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Manufacturing Process

• CMOS is based on a photolithographic process and a sequence of

▪ Deposition or growth of some material

▪ Coating with a photoresist 

▪ Exposure of the photoresist & developing

▪ Edging of the unprotected areas

▪ (Ion Implantation)

▪ Stripping of the photomask or mask layers

▪ There are many other small steps in between, 

adding up to >150 major steps for a modern process

• All relevant information is contained in the lithography masks
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CMOS Layer Stack
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• Manufacturing process results in layer stack

▪ A modern FinFET process has 30-50 masks

• We distinguish between 

▪ Front end of line (FEOL): mostly structures inside the 

wafer, comprising all active components 

▪ Mid end of line (MEOL): connections to the FEOL 

components (passive)

▪ Back end of line (BEOL): main interconnect layers, 

starting from M1 or M2 and up

▪ Backend: routing and contact layers for packaging

• Complexity and density decreases from 

lower layers to higher layers FEOL

MEOL

BEOL
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Front-End and Back-End of Line (FEOL / BEOL)

• Front end of line (FEOL): mostly structures inside or just on top of the wafer

▪ Forms the active devices based on doped silicon: transistors, diodes, MOS capacitors

▪ Structures: wells, diffusion, gate oxide, gate structures, trench isolation, LOCOS

▪ Process steps: oxidization, gate formation, ion implantation, annealing

▪ Materials: Silicon, doping materials, silicon dioxide, high-k dielectrics, gate: polysilicon & metals

• Mid end of line (MEOL): between FEOL active components and BEOL 

▪ Forms substrate-, diffusion-, and gate-contacts and polysilicon routing, M0 for FinFETs, M1

▪ Process steps: contact creation, silicidation (of polysilicon reduces resistance), barrier and liner deposition 

(protection of active silicon areas against diffusion)

▪ Materials: Silicides, barrier materials, low-k dielectrics

• Back end of line (BEOL): device, sub-circuit, and chip level interconnect

▪ Structures: Metal wires and vias, passive components (e.g., metal capacitors, inductors, metal resistors)

▪ Process steps: metal and dielectric deposition, patterning, chemical mechanical planarization (CMP)

▪ Materials: Copper, aluminium, low-k dielectrics, liners and barrier materials
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From Schematic to Layout

• Physical design (layout) introduces parasitics that significantly change 

circuit behaviour compared to schematic only simulations

▪ Drive strength of circuit elements (and potentially even the topology) need to be adapted to 

properly deal with (drive) parasitic elements

• Layout is tedious and time consuming and even small schematic updates 

require often significant layout updates

▪ Limited physical space: updating even a single transistor impacts many others

▪ The tighter the layout the greater the effort for even very small updates

• Plan ahead to avoid or minimize updates to the schematic after layout

▪ Anticipate layout parasitics early to avoid post-initial-layout surprises/changes

▪ Build your initial layout to leave “room” for potential updates (you can always compact later)
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Full Custom Design from Schematic to Layout
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Basic Rules of Engineering

▪ Engineers are lazy

If something takes too long, you are doing something wrong.

▪ Divide and Conquer

Divide complex problems into a collection of smaller 

simpler problems, solve one by one.

▪ Maximize Reuse

Try to avoid re-inventing the wheel when you can re-use 

existing pieces, even if the solution is slightly suboptimal

▪ Simple and Regular

Try simple and regular structures, they are easier to design, 

debug, and to reuse / combine

▪ Engineering is not a religion

Find the solution that best fits your problem
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Before Starting a Layout

• Plan ahead: Full custom design is difficult. You should always plan your

circuit with pen and paper before you start drawing

• Connections determine your layout: The external signal connections to your 

block influence your block greatly.

▪ Before starting layout always think about your connections

▪ What are the neighbouring cells, how will you connect them

▪ Assign signal directions

▪ Assign layers to your signals

• Each technology is different: In each technology there are a couple of design 

rules that limit the performance. They are not always the same.
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Difference of Hierarchical Schematic and Layout

• Schematic: Levels are completely decoupled, 

i.e., occupy different resources for wiring and 

components (hierarchy= 3rd dimension)

• Layout: Different levels of hierarchy use 

the same physical resources (2D 

components and routing layers)

• Impact on hierarchical layout:

▪ Bottom-up: always respect the layout of lower levels of hierarchy

▪ Top-down: leave sufficient resources for lower levels of hierarchy during the design

▪ Top-down planning with bottom-up design: 

• Top-level: floor-planning anticipates top-level design (floorplan) to estimate required resources; 

• Lower-levels: (bottom-up) are designed to leave sufficient resources for top-level structures
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Hierarchical Routing

• Higher levels of hierarchy are comprised of multiple blocks from lower levels 

of hierarch

• Area of blocks grows as we proceed from bottom to top

• Lower hierarchy levels: only short local wires

• Number of (long) global wires increases when moving up the hierarchy
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Floorplanning

• Floorplanning defines the layout plan for a hierarchical design

▪ Define the relative position of the individual instantiated building blocks, while taking into account

• anticipated size

• interconnect wire length 

• routing congestion

▪ Reserve space for global wires that connect all blocks such as 

• Supply: VDD, GND

• Critical signals: clocks

• Long large busses

▪ Pre-route critical and long global nets or reserve space for them

• Floorplan helps to fix the outline (aspect ratio) of lower level hierarchical 

blocks that do not have a fixed layout yet to fit well into their future location 

in the floorplan
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Floorplan Example

• Consider the example of an 8-bit ALU

▪ Floorplan option 1:

▪ Floorplan option 2: Floorplan option 3:

▪ Floorplan option 4:
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Detailed Layout

• The layout defines the masks (directly or indirectly) and thereby defines

▪ The shapes of physical structures created by depositing materials

▪ Regions with specific electrical properties created by ion implantation

▪ Devices formed by a combination of different shapes and regions
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Design Rules

• Interface between designed and process engineers

▪ Simplified way to define what is allowed to ensure reliable manufacturing

▪ Account for uncertainties in manufacturing and due to proximity effects with margins

▪ Goal is to ensure consistent high yield and to ensure models match the silicon 

• Specific to each process and to each manufacturer 

• Modern technologies often have hundreds 

of design rules 

▪ Complexity has grown dramatically

▪ Rules are getting more restrictive: 

e.g., uni-directional routing, fixed transistor orientation, ... 

• Pushed rules: deviations from standard design rules

▪ Typically adopted for SRAM bitcells (1.5x area reduction)

▪ Require “qualification” which is expensive and time consuming

▪ Today, very hard to obtain access even for very large customers
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• Reliable manufacturing imposes layout limitations

▪ Captures by the design rules described in the design rule manual (DRM) of the PDK

• Design rules impose restrictions on structures on either the same layer 

(FEOL and BEOL), between FEOL layers, or between adjacent layers (BEOL)

• Typical limitations and corresponding design rules

▪ Minimum distance/spacing

▪ Minimum width

▪ Minimum area

▪ Minimum enclosure

▪ Minimum overlap

▪ Minimum density

Process Limitations
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Lambda and μm (Micron) Design Rules

• Early days of VLSI design: design rules defined by distances as multiples of 

a constant lambda (λ)

▪ Introduced by Carver Mead and Lynn Conway in the late 1970s

▪ Main idea: enable scalability of layouts with technology scaling (no or little modifications)

▪ Good for educational purposes and illustration

▪ Too coars, leading to significant overhead

▪ Not sufficiently generic anyway to enable layout transfer between technology nodes

• Modern design rules are always specified in um (in the PDK)

▪ Technology dependent, but allows to be precise, enabling dense layouts
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Layers

• Physical (manufacturing layers): translate into manufacturing masks

▪ Examples: 

FEOL layers: Substrate, N-Well, P-Well, Deep N-Well, Diffusion/Active, N+, P+, VT selection, ... 

MEOL: Contacts 

BEOL layers: Metal (M1, M2, Mx), 

▪ Design rules described in the DRM

▪ Included in the final tapeout GDS

• Non-physical (CAD or annotation) layers: used exclusively for CAD tools

▪ Means to include additional (non-physical) information in the layout

▪ Examples: 

Pin layers: describe connection points and names for hierarchical design

Text layers (for each layer): label a physical net with a name

P&R boundary: indicate the outline/boundary of a hierarchical cell

▪ Not included in the final tapeout GDS 
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Basic Layout Structures: Transistors

• NMOS & PMOS for a single-well process: 

▪ only P-MOS sits in an N-well, while P-MOS sits directly in the substrate

▪ N+ and P+ can extend beyond the active/diffusion area for clarity 

▪ Transistor defined by N+/P+  DIFFUSION which is the area in which P+/N+ overlap with DIFF

▪ Substrate/Well contacts (4th terminal B) need to be added, but can be shared (see next slide)
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Layout Structures: Substrate/Well Contacts

• For correct operation, the P-Substrate and the all N-Wells must be 

connected to GND and VDD

▪ Substrate and well connections form the bulk (B) connections of P-MOS and N-MOS

▪ Need many substrate/well connections across the chip for clean bulk potential (see next slide)

▪ P-Substrate is connected through a P+ implant connected by a contact

▪ N-Well is connected with through an N+ implant connected by a contact
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Layout Structures: Substrate/Well Contacts/Taps

• Substrate connections are important to 

1. Correctly define the potential of the transistor bulk terminal impacts its characteristics)

2. Avoid latch-up (see next slide)

• A single (or few) connections are insufficient even when wells/substrate 

regions are connected since substrate/well resistance is high

▪ Substrate currents (e.g., from coupling or leakage) cause a local drop/rise in substrate potential

▪ Every diffusion (transistor) leads to leakage currents into the substrate that must be absorbed

• More substrate connections are always better, but minimum defined by 

▪ The design rule manual LATCH-UP RULES (see next slide)

▪ A rule of thumb: 5-10 transistors per connection
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Latch-up

• LATCH-UP is a condition that arises from too few substrate/well connections

▪ A parasitic short circuit causing failure (and sometimes destruction) of the chip

• Latch-up is caused by 

▪ Parasitic planar BJTs transistors formed by a) substrate, b) n-well, and c) diffusion regions

▪ Potential differences in substrate and well leading to currents Emitter-Base and Base-Emitter 

currents that turn on the parasitic BJTs

▪ Turned on BJTs creating a) a feedback that enforces this state and b) a VDD-GND short

LATCH-UP rules for substrate/well contacts/taps are defined in the DRM 
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Layout Structures: Interconnect & Vias (BEOL)

• Transistors are connected with BEOL interconnect/routing on multiple 

layers, connected by Vias

▪ Each layer has minimum spacing and minimum distance rules

▪ We often use Manhatten style routing: each layer has a preferred 

direction (horizontal or vertical), which change from layer to layer

▪ Vias must be enclosed by metal (min. enclosure rules)

▪ Some technologies allow to stack Vias
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Manufacturing Grid

• Placing layout elements on arbitrary coordinates (even when meeting the 

design rules) will

▪ Make it difficult to work due to the absence of a snap-grid

▪ Lead to issues due to manufacturing as coordinates ultimately must be rounded

• Definition of a “manufacturing grid” avoids these issues

▪ Defines a reasonable minimum grid size to which every element must snap

▪ Defined in the DRM and in the technology file 

▪ Must be set correctly in the settings of the layout editor (often done automatically through 

the technology file)

▪ The “manufacturing grid” is much smaller than the minimum design rule (typically ~0.005um)

▪ Changing the manufacturing grid in the layout editor makes drawing valid layouts impossible

Never touch the manufacturing grid setting in the Layout Editor!!!
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Arranging Transistors

• Objective: arrange transistors to avoid unnecessary area penalties AND 

keep your layout structured and regular

• Few useful observations: for now, just believe me, you will see they are true

▪ Active layers require relatively large separation

▪ N-well spacing is particularly large, but N-Wells can 

be merged

▪ PMOS/NMOS spacing is typically larger than spacing 

between transistors of the same type

▪ For CMOS: 

• Number of NMOS and PMOS is often identical or 

at least very similar

• NMOS/PMOS transistors come in paris: each input 

connects to the gate of one NMOS and one PMOS

• Grouping all NMOS and all PMOS saves area (avoids unnecessary spacing)
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Stick Diagrams

• Simple way to quickly evaluate layout topologies

▪ Contains all transistors, their connections (contacts) and, interconnect (wires, vias), 

▪ Shows approximate relative placement and orientation of transistors and routing

▪ Does not contain information on sizing (1D transistor model)

▪ Ignores most design rules: no information on spacing, thickness, enclosure, ... 

• Basic elements of a stick diagram: color coded lines
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Stick Diagram Examples

• Inverter:
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Stick Diagram Examples

• NAND-2 gate:
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Arranging Transistors

• Consider the following arrangements: all group NMOS and PMOS

▪ Consider what happens to the area (efficiency) when # transistors increases

▪ Consider complexity of connecting the gates of NMOS/PMOS pairs

▪ Most modern technologies allow only one transistor orientation (especially FinFET)
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Layout Template for Logic Cells

• Separation of NMOS and PMOS combined with good scaling behavior with 

the number of transistors favours a layout in which 

▪ NMOS and PMOS are separated, but have same orientation

• NMOS are exclusively connected to GND, while PMOS are exclusively 

connected to VDD

▪ GND routed on NMOS side and 

VDD routed on PMOS other side

▪ Easily connects to NMOS and PMOS 

source contacts 

▪ Easy connection to substrate and 

well contacts
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Merging Diffusions for Parallel Transistors

• We often find transistors of the same type that are connected in parallel 

• These can often be placed next to each other (avoid “diffusion breaks”)

• Three possible realization in the layout with very different size

a) Individual complete transistors: 2 separate diffusion regions + spacing

b) Contacted shared diffusion region: 1 diffusion region only, but still large due to contact
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Folding Large Transistors 

• We often encounter transistors that are larger than min. size or than others

▪ Large transistors incur a large diffusion area, i.e. also large intrinsic capacitance

• Larger transistors can be replaced by parallel transistors
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Merging Diffusions for Series Transistors

• We often find transistors of the same type that are connected in series

• These can often be placed next to each other (avoid “diffusion breaks”)

• Three possible realization in the layout with very different size

a) Individual complete transistors: 2 separate diffusion regions + spacing

b) Contacted shared diffusion region: 1 diffusion region only, but still large due to contact

c) Shared (uncontacted) diffusion: separation only by 1 poly pitch
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Euler Path Algorithm: Objectives

• Placing connected transistors next to each other is very efficient

▪ Allows sharing of source/drain areas and avoids costly “diffusion breaks”

▪ Minimizes routing parasitics

• Every input is connected to an NMOS and to a PMOS gate

▪ Placing corresponding PMOS and NMOS such that their gates align allows to use a single 

straight and short ploy to connect both gates

• Need a method to order transistors to avoid diffusion breaks and to align 

corresponding NMOS/PMOS pairs
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Euler Path Algorithm: Approach

• Euler path: path through a graph that visits each edge only once

• Euler method: 

▪ Consider the PMOS and NMOS networks of a gate as a graph

• The transistors are the edges of this graph

▪ Find all possible Euler paths for both PMOS and NMOS networks

• Placing transistors in the order of any Euler path completely avoids any diffusion break

▪ Among the path candidates for the PMOS and NMOS networks choose one that is identical 

(same order of gate inputs) for both networks

• Same path (same order) allows to align corresponding PMOS and NMOS transistors

• There is no guarantee that an Euler graph (or a matching Euler graph exists

▪ If no proper matching Euler graph exists, break the graph into two or more sub-graphs
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Euler Path Algorithm: Examples

• There is no good algorithm to find the Euler path, but an exhaustive search 

often has manageable complexity

• Example 1:

▪ 4 valid options

Fall 2020 EE-429: Fundamentals of VLSI Design 35

Vdd

GND

A

B

C

A

CB

Z

A – C – B 

B – A – C 

B – C – A 

C – A – B 

A – B – C 

A – C – B 

B – A – C 

B – C – A

C – A – B

C – B – A



Euler Path Algorithm: Examples

• Often, we dont need to search all paths, but we can directly look for a 

matching path of PMOS and NMOS since any matching path is fine

• Example 2:

▪ A – B – C – D works for both 

PMOS and NMOS
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A Scalable Layout Template for Digital Cells

• In digital designs we often need a set of logic cells that are later combined in 

various ways to realize more complex multi-level logic

• Idea: define a logic cell layout template in a way that 

▪ Physical cells can easily be combined in an almost arbitrary fashion

▪ The template accommodates cells with very different complexities (e.g., inverters, basic logic 

gates, full adders, sequential elements)

• The standard-cell layout template

▪ All cells have the same hight

▪ Only width varies depending on the complexity of the cell

▪ Power and gorund connections run horizontally with same hight

▪ Cells can abut without DRC violations

▪ PMOS on one side, NMOS on other side

▪ Use only few layers to leave other layers for cell-to-cell routing
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Layout Optimizations

• Long Poly lines and especially chaining gate connections leads to very long 

RC delays

▪ Poly has both a high resistance AND a high substrate capacitance

▪ Poly gates have an even higher capacitance
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