delay is modelled as

$$d = p + g * h$$

- **Intrinsic delay** p: load independent delay
 - Depends only on the gate
 - Approximated by the number of unit diffusion capacitances (C_0^{aiff}) connected to the output of the gate, relative to an equivalent inverter

$$p = \frac{C_{int}^{gate}}{C_{int}^{inv}}$$

- **Logical effort** g: cost for driving an output load (due to the complexity of the gate)
 - Depends only on the gate (not on the load), but can be different for different inputs of the gate
 - Given by the ratio of capacitances at the input of a gate compared to the capacitances of an equivalent inverter

$$g = \frac{C_{IN}^{gate}}{C_{IN}^{inv}}$$

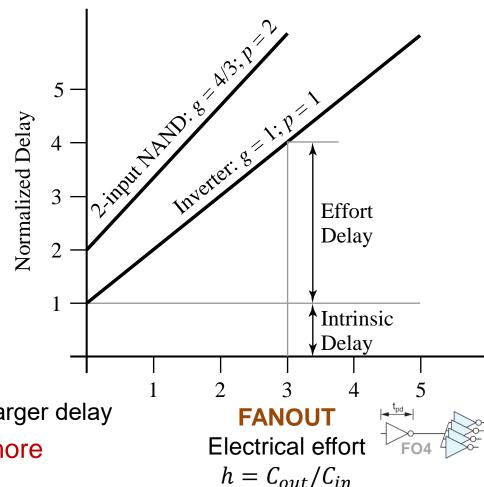
- **Electrical effort h**: size of the load relative to the load the gate to a previous gate
 - Depends on the gate and the load
 - Given by the ratio of the load to the input capacitance of the gate

$$h = \frac{C_{\rm L}}{C_{IN}^{gate}}$$

Logical Effort Gate Delay Examples

Consider two examples: INV & NAND

- NAND has a larger intrinsic delay
- Drive capability of NAND is the same as for the inverter, hence, delay increase with higher absolute load should be the same
 - "Normalized delay" reflects how well the gate with the same input capacitance as an inverter can drive a load
- However, we consider the load relative to the input capacitance of the gate (FANOUT):
 - This reflects the impact of facilitating drive through up-sizing on the previous gate
 - Driving a larger relative load, is more "difficult" and leads to larger delay
- Delay increase with higher relative (to the input) load is more



Logical Effort for Popular Gates

- Intrinsic delay and logical effort for frequently used gates with $\beta = 2$:
 - Note that Intrinsic delay and logical effort are independent of the gate sizing, but they depend on the PMOS/NMOS ratio (β)

B
O
0
C
S
_
7

	Gate Type	Number of Inputs				
		1	2	3	4	п
	inverter	1				
	NAND		2	3	4	n
	NOR		2	3	4	n
	tristate, multiplexer	2	4	6	8	2 <i>n</i>

logical effort

Gate Type	Number of Inputs				
	1	2	3	4	п
inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n + 1)/3
tristate, multiplexer	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

Difference between NAND and NOR becomes apparent in logical effort

Extracting Delay Constant from Ring Oscillator

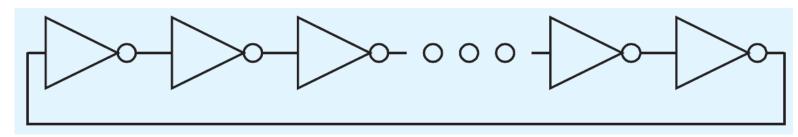
- Relating the logical effort "relative" delay to an absolute delay requires two delay constants: $\tau_p(\text{inv})$ and $\tau_f(\text{inv})$
- Delay constants are related by their unit loads (diffusion load vs. gate load)

$$\tau_p(\text{inv})/\tau_f(\text{inv}) = C_0^{diff}/C_0$$

- For many modern processes, we find that $C_0^{diff} \approx C_0 \Rightarrow \tau_p(inv) = \tau_f(inv) = \tau(inv)$
- Experimental setup to extract $\tau(inv)$: N-stage ring oscillator

Logical effort delay

$$\begin{aligned} p_{inv} &= 1\\ g_{inv} &= 1\\ h &= 1\\ d_{osc} &= N \cdot p_{inv} + N \cdot g_{inv} \cdot h = 2N \end{aligned}$$



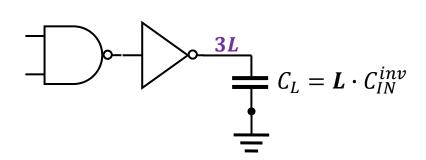
Measured oscillator frequency
$$f_{osc} = \frac{1}{2 \cdot 2N \cdot \tau(inv)} \Rightarrow \tau(inv) = 4Nf_{osc}$$

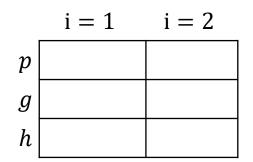
Path Delay Calculation with Logical Effort

- Logical effort model allows to easily calculate path delays
 - Normalized path delay obtained by summing of normalized gate delays
- Procedure for path delay calculation
 - 1. For each gate i calculate input capacitance C_{IN}^i and output load C_L^i relative to min. inverter
 - Without branching (drives only one next gate... see later): $C_L^i = C_{IN}^{i+1}$
 - Consider that C_{IN}^i scales with size γ compared to the minimum size gate
 - 2. Evaluate intrinsic delay p, logical effort g, and electrical effort h for each gate in the path
 - 3. Compute gate delays and sum up to obtain the path delay

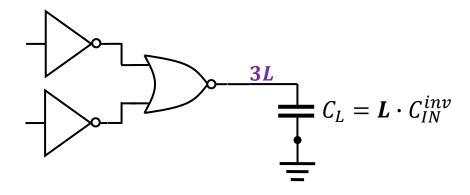
Path Delay Calculation Examples

• **Example 1:** compare two AND gate implementations (min. size, $\beta = 2$)

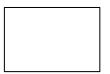




DELAY:

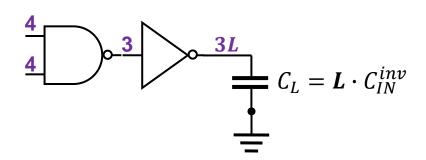


	i = 1	i = 2
p		
g		
h		



Path Delay Calculation Examples

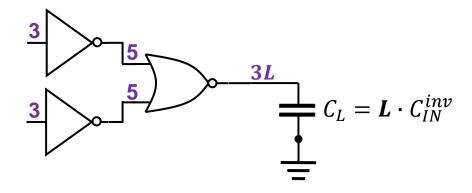
• **Example 1:** compare two AND gate implementations (min. size, $\beta = 2$)



$$i = 1$$
 $i = 2$
 p 2 1
 g 4/3 1
 h 3/4 3L/3

DELAY:

$$4+L$$

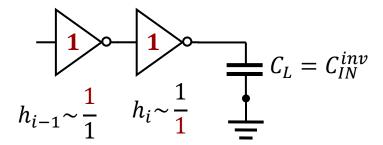


$$i = 1$$
 $i = 2$
 p 1 2
 g 1 5/3
 h 5/3 $3L/5$

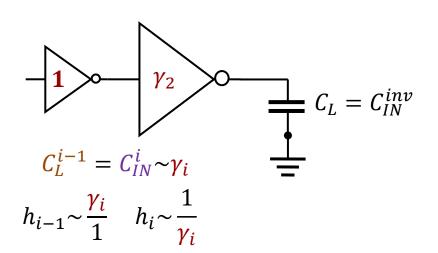
$$\frac{14}{3} + L$$

Gate Sizing

- How to adjust the size of gates in a path to minimize delay?
 - Up-Sizing factors γ_i : specifies size of gate i relative to the corresponding minimum size gate
 - Assume that the size of the first gate in a chain is given (e.g., $\gamma_1 \equiv 1$) and can not be altered
- Implications of up-sizing a gate on a path



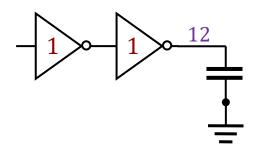
- Delay (electrical effort h) of the up-sized gate reduces
- Delay (electrical effort h) of the previous gate increases

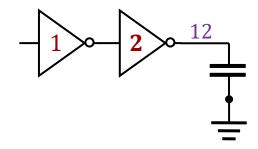


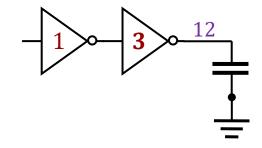
Local optimization is not sufficient: need to capture impact of sizing on full path

Impact of Gate Sizing Example

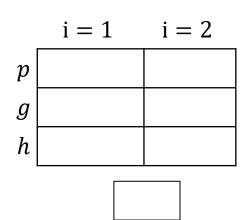
- Two inverters driving a load of $C_L = 4 \cdot C_{IN}^{inv}$ ($\beta = 2$)
 - Consider three configurations







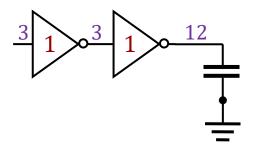
$$\begin{array}{c|c}
i = 1 & i = 2 \\
p & & \\
g & & \\
h & & \\
\end{array}$$

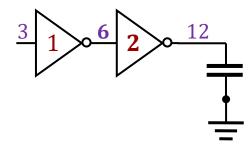


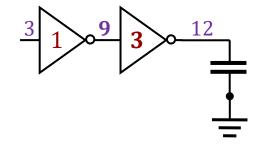
DELAY:

Impact of Gate Sizing Example

- Two inverters driving a load of $C_L = 4 \cdot C_{IN}^{inv}$ ($\beta = 2$)
 - Consider three configurations







$$i = 1$$
 $i = 2$
 p 1 1
 g 1 1
 h 3/3 12/3

$$i = 1$$
 $i = 2$
 p 1 1
 g 1 1
 h 6/3 12/6

$$i = 1$$
 $i = 2$
 p 1 1
 g 1 1
 h 9/3 12/9

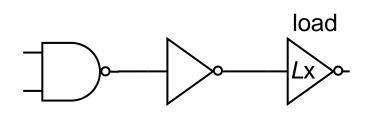
DELAY:

6

6.33

Topology Analysis

- Consider the following two options to implement the same logic function: $Z = \overline{\overline{A \cdot B}}$ that drives a large load (Lx INV)
 - Which option is better (potentially as a function of L)?



	i = 1	i = 2
p		
g		
h		

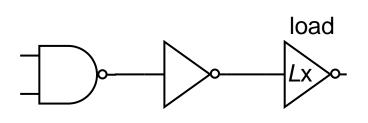
 $i = 1 \qquad i = 2$

g h

DELAY:

Topology Analysis

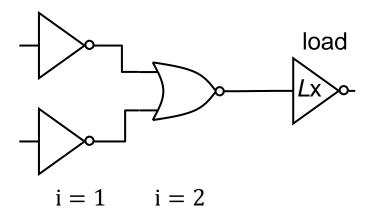
- Consider the following two options to implement the same logic function: $Z = \overline{A \cdot B}$ that drives a large load (Lx INV)
 - Which option is better (potentially as a function of L)?



$$i = 1$$
 $i = 2$

$$g$$
 4/3 1

DELAY: 4 + L



$$4.66 + L$$

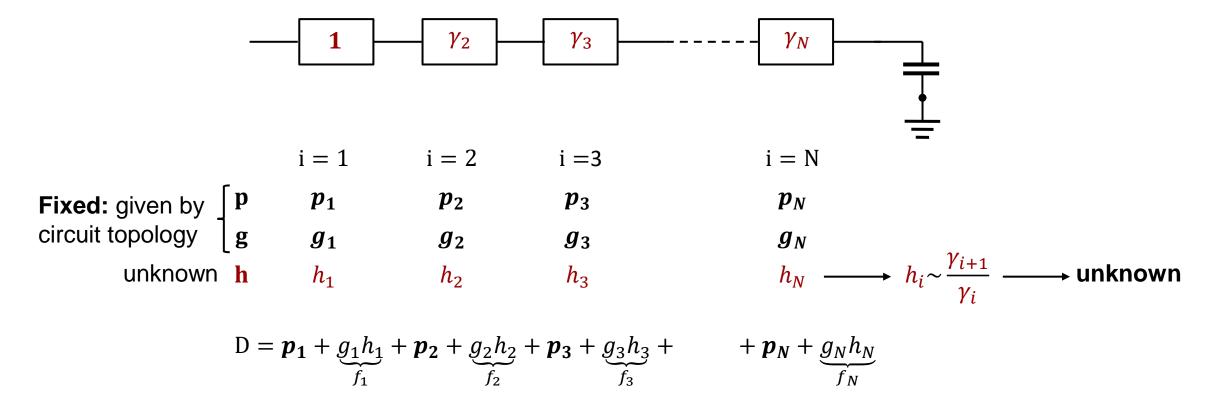
EE-429 Fundamentals of VLSI Design

Logical Effort – Optimization

Andreas Burg

Optimum Sizing with Logical Effort (Derivation)

Consider the schematic and the delay of a generic path



• Minimize delay \Rightarrow minimize $f_1 + f_2 + \dots + f_N = \sum_{i=1}^N f_i$ (path effort delay) \longrightarrow DIFFICULT!

Optimum Sizing with Logical Effort (Derivation)

- How to minimize the path effort delay $\sum_{i=1}^{N} f_i$
- Trick: consider the path effort

$$F = f_1 \cdot f_2 \cdot \dots \cdot f_N = \prod_{i=1}^N f_i = \underbrace{\prod_{i=1}^N g_i}_{G} \cdot \underbrace{\prod_{i=1}^N h_i}_{H} = \overset{\checkmark}{G} \cdot H$$

■ Computing
$$H = \underbrace{\frac{\gamma_2 C_0^2}{\gamma_1 C_0^1}}_{h_1} \cdot \underbrace{\frac{\gamma_3 C_0^3}{\gamma_2 C_0^2}}_{h_2} \cdot \underbrace{\frac{\gamma_4 C_0^4}{\gamma_3 C_0^3}}_{h_3} \cdot \dots \cdot \underbrace{\frac{c_L}{\gamma_N c_0^N}}_{h_N} = \underbrace{\frac{c_L}{\gamma_1 c_0^1}}_{\text{internal sizes}}$$
as geometric mean is possible without knowledge of $\gamma_2 \dots \gamma_N$!

 C_0^i : input capacitance of gate i with minimum size

G is known from

- H depends only on the first gate and the last load of the path
- Exploit ability to compute H with theorem of arithmetic mean & geometric mean

$$\frac{1}{N} \sum_{i=1}^{N} f_i \ge \sqrt[N]{F}$$

Equality if
$$f_1 = f_2 = \cdots = f_N$$

Equality minimizes $f_1 + f_2 + \cdots + f_N$

Delay with Optimum Sizing with Logical Effort

Effort delay is minimized if

$$\hat{f} = f_1 = f_2 = \cdots f_N = \sqrt[N]{F} = \sqrt[N]{G \cdot H}$$

$$G = \prod_{i=1}^N g_i$$
 $H = \prod_{i=1}^N h_i = \frac{c_L}{c_0^1 \gamma_1}$

- G: from gate types given by the path topology
- C_L : load given by the problem statement (in same unit as C_0^1)
- C_0^1 : minimum size input capacitance of first gate type (in same unit as C_L)
- γ_1 : given relative sizing of the first gate

Minimum achievable path delay

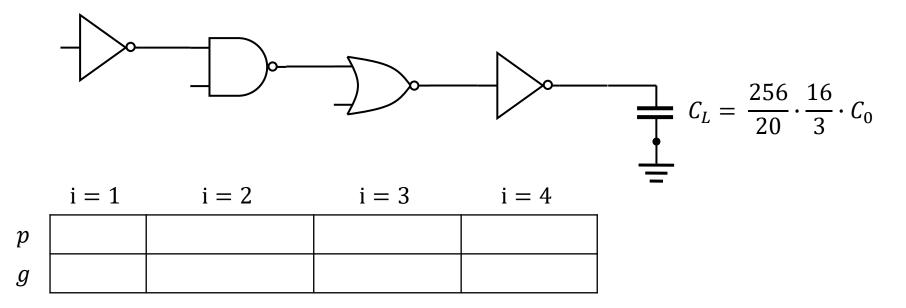
Can be derived without knowledge of the corresponding gate sizes!

$$p_i$$
: given, $g_i \cdot h_i = \sqrt[N]{\frac{C_L}{C_0^1 \gamma_1} \cdot \prod_{i=1}^N g_i} = \hat{f}$

Total path delay with optimum sizing = $\sum_{i=1}^{N} p_i + N \cdot \sqrt[N]{\frac{c_L}{c_0^1 \gamma_1} \cdot \prod_{i=1}^{N} g_i}$

Calculating Delay with Optimum Sizing (Example)

• Consider the following path $(\beta = 2)$:



$$N =$$

$$H =$$

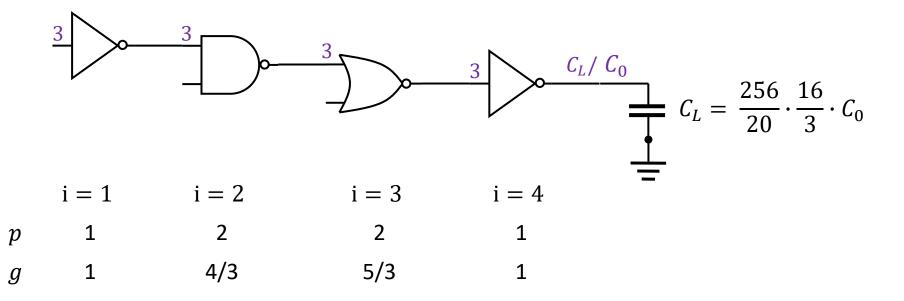
$$G =$$

$$\hat{f} =$$

$$D_{min} =$$

Calculating Delay with Optimum Sizing (Example)

Consider the following path $(\beta = 2)$:



$$N = 4 H = \frac{\frac{256}{20} \cdot \frac{16}{3}}{3} G = 1 \cdot \frac{4}{3} \cdot \frac{5}{3} \cdot 1 = \frac{20}{9} \hat{f} = \sqrt[4]{HG} = \frac{8}{3}$$

$$G = 1 \cdot \frac{4}{3} \cdot \frac{5}{3} \cdot 1 = \frac{20}{9}$$

$$\hat{f} = \sqrt[4]{HG} = \frac{8}{3}$$

$$D_{min} = \sum p_i + N \cdot \hat{f} = 6 + \frac{32}{3} \approx 16.66$$

Deriving Optimum Gate Sizes with Logical Effort

- **Optimum gate sizes** γ_i can be **derived from** knowledge of $\hat{f} = g_i \cdot h_i$
 - h_i depends only on γ_i and γ_{i+1} OR on γ_i and C_L
 - γ_1 and C_L are known

Two strategies:

$$\frac{C_0^i}{C_0^j} = \frac{g_i}{g_j}$$
Input → Output (left to right)

$$f_1 = \hat{f} = g_1 \cdot \frac{\gamma_2}{\gamma_1} \cdot \frac{C_0^2}{C_0^1} = \frac{\gamma_2}{\gamma_1} \cdot g_2 \qquad \mapsto \qquad \gamma_2 = \hat{f} \cdot \frac{\gamma_1}{g_2}$$

$$f_2 = \hat{f} = g_2 \cdot \frac{\gamma_3}{\gamma_2} \cdot \frac{C_0^3}{C_0^2} = \frac{\gamma_3}{\gamma_2} \cdot g_3 \qquad \mapsto \qquad \gamma_3 = \hat{f} \cdot \frac{\gamma_2}{g_3} = \hat{f}^2 \cdot \frac{\gamma_1}{g_2 g_3}$$

$$f_3 = \hat{f} = g_3 \cdot \frac{\gamma_4}{\gamma_3} \cdot \frac{C_0^4}{C_0^3} = \frac{\gamma_4}{\gamma_3} \cdot g_4 \qquad \mapsto \qquad \gamma_4 = \hat{f} \cdot \frac{\gamma_3}{g_4} = \hat{f}^3 \cdot \frac{\gamma_1}{g_2 g_3 g_4}$$

$$f_3 = \hat{f} = g_3 \cdot \frac{\gamma_4}{\gamma_3} \cdot \left| \frac{C_0^4}{C_0^3} \right| = \frac{\gamma_4}{\gamma_3} \cdot g_4$$

$$f_n = \dots$$

$$\hat{f} = \sqrt[N]{\frac{C_L}{C_0^1 \gamma_1}} \cdot \prod_{i=1}^N g_i$$
$$\gamma_1 = 1$$

$$\gamma_2 = \hat{f} \cdot \frac{\gamma_1}{g_2}$$

$$\gamma_3 = \hat{f} \cdot \frac{\gamma_2}{g_3} = \hat{f}^2 \cdot \frac{\gamma_1}{g_2 g_3}$$

$$\gamma_4 = \hat{f} \cdot \frac{\gamma_3}{g_4} = \hat{f}^3 \cdot \frac{\gamma_1}{g_2 g_3 g_3}$$

$$\mapsto \qquad \gamma_n = \hat{f}^{n-1} \cdot \gamma_1 \cdot \prod_{i=2}^n g_i^{-1}$$

Deriving Optimum Gate Sizes with Logical Effort

Output → Input (right to left)

$$f_{N} = \hat{f} = g_{N} \cdot \frac{1}{\gamma_{N}} \cdot \frac{c_{L}}{c_{0}^{N}} \qquad \mapsto \qquad \gamma_{N} = \frac{1}{\hat{f}} \frac{c_{L}}{c_{0}^{N}} \cdot g_{N}$$

$$f_{N-1} = \hat{f} = g_{N-1} \cdot \frac{\gamma_{N}}{\gamma_{N-1}} \cdot \frac{c_{0}^{N}}{c_{0}^{N-1}} \qquad \mapsto \qquad \gamma_{N-1} = \frac{1}{\hat{f}} \cdot g_{N-1} \cdot \gamma_{N} \cdot \frac{c_{0}^{N}}{c_{0}^{N-1}} = \frac{1}{\hat{f}^{2}} \cdot \frac{c_{L}}{c_{0}^{N-1}} \cdot g_{N-1} \cdot g_{N}$$

$$f_{N-2} = \hat{f} = g_{N-2} \cdot \frac{\gamma_{N-1}}{\gamma_{N-2}} \cdot \frac{c_{0}^{N-1}}{c_{0}^{N-2}} \qquad \mapsto \qquad \gamma_{N-2} = \frac{1}{\hat{f}} \cdot g_{N-2} \cdot \gamma_{N} \cdot \frac{c_{0}^{N-1}}{c_{0}^{N-2}} = \frac{1}{\hat{f}^{3}} \cdot \frac{c_{L}}{c_{0}^{N-2}} \cdot g_{N-2} \cdot g_{N-1} \cdot g_{N}$$

$$f_{n} = \dots \qquad \mapsto \qquad \gamma_{n} = \frac{1}{\hat{f}^{N-n+1}} \cdot \frac{c_{L}}{c_{0}^{n}} \cdot \prod_{i=n}^{N} g_{i}$$

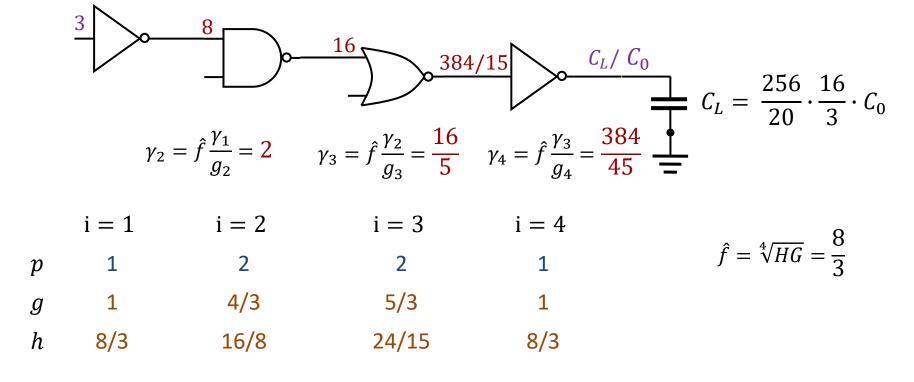
• Drive strength scales exponentially with every stage by a factor of \hat{f} , corrected by the logical effort of the stage

$$\frac{\gamma_n}{\gamma_{n-1}} = \hat{f}/g_n$$

Calculating Delay with Optimum Sizing (Example)

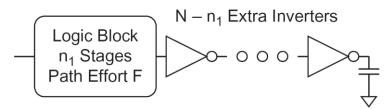
• Consider the following path $(\beta = 2)$:

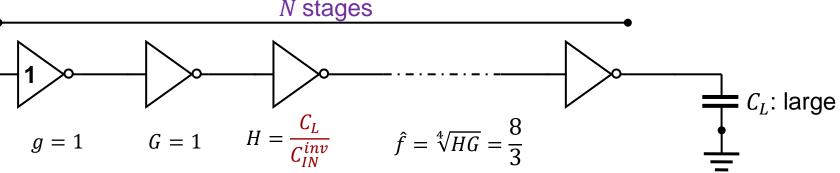
$$D_{min} = \sum p_i + N \cdot \hat{f} = 6 + \frac{32}{3} \approx 16$$



$$D = \sum p_i + \sum g_i h = 6 + \frac{8}{3} + \frac{4}{3} \cdot \frac{16}{8} + \frac{5}{3} \cdot \frac{24}{45} + \frac{8}{3} \approx 16.66 = D_{min}$$

- We often face the challenge to drive a large load starting from a small gate
 - Single large buffer is not efficient as it puts too much load on the small initial gate
- Solution: chain of multiple buffers with increasing size
 - More buffers, more intrinsic delay, but less effort delay...





■ How to size those inverters? $\gamma_n = \hat{f}^{n-1} = \left(\frac{C_L}{C_{IN}^{inv}}\right)^{\frac{n-1}{N}}$ geometric sizing

$$D_{min}(N) = N + N \sqrt[N]{C_L/C_{IN}^{inv}}$$

- How many buffers/inverter stages should we use for min. delay?
 - Find the minimum of $D_{min}(N)$ with respect to N

$$\frac{\partial D_{min}(N)}{\partial N} = -H^{\frac{1}{N}} \ln H^{\frac{1}{N}} + H^{\frac{1}{N}} + 1 = 0$$

Difficult to solve for N!

$$D_{min}(N) = N + N \sqrt[N]{H}$$
$$H^{\frac{1}{N}} = \hat{f}$$

• Rewrite to find stage effort $\rho = H^{\frac{1}{N}}$ that minimizes $D_{min}(N)$

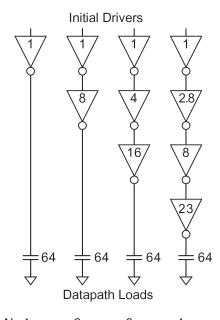
$$-\rho \ln \rho + \rho + 1 = \rho(1 - \ln \rho) = 1$$

- $-\rho \ln \rho + \rho + 1 \rho (1 \ln \rho) 1$ We often use FO4 as a • Numerical evaluation leads to $\rho_{opt} \approx 3.69$ (optimum stage effort) \longrightarrow reference since is close to the optimum stage effort
- Reconstruct the optimum number of stages from ho_{opt} and H

$$\widehat{N} = 1/\log_H(\rho_{opt})$$

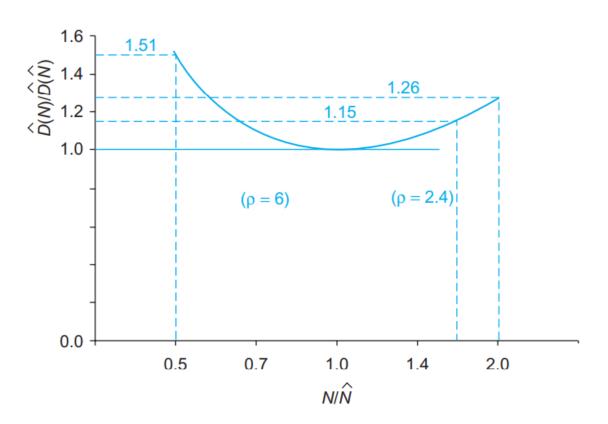
Engineering solution: smart trial and error

- Useful when for example p > 1
- Use that only integer choices are allowed for N
- For inverters, may even restrict *N* to be even
- A simple procedure with binary search
 - 1. Start with N=1
 - 2. Compute $D_{min}(N)$ and $\partial D_{min}(N)/\partial N$
 - 3. As long as $\frac{\partial D_{min}(N)}{\partial N} < 0$ double N and proceed with 2. Once $\frac{\partial D_{min}(N)}{\partial N} > 0$, proceed with a binary search targeting $\frac{\partial D_{min}(N)}{\partial N} = 0$



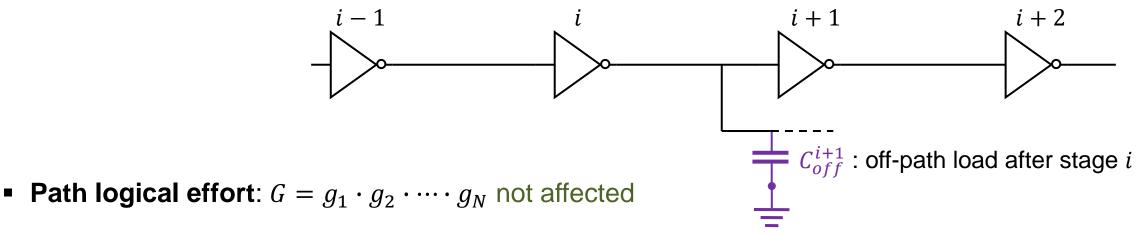
N:	1	2	3	4
f:	64	8	4	2.8
D:	65	18	(15)	15.3
			Fastest	

- Finding the exact optimal solution for the best number of stages is tricky and has many approximations
- How sensitive is the delay to small errors in the solution?
- Consider the delay as a function of the deviation from the optimal number of stages:
 - Sensitivity of the delay to variations in the number of stages is low



Dealing with Branches

Digital Circuits are rarely linear, but typically branch out (tree-like, with FO>1)



■ Path electrical effort:
$$H = h_1 \cdot \dots \cdot h_{i-1} \cdot \underbrace{\frac{\gamma_{i+1} C_0^{i+1} + C_{off}^{i+1}}{\gamma_i C_0^i}}_{\neq h_{i+1} = \frac{\gamma_{i+1} C_0^{i+1}}{\gamma_i C_0^i}} \cdot h_{i+1} \dots \cdot h_N \neq \frac{C_L}{C_0^1}$$
 is affected

Dealing with Branches using Branch Efforts

- · Basic idea: for consistency, move branching overhead into separate factor
 - Keep same definition of $H = \frac{C_L}{C_0^1}$ also with branches
 - Define a per-stage branch effort c so that $b_i \cdot \underbrace{\frac{\gamma_{i+1}c_0^{i+1}}{\gamma_i c_0^i}}_{h_i} = \frac{\gamma_{i+1}c_0^{i+1} + c_{off}^{i+1}}{\gamma_i c_0^i}$
- Path logical effort with branches:

$$G = \prod_{i=1}^{N} g_i$$
 $H = \prod_{i=1}^{N} h_i = \frac{c_L}{c_0^1 \gamma_1}$ $B = \prod_{i=1}^{N} b_i$

Path effort: F = GBH Stage effort: $\hat{f} = \sqrt[N]{GBH}$

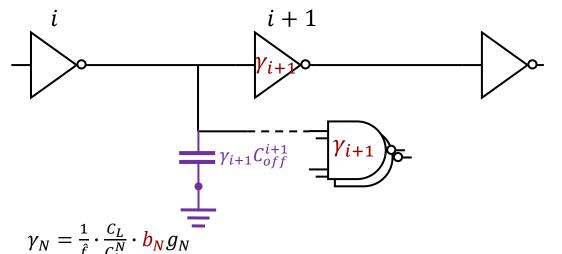
Sizing with Branches

- The path branch effort B depends on the sizing γ_i at the branches
 - Calculation of $\hat{f} = \sqrt[N]{GB(\gamma)H}$ prior to sizing is no longer possible
- Trick to re-enable sizing: perform same sizing on all paths on branch
 - Branch effort becomes again independent of γ_{i+1}

$$b_i = \frac{\gamma_{i+1}C_0^{i+1} + \gamma_{i+1}C_{off}^{i+1}}{\gamma_{i+1}C_0^{i+1}} = \frac{C_0^{i+1} + C_{off}^{i+1}}{C_0^{i+1}}$$

- Left-to-right:
$$\gamma_n = \hat{f}^{n-1} \cdot \gamma_1 \cdot \prod_{i=2}^n b_{i-1}^{-1} g_i^{-1} = \hat{f} \cdot \frac{\gamma_{n-1}}{b_{n-1}g_n}$$

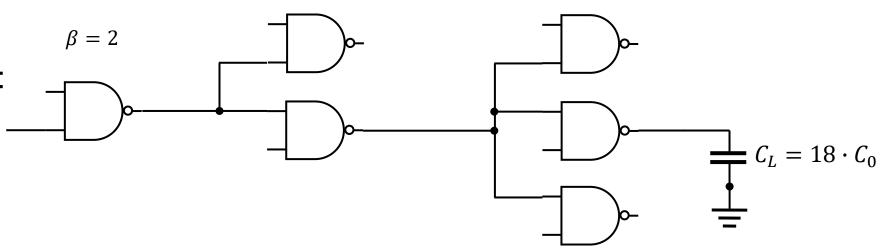
- Right-to-left:
$$\gamma_n = \frac{1}{\hat{f}^{N-n+1}} \cdot \frac{c_L}{c_0^n} \cdot \prod_{i=n}^N b_i g_i = \frac{b_n g_{n+1}}{\hat{f}} \cdot \gamma_{n+1}$$
 $\gamma_N = \frac{1}{\hat{f}} \cdot \frac{c_L}{c_0^N} \cdot b_N g_N$ usually 1 unless c_L is per branch

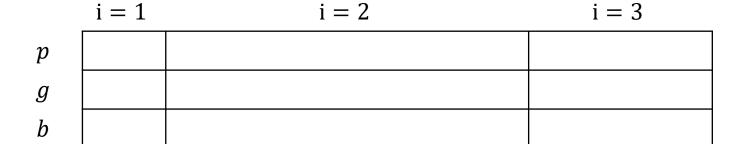


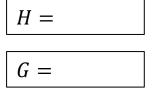
- Not always realistic, but many important circuits are structured and continue similarly after a branch
- Useful also as a starting point, even when branches are finally not scaled as assumed (overdesign)

Sizing with Branches (Example)

Consider the following circuit:







$$B =$$

$$|\hat{f}| = 0$$

$$D_{min} = =$$

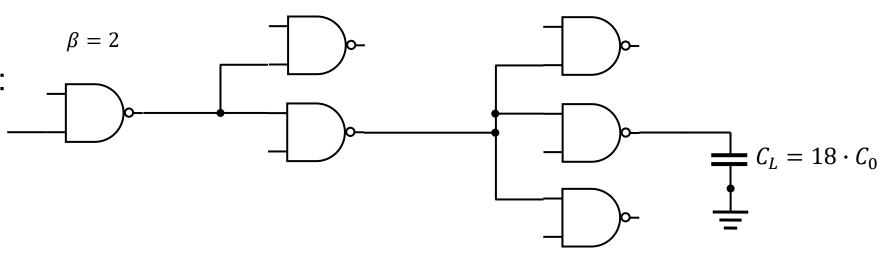
$$\gamma_1 = 1$$

$$\gamma_2 = =$$

$$\gamma_3 = =$$

Sizing with Branches (Example)

Consider the following circuit:



$$i = 1$$

$$p \qquad 2$$

$$N = 3 \qquad g \qquad 4/3$$

$$b \qquad 2$$

i = 3

$$H = 18/4$$

2
 $4/3$
 $G = (4/3)^3$
 $B = 2 \cdot 3 \cdot 1$

$$\hat{f} = \sqrt[3]{GBH} = 4$$

$$p_{min} = 6 + N \cdot \hat{f} = 22$$
 $\gamma_1 = 1$
 $\gamma_2 = \gamma_1 \frac{\hat{f}}{b_1 g_2} = \frac{3}{2}$

$$\gamma_3 = \gamma_2 \frac{\hat{f}}{b_2 g_3} = \frac{3}{2}$$

EE-429 Fundamentals of VLSI Design

Logical Effort – Interconnect & Irregularities

Andreas Burg

Logical Effort with Routing Capacitance (1/2)

 The logical effort model can not account for routing resistance, but routing capacitance is anyway often more relevant

We often face the following scenario

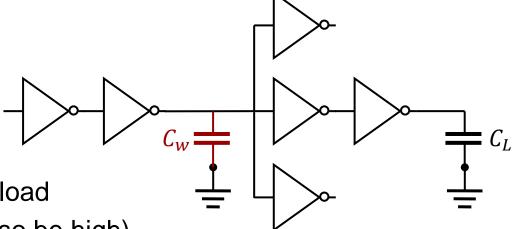
 A path (to be optimized) with some random logic contains a very long wire with a high capacitive load Cw

 Often, this occurs in the location of a branch with many nodes which add additional load

The path continues after the segment with the high load

• The path ends with a defined load C_L (which may also be high)

We would like to optimize the entire path ...



Logical Effort with Routing Capacitance (2/2)

• The common optimization procedure is not applicable since the wire load does not scale with the sizing γ .

- Procedure: multi-step iterative process
 - 1. Ignore parasitics C_w and size all gates from A to C
 - Identify the appropriate fanout load on node B
 - Include any rounding-up on the drivers loading B
 - 2. Optimize the partial path from A to B with the load defined by C_w and the fanout from the first optimization step.

